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Simultaneous vibration (v) and rotation (j) excitation of N, by electron impact is calculated in the hybrid

theory from the relevant formulas (involving a-matrix elements previously calculated). All cross sections

(labeled v, j~ v', j') involving states with v = 0, 1; 0 & j & 1; 0 & v'& 2; 0 & j' & 5 have been evaluated. A
representative sample of graphical results is presented. In particular, we find large discrepancies in magnitude
from the partially phenomenological theory of J. C. Y. Chen.

We report here calculated results for simultaneous vibration-rotation electron-impact excitation of N2

on the basis of the hybrid theory. The basic formula for the differential cross section from a vibration-
rotation' state v, j to v', j' is given by

A~(U'j' vj)P~(cos8'),
dQ' k„) 4m

where

A, (v'j '; vj) =(2L+1)(2j'+1)

xg (-I)'J+ s+ +"l(21&+1)(2A., +I)]'~~a«(u', v)g& & (v', v)

~l (~,. ~, ~'i (j j Z)2 I. ). L

(0 0 0) (0 0 0 (m -m 0) (p -g 0) (0 0 0) A, l,. j
(2)

The total cross section, which from (1}is seen to be proportional to Ao, can conveniently be written in the
form

'"(0 oo) - (m -m o)
(3)

The idea of the hybrid theory' is to combine
adiabatic-nuclei amplitudes for rotation with close-
coupling amplitudes for vibration for any reso-
nant partial wave (as in the 11, case for e-N, ) which
has a width narrower than the vibrational spacing
but broader than the rotational spacing. Mathe-
matically this amounts to replacing in Eq. (3) the
adiabatic-nuclei elements (y„are target vibrational
wave functions}

(v', )=f x (R)a„(R)x (R)R„dR„'
0

(4)

by the elements a„'.,
' „, coming from a close-cou-

pling expansion in vibrational states of the wave
function

~( &=i, (5)

where 4„ is the electronic part of the target wave
function (with nuclei fixed at a distance R apart),
and the F„', describing the scattered particle,
are further decomposed into spherical components,

F! '( )=r 'Pf! '(r)I' (II) (5)

The asymptotic form of the solutions of the result-
ing coupled equations for f „'P'(&} then yields the
elements a„'.', „„the hybrid theory then substi-
tutes them in place of a, , (v', v) in the relevant
cross- section formulas. ' For nonresonant partial
waves one uses the a, , (U', ~}calculated from Eq.
(4}, where on the right-hand side the a, , (R} are
the fixed-nuclei amplitudes calculated with nuclei
fixed at each distance R apart.

All the a, , (v', v) for nonresonant partial waves
(m =0-5, g, and u except II~) plus resonant
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In assessing the comparative results of Chen and
ourselves, the following points should be kept in

~pFIG. 10. Angular distribution for v=0-1; j,g odd
{E=2eV). Note d-wave character of rotationally diago-
nal cross section in this case also.

mind: First, his calculation was done before the
most impor tant recent developments were made in
ab initio calculational theory of low-energy elec-
tron-molecule scattering. ~ Second, his calculation
refers to the resonant contribution only in such a
way aieth t it effectively factors between electronic
and nuclear parts. The electronic factor was
ted to the magnitude v =0-1 (rotationally averaged)
cross section as it was then thought to obtain. The
detailed resonant structure was then fitted by the
nuclear factor calculation with appropriately cho-
sen parameters. As a result of this factorization
and parametrization, Chen's results do not depend
explicitly on the electronic state (specifically the
quantum numbers of the resonance partial wave of
the scattered electron). This is clearly not the
case in our detailed theory.

Under these circumstances, it is inappropria ei te
to press comparisons with our calculation too far.
The accuracy of our absolute cross sections has
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been discussed in Ref. 1. To summarize in a form
appropriate to the present results we would say
that aside from purely elastic cross sections our
results should be correct to better than a factor of
2. For purely elastic cross sections [i.e. the (0, 0
-0, 0) and (0, 1-0,1) cross sections of Figs. 1 and

2] we estimate an accuracy of 25%. [These esti-

mates are based on comparisons with experiment:
for vibrational excitation (Fig. 14 of Ref. 1) the
comparison is better than a factor of 2, and for
total scattering (Fig. 7 of Ref. 1, of which the
dominant part is pure elastic scattering) the calcu-
lation is within 25% of experiment. ' To this we ar-
gue further that the introduction of rotational de-
grees freedom via the adiabatic-nuclei approxima-
tion, whose validity may be cogently argued for'
by virtue of I'(R)» &E„, for all relevant R, does
not add measurably to these errors. ] In addition,
there are certainly inaccuracies in the detailed
shape of the fine-structure features, as discussed
in Ref. 1 (cf. in particular Fig. 14 of Ref. 1').

For these reasons, therefore, it would clearly be
desirable to have experimental results of at least
some of these simultaneous rotation-vibration
cross sections. However, these measurements
are very difficult because of the small rotational
spacing (-10 'eV) of N, . Nevertheless, such mea. —

surements are underway in the laboratory of the
late George Schulz at Yale.

We are grateful for the inspiration and encour-
agement provided us by the late Dr. George Schulz.
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