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An analytic expression is given for screened continuum radial wave functions which extends our previous

results to the case of arbitrary energy shift.

In a recent paper' we outlined an analytic per-
turbation theory for the construction of screened
Coulomb radial wave functions, based on an ex-
pansion of the potential of the form

V(r) = (—a/r)[1+ V,Ar+ V, (Xr)'+ V, (Ar)'+. ].

ln Eq. (1), a=aZ, X=1.13aZ'~' is the reciprocal
of the Thomas-Fermi radius of the atom, and the
coefficients V„are chosen so that this expression
is a good approximation to realistic atomic po-
tentials in the region Ar &1. Both bound and con-
tinuum states were considered, the continuum
wave function being obtained by analytic continua-
tion from the bound-state case. In order to effect
this analytic continuation, we introduced a param-
eter T, which is related to the physical energy T
of the continuum electron by means of the formula

T —T =ST=AT +AT +AT + ~ '',1 2 3 (2)

where, in general, the coefficients T, may be
functions of T,. For a particular choice of these
coefficients, we were able to show that the
screened continuum radial wave function corre-
sponding to the energy eigenvalue T can be written
in terms of a point Coulomb wave function of
shifted energy T, plus screening corrections which
are expressed as a series in X with simple ana-
lytic coefficients. Although the result for the con-
tinuum wave function given in Ref. 1 is particu-
larly simple because of the explicit form chosen
for the energy shift, it is desirable to be able to
write screened continuum wave functions for ar-
bitrary energy shifts, since many screened re-
sults can be simply related to the corresponding
point Coulomb expression of shifted energy. It is
the purpose of this note to give the results for
screened continuum radial wave functions using
the perturbation theory presented in Ref. 1 with
arbitrary energy shift.

Following Ref. 1, we define a function s(r) by
means of the relation

R(r) =Nr's '»c's(r), -

where R(r) is the radial wave function, N is a nor
malization constant, and T, = —,k', . (We choose
units such that I= c = m, = 1.) If we make a change
of variable, x= 2ik,r, then s(x) satisfies the ordi-
nary differential equation

(
d d

x (2( 2 —x)—(—( —) —)))s(x)dx

= B,„,s (x) = (5T —5 V)s(x), (4)
C

where 5V= V- V„5T is defined by Eq. (2), and
v=a/k, . The bounda, ry condition on s(x) is that
s(0}=1. In the following, we will assume, as in
Ref. 1, that the first-order energy shift is given
by T, = —V,a, since in this case the first-order
correction to the wave function vanishes. ' This
considerably simplifies the subsequent develop-
ment. The remaining coefficients T~, however,
are arbitrary.

We then expand s(x} as a series in A. , so that

s(x) =s,(x}+X'A, (x)+X'A, (x)+ ~ ~

where s,(x) is the unperturbed Coulomb solution.
Substituting (5) into (4) and equating like powers
of A. , we obtain a hierarchy of equations for the
coefficients A»(x). By means of the identities be-
tween contiguous confluent hypergeometric func-
tions, these equations can be put in the general
form

5),.„,A»(x) = Q p»(-iv, l)M(l+ 1+ iv —s, 2l+ 2, x),

(6)

where M(a, b, x) is a regular confluent hypergeo-
metric function and the explicit form of the coef-
ficients P,'(-iv, l) depends on the values chosen for
the energy-shift parameters T„. In Ref. 1, the
T» were chosen to satisfy the condition P,"(-iv, l)
=-0. Then, using the fact that

B,„,M(l+ 1+iv —s, 2l+2, x)

= -sM(l + 1+iv —s, 2l + 2, x), (&)
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the solution to Eq. (6) couM be written down im-

mediately.
When the Tk are arbitrary, one also needs a

solution f(x) of the equation

k

A (x) = n,'(-i v, E)M(l + 1+ iv —s, 2l + 2, x)
tt)t w

+ P,'(-iv, I)- . M(l + 1+ iv, 2l + 2, x),
8 iv

(10)

u,.„ 3f(x) = M(i+ 1+iv, 2l+ 2, x) . (6)

By differentiating Eq. (7) for s = 0 with respect to
the parameter iv we find that

f(x) = . M(i+1+iv, 2l+2, x).8
8 7, v

Hence, for arbitrary energy shift, the screening
corrections A~(x) can be written in the form

where &,'= -p~/s for all s 330 and &0~ is chosen to
satisfy the boundary condition A„(0) = 0. Aside
from the fact that 5T is now a,rbitrary, so that
the relation between T and T, is changed, Eq. (10)
differs from our previous solution [cf. Eq. (19) of
Hef. 1] only by the addition of the last term. '

For k = 2 and 3, we have derived the explicit
forms of the A~(x) in terms of the energy-shift
parameters Tk. We find

X,(*)=,'(I' (I+2+tv)(l I+' )M(-2, x) —(I+I+'v)[2'v(1+2' )+23]M(—l, x)

[3v'(2l+3) —4(l+l)d, ]M(O, x) —4ivjg3v2+E(I+1)] d,) . M(O, x)

(I I tv)[ 2( (I 2' ) 23,)M(t, x), 'v(t+2 —tv)(l ~ I —'v)M(2, *)),

A, ( )=,'( '(1+3+1 )(I 2+tv)(l I ~
'

)M(—l, x)+-', (I ~ tv)(l ~ 2+ v)(l ~ I+ ' )M(-l, x)

—.'(I+1+ )[ 15 (I+i )+3E(l 1) 6 4ad, / ']M( l, x)

[10v'(E+ 2) + ,'(I+1)(6E'+—13E—6)+ 4a(l+ l)d, /v']M(0, x)

+2iv[[-5v'+I —3l(l+1)]—2ad, /v'j . M(O, x)
8 iv

+ —,(l+ 1 —iv)[15iv(1 —iv)+ 3E(l+ 1) —6+4ad, /v']M(l, x)

+-,(I-'v)(l 2-'v)(1+I- v)M(2, x)--, (1+3—tv)(1+2-tv)(l+l-tv)M(l, x)),

(1la)

(1lb)

where d, = T~/V~ and M(s, x) =M(I+1+iv s, 2l+2, x). We note that, from Itoincare's theorem 4 A„(r) will
be analytic in k, whenever the energy shift 5T(k,) is analytic. Hence, although it is not evident from Eqs.
(11), A~(x) will be finite at T, = 0 if the energy shift is finite at this point.

Having an explicit form for A, (x), we can also determine the screening corrections to the continuum
normalization and the interior contribution to the phase shifts using the procedure of Ref. 1. Since the
procedure is discussed there at length, we will only give here our results for the case of arbitrary ener-

gy shift.
The screened continuum normalization E)E(k, l) can be written, as before, in terms of an expansion in A..

Through third order we find, explicitly,

kc '/2 V Sa'
tt(3() tt (t„l) ,—'=I+I* * t(t 1)(M+I) — ++t(l ~ I)-23) (21+1-p,)

C

5a2 2ad-'l(l+ l)(2l+I)+ — —3l(l+1)+1—,' (2l+ 1 —p, )
I C

where

2& 2' &
(13)

and (E)[„k)=E(2k,)t~l'(I+1+iv) ~e'" '/1'(2E+2) is the point Coulomb normalization of shifted energy. We
note that the ratio N(k, I)/Et', (k„l) is finite at T, = 0 if the energy shift is finite at this point. This can be
seen immediately using the low-energy expansion of p „

p3 —(2E+1)+ 3l(l+1)(2l+1)v '+ —', l(l+1)(2l+1)[l(l+1)—3]v +0(v '), (14)
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in which contributions of the form e ""are neglected.
Finally, our expression for the interior contribution to the screened phase shift is similarly modified

in the case of arbitrary energy shift. We find, through third order in A. , the result

6(k, f)=p(k, )+6,(k„l) A.'(V, /16T, )v[7v'+l(l+3) —4d, ]-A.'(aV, /32T,')v[—(l+1)(5l+6)+~(29 —37v') —4ad, /v'],

(15)

where 6,(k„l) is the point Coulomb phase shift of shifted energy and P(k,), the interior contribution to the
phase, is as defined in Ref. 1 [cf. Eqs. (88) and (89)].
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2This assumption is not particularly restrictive. For
most applications of our theory this value of T& is the
correct physical choice. In any case, one may con-
struct analytic screened wave functions using our per-
turbation theory for arbitrary values of T&. However,
the resulting expressions will be somewhat more com-
pl.icated.

~This additional term, which at large distances gives a
contribution involving both regular and irregular con-

fluent hypergeometric functions, would seem to bring
our work into closer contact with the quantum-defect
method [see, for exampl. e, M. J. Seaton, Mon. Not. R.
Astron. Soc. 118, 504 (1958)] and with the model poten-
tial approach of E. J. McGuire [ Phys. Rev. 161, 51
(1967); 175, 20 (1968)]. The precise correspondence
between these approaches and our own, however, is
not yet fully understood.

Theorem of Poincare: If a differential equation depends
holomorphically on a parameter and the boundary con-
ditions are independent of that parameter, then the so-
lutions of the equation are holomorphic functions of the
parameter.


