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Theory of negative fine and hyperfine structure in excited states of rubidium: 4 D state
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The negative signs of the fine-structure constant and dipolar and contact hyperfine constants for the 4'D state

of the rubidium atom are all explained by the common mechanism of exchange polarization of core states by

the valence 4d state. The results of the present one-electron theory for the fine-structure, dipolar, and contact

hyperfine structure constants are —3.7 (6.1 —9.7) cm ', —0.37 (0.29 —0.65) p 10" cm ', and —2.1

(0.0 —2.1) X 10'" cm ', respectively, where the values given in parentheses are, first, the (restricted) Hartree-

Fock and, second, the exchange core-polarization contributions. By including the exchange core-polarization

contribution, the resulting estimates are in reasonable accord with the corresponding observed values of these

coupling constants: —0.176 cm ', —0.318 X 10" cm ', and —4.22 X 10 ' cm ', respectively. The possible

importance of many-body and relativistic eA'ects is discussed.

I. INTRODUCTION

The understanding of the properties of excited
states of alkali-metal atoms has recently assumed
major importance through the development' ' of
very useful techniques for their study. Very in-
teresting results have been obtained for the ex-
cited d states, in particular for the 4d'D excited
state of rubidium atom. In this system, experi-
mental measurements have shown that the spin-
orbit coupling constant" and the dipolar and con-
tact hyperfine constants~ are all negative in sign,
while conventional restricted Hartree-Fock theory
would give positive signs for the first two of these
properties and a zero value for the contact hyper-
fine constant.

In the present work, we have demonstrated that
for all three of these properties, a single mech-
anism, namely, the exchange polarization' of the
core electron states by the valence electron, can
in fact provide negative contributions which over-
come the positive contributions from the valence
electron for the spin-orbit coupling and dipolar
hyperfine constants, while for the contact hyper-
fine constant this mechanism explains both the
negative sign and finite magnitude of the observed
experimental result.

Before proceeding to a quantitative analysis, a
physical explanation of the origin of the negative
sign of the three coupling constants can be given
as follows: Considering first the spin-orbit coup-
ling and dipolar hyperfine constants, the attractive
exchange interaction between the valence 4d elec-
tron and core electrons such as the 4p type with
spin parallel to the valence electron pulls the 4p
parallel-spin electrons outwards, leading to a net

relative increase of the density of antiparallel-
spin 4p electrons in the inner region of the atom.
This leads to indirect contributions to both the
spin-orbit and dipolar hyperf inc coupling constants
of opposite sign to the direct contributions from
the 4d electron, and can be of larger magnitude as
a consequence of the relative proximity of the 4p
electrons to the nucleus as compared to the 4d
electron. If this happens, the indirect contribu-
tions can overpower the direct and determine the
sign of the net coupling constants. This effect is
reminiscent of the sizable nuclear quadrupole
antishielding factors' for ions interacting with an
external charge. A similar explanation applies for
the negative sign of the exchange core polarization
(ECP) contribution to the contact hyperfine coupl-
ing constant, with the 4s electron taking the role
that the 4P electrons had in the previous situations.
In the case of contact interaction there is no zero-
order contribution from the 4d valence electron,
the lowest-order contribution coming from the
ECP effect itself. This discussion of the ECP
effect has focused on the role of the 4s and 4p
shells, because they have the largest exchange in-
teraction with the 4d. Of course, the inner shells
(ls, 2s, 2p, etc. ) are also subject to the ECP ef-
fect and will be included in this work.

In Sec. II we present a description of the method
of calculation. A discussion of the results and con-
clusions are given in Sec. III.

II. PROCEDURE OF CALCULATION

The procedure used in our work involves the
calculation of the second-order energies having
one order in the exchange interaction between the
4d and core electrons and one order in the appro-
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expressed in units of 10'4 cm '. Also in Eq. (3),
the potential V refers to a local approximation"
of the Hartree-Fock potential and is obtained
through the equation

(a) (b) V= —,'(V'(()/(j) + E, (6)

FIG. 1. (a) Direct and (b) ECP diagrams.

priate perturbation Hamiltonian. The latter is
either the spin-orbit interaction, which couples the
electron spin and orbital angular momenta via a
function of the effective electric field, or the hy-
perfine coupling (contact or dipolar) between the
electron spin and nuclear magnetic moment. In
diagrammatic language, ' these second-order ener-
gies are described by the diagram in Fig. 1(b),
with Fig. 1(a) representing the direct zero-order
contributions from the 4d state. In Fig. 1(b), the
states n refer to occupied core states, while the
states k represent excited states to which the core
electron can be sent by any of the three perturba-
tion Hamiltonians F, corresponding to the spin-
orbit, dipolar hyperfine, and contact hyperfine in-
teractions, represented by the interaction line at
the top of the diagram. The bottom interaction line
refers to the exchange interaction between the
parallel-spin core and valence 4d electrons. The
first-order energies [Fig. 1(a)] in the three cases
are given by

(1)

while the second-order energies [Fig. 1(b)] are

where

g ()t), IF liI„)mls

k 6n- Ek
(6)

represents the first-order perturbation of the core
wave function P„due to the perturbation Hamilton-
ian F. 6trt)„can be obtained by solution of the first-
order perturbation equation

E and (j) being the energy (in atomic units, e'/ao)
and eigenfunction corresponding to the core state
being investigated. Equation (3) is actually an ap-
proximation to the spin-orbit Hamiltonian and is
adopted from considerations of practicability of
calculation. The effects of this approximation and
possible improvements will be discussed at the
end of this article.

Equation (2) can of course be evaluated if the en-

ergy eigenvalues &k and gk for the excited states are
known. However, unless one is engaged in a full-
scale many-body calculation, ' this process is too
time consuming to evaluate just (F)EcP. Alternate-
ly, one can express (F)EcP in tlie form

0') = —2 Q ()()„(1)4, (2) 4 O)()„(2)),

(F)ECP (&o E ) 6(j) = (F ()j' IF I)().)))j). (9)

FD
= (1/r ) P, (c so8)I, s, ,

Fc= 6(r)f, s, .

(4)

(5)

ln Eqs. (3)—(5), multiplying fa, ctors involving prod-
ucts of a number of constants such as the nuclear
magnetic moment, Bohr magneton, and Planck's
constant have been dropped for the sake of brevity.
They can be restored in making comparisons with
experiment in terms of the appropriate units of
measurement. For the dipolar and contact hyper-
fine constants, the multiplying factors are not
necessary, because the experimental results are

()()„ I F I gs) ((j)0(1)(j)44 (2) 1(1/res) I II)44(1)(j)„(2))

)1, k

(2)

For the three cases of spin-orbit, dipolar hyper-
fine, and contact hyperfine interactions, the per-
turbation Hamiltonian F is, respectively, given by

1 dV
Fso . L s )rdr

/ao) ((Fs0)44 K s )0E pc)

(
1 (FD)44+ (FD)EGP
r'

D , lao(4d, IP, (cos8)14d—,) '

1 Fc Ecp

C 3 O

(10)

(12)

H,„being the zero-order Hartree-Fock Hamilton-
ian for the core state tt)„. The process of solution
of Eq. (9) for the cases of contact and dipolar hy-
perfine interactions is explained extensively in the
literature. ""The process of solution for the case
in which F refers to the spin-orbit operator in Eq.
(3) is closely similar to that for the dipolar hyper-
fine interaction case. In this procedure, for the
zero-order Hamiltonian H,„, the sum of the kinetic
energy —2V' and the potential energy V given by
Eq. (6) is used. From the calculated (F)«and
(F)EcP, the corresponding direct and ECP contri-
butions to the spin-orbit constant, in units of cm ',
and to the dipolar and contact hyperf inc interac-
tions, in units of 10' cm ', are given by
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TABLE I. List of various ECP contributions to the
spin-orbit parameter g (in cm ) and dipolar and contact
hyperfine constants «/~~)D and «/r3)c (in 10 cm 3).

Core orbitals K

Total

0.743
0
0

0.743

0.028
0
0

0.028

1 —13.837 -0.641
3 3.363 —0.067

Total -10.474 -0.708

Total

0.580
-0.109

0.47 1

0.026
0.002

0.028

-0.623 —0.001
0.158 0

—0.465 —0.001

-2.139

0.103

—0.078

ECP tota.l —9.725 -0.653 -2.114

where n is the fine-structure constant. f, the
spin-orbit constant in Eg. (10}, is related to the
fine-structure splitting frequency 4v by the rela-
tion

(13)

since J = —,
' for the 4d'D, &, state under investigation.

III. DISCUSSION OF RESULTS AND CONCLUSION

Using Earls. (10}-(12)together with Eq. ('1) for
(F)sc~ and the solutions 5g„ for the various core
states from Eg. (9), we have evaluated various
contributions to the spin-orbit, dipolar hyperfine,
and contact hyperfine constants. These are listed
in Table I. Since, in our present work, we are in-
terested in strictly one-electron contributions, we
have employed a one-electron Hartree-Fock self-
consistent wave function for the 4d'D configura-
tion of xubidium, rather than using solutions from
empirical potentials. '

First, consider the entries in Table I under spin-
orbit coupbng constant. The ECP contributions
from the different core shells that can contribute,
namely, 3d, 4p, 3p, and 2p, are listed separately.
Also listed for each of these shells are the contri-
butions from the multipole components K of 1/r»

in Eq. (7) and their sums. Since for spin-orbit in-
teraction only the radial excitations d- d and p- p
of the d and p core states are important, it follows
that in Eq. (f) only K=0, 2, 4 contribute for the d

core and K= 1,3 contribute for the p cores. The
cores which are entered in Table I for the dipolar
hyperfine constant are the same as for the spin-
orbit parameter. However, for this case, the
angular excitations p-f and s-d can also contrib-
ute. Since the 4d orbital is rather external, one

expects, from analogy with nuclear quadrupole
antishielding calculations, ' the angular contribu-
tions to have relatively minor importance. They
have not been included in our present work. For
the contact hyperfine interaction, only the s core
states" contxibute to the ECP effect, and it can be
seen from Eg. (7) that only the K= 2 term contrib-.
utes in this case.

The important features of the ECP contributions
are the following: First, for all three properties,
the core states having n =4 make the leading contri-
bution, the 4p being the important state for the
spin-orbit coupling and dipolax' hyperfine interae-
action and 4s for the contact. This behavior is
understandable, because the 4s and 4p cores ex-
change most strongly with 4d. As regards the 3p
and 2p contributions, it is interesting that for the
spin-orbit coupling they are of comparable magni-
tude, while for the dipolar hyperfine ease the 2p
contribution is relatively negligible. This differ-
ence in behavior can be understood by realizing
that the spin-orbit operator in Eti. (3}varies rad-
ially as Z(r)/r', while the dipole hyperfine Ham-
iltonian in Eq. (4) involves 1/r', Z(r) being the
effective charge seen by the electron. Since Z(r}
increases rapidly as one approaches the nucleus
(i.e. , to the total nuclear charge Z for r= 0), the
increased spin-orbit coupling for the 2p state can
effectively counterbalance the decrease in ex-
change with the 4d electron in going from 3p to 2p.
The 3d contributions to the spin-orbit coupling
and spin-dipolar hyperfine interaction are compar-
able in magnitude to the 3p contributions. Actually
the 3d contributions should be compared with the 4p
contributions, because the radii of 3d and 4p orbit-
als are more nearly comparable than 3d and 3p.
The weaker results shown in Table I for 3d as
compared to 4p are principally a consequence of
the smaller amplitude near the nucleus of the 3d
orbital due to the r dependence of the radial func-
tions. For the contact hyperfine interaction, the
4s core state is the leading contributor and the 3s
and 2s contributions are of comparable magnitude.
The reason for the closer resemblance of 3s and
2s in contrast to the 3p and 2p contributions for
dipolar hyperfine interaction, and closer to the
spin-orbit case, is that the spin density for the
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TABLE II. Summary of contributions and comparison
with exper iment.

(cm ')
«/ + )D «/&')c

(10"cm-') (1P" cm-')

Direct
ECP

Total

6.064
—9.725

-3.661

0.287
-0.653

-0.366

0.0
-2.114

-2.114

Experiment —0.176 ~ —0.318 b -4.22 b

' Ref erenc.e 4(a).
"Reference 4(b).

contact hyperf inc interaction increases more
rapidly than I/r' as one approaches the nucleus,
a behavior which is closer to that of Z(r)/r' in the
spin-orbit case. Thus the variations in the ECP
contributions in all three cases from the various
shells can be understood from physical consider-
ations.

The net coupling constants, which are the sum of
the direct (4d2) contribution and the total ECP con-
tribution, are given in Table II, along with the ex-
perimental values. First consider the spin-orbit
coupling constant g. We see in Table II thai the
ECP contribution to the spin-orbit coupling is
larger in magnitude than and of opposite sign to the
direct contribution. Thus while the ECP contri-
bution to & is qualitatively of the proper sign and
magnitude and also shows how the negative fine-
structure constant arises, the ECP effect by itself
appears to be insufficient to explain the remaining
difference with the experimental value. We have
been led to this conclusion by corroborating the
results for f in Table II, which were obtained by
the methods described in Sec. II, with preliminary
estimates obtained by many-body perturbation
theory. Here we have used the same set of occu-
pied Hartree-Fock atomic orbita, ls plus a complete
set of virtual orbitals which are obtained as num-
erical solutions to appropriate one-electron equa-
tions. The conventional non-relativistic form of
the spin- own- orbit and spin- other- orbit operators
are taken. "'" That is, the spin-own-orbit oper-
ator is proportional to I,s,/r' We find that . the
direct contribution gives 5.29 cm, which is com-
posed of 9.19 em ' from the 4d spin-own-orbit op-
erator and -3.91 cm ' from the spin-other-orbit
operator in the Hartree-Fock scheme. " This
value, 5.29 cm ', compares reasonably well with
the value 6.06 cm ' which was obtained by employ-
ing Eqs. (I), (3), and (6) of Sec. II. The total ECP
contribution to the spin-own-orbit operator ob-
tained by many-body perturbation theory is -10.4
cm ', which again is reasonably close to the value,
-9.73 cm ', obtained by the methods of Sec. II.

The shellwise contributions to the ECP effect also
agree well.

Having independently verified the estimates of the

spin-orbit coupling constant presented in Tables I
and II, we are left to consider the remaining dif-
ference between estimated and experimental cou-
pling constants. There are iwo possible effects
which come to mind. The first is electronic cor-
relation, which requires higher-order perturba-
tion theory and a more systematic way of incorp-
orating those effects, and which we would expect
to be an important effect here. Secondly, in order
to properly handle many-electron effects, the

proper nonrelativistic form" of the spin-orbit
Hamiltonian (i.e. , the one composed of one- and

two-body operators derived" by a Foldy-Wouthuy-
sen transformation of the many-electron Dirac
Hamiltonian) must be used. Thus the form of the

Hamiltonian chosen in Eq. (3) is suitable for single-
particle excitation effects, as in this work, but it
is not appropriate for the inclusion of many-part-
icle effects. Therefore the program for improving
agreement with experiment is to use the proper
nonrelativistic spin-orbit Hamiltonian and include
the influence of correlation effects. Alternatively,
a relativistic many-body treatment of the atom
would avoid the need for using an approximate
spin- orbit Hamiltonian.

For the dipolar and contact hyperfine constants
the results in Table II show that the ECP contri-
bution gives a substantial improvement in the
Hartree-Fock estimates and explains the origin of

the negative sign of both constants. The contact
hyperfine constant, which up to the order consider-
ed here arises entirely from the ECP effect, is
about one-half the size determined experimental-
ly. 4 The difference between theory and experiment
is most likely due to correlation effects. There
can be two types of correlation effects that can
contribute to the contact hyperfine interaction.
First, the valence d electron itself, by pair cor-
relation' with any of the core electrons, can pick
up some s character and contribute to the spin
density at the nucleus. Second, the changes in the
radial and angular characters of the valence elec-
tron can alter its exchange interaction with the
core s states.

The dipolar hyperfine constant appears to be in
reasonable agreement with experiment after in-
clusion of the ECP contribution. However, we have
omitted the angular polarization contributions to
the dipolar interactions which arise when core p
shells are excited into virtual f states by an ex-
change interaction with valence 4d electrons. Sim-
ilarly, polarizations of the type 3d-s, 3d-g, and
ns -d are also possible. Nevertheless, as re-
marked earlier, these angular polarization effects
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may not be very important in the present case, as
has been the usual result for other systems in-
vestigated. "Correlation is expected to have an
influence on the dipolar interaction, since, as with
the other properties, the 4d electron is fairly
loosely bound and can therefore be deformed ap-
preciably by pair correlation, especially with the
4s- and 4p-shell electrons.

In conclusion, the present work on the 4'D state
of rubidium clearly demonstrates that the exchange

core polarization effect is of crucial importance
for explaining the origin of the observed signs and
to varying degrees the magnitudes of the spin-orbit
as well as hyperfine coupling constants. The same
mechanism should be considered for explanation
of similar data on other excited d states of rubid-
ium and other alkali atoms. For a complete quan. —

titative explanation of these properties our work
indicates that a thorough and detailed treatment
of correlation effects has to be carried out.
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