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It is pointed out that inclusion of the effects of higher multipole transitions leads to an
asymmetry in the angular distribution of the two-photon decay spectrum of metastable hydro-

gen.

In a recent experiment to observe the two-photon
decay of metastable atomic hydrogen, O’Connell,
Kollath, Duncan, and Kleinpoppen were able to
measure the spectral distribution as well as the
angular distribution." The measured angular dis-
tribution basically agrees with the 1+ cos®6 dis-
tribution as predicted by the theory of two-electric-
dipole transitions.?”

In this note I wish to point out that if all multi-
pole interactions are included, the angular distri-
bution deviates from the 1+ cos?6 form. In parti-
cular, there are cos@- and cos®9-dependent terms
in the angular distribution, which result from the
interference of the multipole transitions. The
dominant interference comes from that between
the dipole and the quadrupole. Hence, with im-
proved precisions in angular distribution mea-
surements, it would be interesting to look for this
asymmetry. It is hoped that this paper will stim-
ulate future experimental efforts in this regard.

The transition amplitude for the two-photon de-
cay of metastable hydrogen in the nonrelativistic
theory where spin is neglected is given by® a®aM
where a=1/137, a is the Bohr radius and
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where X, and 1, are the polarization indices, ¥,
and ¥, are the polarization vectors of the emitted
photons,
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G(R) is the Coulomb Green’s function,
Q2= IEzs’ - W0, (4)
Wy, 2= lizl,zl , (5)

and El and Ez are the momenta of the emitted pho-
tons. D is the momentum operator. R corresponds
to the so-called “seagull” term. Its evaluation is
straightforward and is easily found to be

R=4V2 2%/ N2+ ¢%)°, (6)

where A=aZm, 4= E1+ Ez, and Z is the charge of
the hydrogenic ion. T;; can be evaluated in closed
form by use of the integral representation of the
Coulomb Green’s function.® By taking into account
of the transversality of the photon, it can be writ-
ten in terms of Apelle’s hypergeometric function'®
as
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where
2[k2+ B2 - X2|[k2+2% - X?] - 8X %k, K,
M1t %= [(X+B)2+F[(X+ 1)+ k2] ()
2y - L= B RN = N7 R3] ©)
[(X+B)?+ E2][(X+2)? + k2]
B=2/2, (10)
=[2m(w+ | E5))]2, (11)
T=\/X, (12)
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From Egs. (6)-(14), we see that to order (Za)?
the transition amplitude can be written as

M= {g(@) + (Za)P[f(w,) +](@,) coso]}
+(Za)h(w,) 8- k82, (15)

where g, f, f, and & are functions of comparable
order. g corresponds to the two-electric-dipole
transition without retardation and agrees with
Klarsfeld’s result.® f is the retardation correc-
tion to g to order (Za)?. f and k come from the
two- electric-quadrupole transition, but in addi-
tion, 7 contains a contribution from the “seagull”
term. The interference between these quadrupolar
terms and the dominant dipole term would lead to
a correction of order (Za)? in the decay cross
section. The one-photon magnetic dipole transi-
tion amplitude, though comparable to the quadru-
polar corrections, cannot give rise to an inter-
ference term with the two-electric-quadrupole
transition and only gives a correction of order
Z*a® to the total decay cross section.” Further-
more, it does not affect the asymmetry of the an-
gular distribution of the two-photon decay mode.

TABLE I. Two-photon decay spectrum.

Upon squaring M and summing over the polari-
zations of the omitted photons, we obtain, after
retaining only terms to order (Za)?,

3 [M]2=[g*+2g7(Za)*](1 + cos®0)

Ao

+2(Za)?g[(f - k) cos+ (f +h) cos®0].

(16)
We define a dimensionless energy variable 7 by
w, =N(Eys- Ey ) =5(Z%a/a)n; 1
thus
w,=(1-n)3Z%a/a. (18)

Then the decay spectrum is given by

dzw, 1
18- 2, = 2
—_idndcose 2() n1-nZ am;; [M[2. (19)
1912

The decay rate in sec™ can be obtained by re-
placing m with mc?/7.

I have calculated n(1- n)g?, n(1- n)gf,
n(1-n)g(f - k), and n(1 - n)g(f +h) for n=0 to
0.5, since the quantities are symmetric in n and
1-17n. The results are shown in Table I. In the
nonrelativistic dipole approximation, Z}l o IM ]
would reduce to g%(1+ cos?6). I have checked these

results against previous work by calculating the
decay rate in this approximation by a simple nu-
merical integration and obtained a value of 8.24Z°
sec™!, as compared to previously given values of
8.22822° sec™* (Klarsfeld®) and 8.2262° sec™!
(Shapiro and Breit®). The angular distribution in
this nonrelativistic calculation to order (Za)? is
obtained as

dW2s° 1s

T =Z%[3.09 - 0.97(Z@)?](1 + cos?p)

- 0.28(Za)%cosh
-0.21(Za)?cos®0} sec™. (20)

(—n) indicates a multiplicative factor 10™. The

spectrum is symmetric in 7 and 1 — 7

7 1 - n)g* -0l - n)gf —n(1 - n)g(f-n) -0 - n)g(f+h)
0.05 0.2692 (~1) 0.1687 (—1) 0.4745 (-3) 0.1334 (-3)
0.10 0.4338 (—1) 0.2334 (-1) 0.1571 (-2) 0.7164 (-3)
0.15 0.5423 (-1) 0.2479 (—1) 0.2962 (-2) 0.1697 (=2)
0.20 0.6170 (—1) 0.2359 (—1) 0.4441 (-2) 0.2904 (-2)
0.25 0.6696 (—1) 0.2165 (—1) 0.5869 (-2) 0.4174 (-2)
0.30 0.7067 (—1) 0.1922 (-1) 0.7146 (-2) 0.5375 (-=2)
0.35 0.7327 (—1) 0.1697 (—1) 0.8206 (—2) 0.6408 (—2)
0.40 0.7494 (—1) 0.1519 (-1) 0.8991 (-2) 0.7191 (-2)
0.45 0.7591 (—1) 0.1405 (—1) 0.9477 (-2) 0.7682 (-2)
0.50 0.7623 (—1) 0.1367 (—1) 0.9641 (-2) 0.7849 (-2)
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Johnson” has calculated the relativistic and the
retardation correction to the two-electric-dipole
transition. The first correction term in Eq. (20),
~0.97(Za)?, represents the retardation correction,
and is contained in Johnson’s results. I have
" fitted Johnson’s results for the two-electric-dipole
radiation decay rate with a series in (Za)?. To
order (Za)?, Johnson’s relativistic corrections
modify the angular distribution to

%: 2¢{[3.09 - 2.81(Za)?](1 + cos?0)
~0.28(Za)? cosh

~0.21(Za)? cos®s} sec™!. (21)

Relativistic effects only yield corrections of order
(Za)* in the cosf and cos®9 terms. The one-photon
magnetic dipole transition, whose decay rate is
given by 2.50 x 107%Z'° sec™', gives a further cor-
rection of order Z*a® I have not included the re-
duced-mass correction for each element, but this
can be easily incorporated from Johnson’s re-
sults.”

The author thanks Professor Gerald Feinberg
for helpful comments.
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