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Simultaneous vibration (v) and rotation (j) excitation of N, by electron impact is calculated in the hybrid
theory from the relevant formulas (involving a-matrix elements previously calculated). All cross sections
(labeled v, j— v’,j') involving states with v=0,1;0< j <1; 0< v'<2; 0 < j <5 have been evaluated. A
representative sample of graphical results is presented. In particular, we find large discrepancies in magnitude
from the partially phenomenological theory of J. C. Y. Chen.

We report here calculated results for simultaneous vibration-rotation electron-impact excitation of N,
on the basis of the hybrid theory.! The basic formula for the differential cross section from a vibration-

rotation! state v,j to ¢/, j’ is given by
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The total cross section, which from (1) is seen to be proportional to A,, can conveniently be written in the

form
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The idea of the hybrid theory' is to combine
adiabatic-nuclei amplitudes for rotation with close-
coupling amplitudes for vibration for any reso-
nant partial wave (as in the II, case for e-N,) which
has a width narrower than the vibrational spacing
but broader than the rotational spacing. Mathe-
matically this amounts to replacing in Eq. (3) the
adiabatic-nuclei elements (x, are target vibrational
wave functions)
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o
by the elements a{} , coming from a close-cou-

pling expansion in vibrational states of the wave
function
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where @, is the electronic part of the target wave
function (with nuclei fixed at a distance R apart),
and the Ff,"‘), describing the scattered particle,

are further decomposed into spherical components,

F™ @) =710, f5 0)Y,(@). ®)
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The asymptotic form of the solutions of the result-
ing coupled equations for f{}"(¥) then yields the
elements a{%) ,,; the hybrid theory then substi-
tutes them in place of a;;,(v’,v) in the relevant
cross-section formulas.! For nonresonant partial
waves one uses the a;/,,,(v’,v) calculated from Eq.
(4), where on the right-hand side the a,/;,(R) are
the fixed-nuclei amplitudes calculated with nuclei
fixed at each distance R apart.

All the a;r;»(v’,v) for nonresonant partial waves
(m=0-5, g, and « except II,) plus resonant
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FIG. 1. Integrated cross sections (v,j—v’,j’) for
vibrationally elastic (v=v’=0) with j=0 and even
j’(=0,2,4). Insets are the results of Chen, Ref. 2.
Higher j’ cross sections are very small. Note nonmono-
tonicity in j’ of present results as compared to Chen’s.
See text for further discussion of this and subsequent
figures.

(M,=m =1,g) alPy ,, were calculated previously;
however, they were used only in simplified cross-
section formulas derived by summing over final
rotational quantum numbers (j’) and averaging
over initial j.
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FIG. 2. Integrated cross sections for vibrationally
elastic (v =v’=0), but between odd j,j’ states (j=1; j’
=1, 3,5). Insets are from Chen, Ref. 2. Note monotoni-
city but difference in magnitude of respective theories.

In this paper we have calculated the detailed si-
multaneous rotation-vibration cross-section for-
mulas for low-lying v and j excitation and elastic
scattering. Since the fixed-nuclei calculations
showed only minute dependence on R for all non-
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FIG. 4. Integrated cross section for v=0—1; j,j’ odd.

resonant partial waves,' one can see from Eq. (4)
that their contribution to all v’ # v transitions is
very small. As a result, these (negligible) non-
resonant contributions are not included in our v’
#v transitions.

Figures 1-6 show various total integrated cross
sections. (First we remind the reader that oscil-
lations in energy of all integrated cross sections
come from the vibrational close-coupling part of
the method for the resonant II, partial wave, as
discussed in Ref. 1.) The following seem to be the
most salient features: the various (v,j—v’,j’)
transitions for which j and j’ are even are such
that the j =0—~2 cross sections are consistently
smaller than the j =0 —4 transitions. This is true
for all values of v and v’ that we have calculated
(cf. Figs. 1, 3, and 5). The result seems to be due
to the specific way the vector coupling coefficients
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FIG. 5. Integrated cross sections for excitation of
second vibrational state from ground state; j,#* even.
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FIG. 6. Integrated cross sections for excitation of
second vibrational level from first; j,j’ even.

enter the simultaneous vibration-rotation formulas.
When j and j’ are odd (recall the selection rule,

Aj even, for excitation with T electronic states of
homonuclear molecules but not within higher elec-
tronic states®), then the j=1-3’ decrease mono-
tonically with j’ (cf. Figs. 2 and 4).

These results are in sharp contrast to those of
Chen.”? He has calculated vibrational-rotational
cross sections, as shown in the insets of Figs.
1-3. In the inset of Fig. 1, one sees a monotonic
decrease of his cross sections. As shown in Fig.
2 Chen finds that the monotonicity persists, and
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FIG. 7. Angular distributions forv =v’ =0 and j,j’ even

(E=2.3 eV). Note forward and backward peaking of pure
elastic, but similarity of all three around 90°.
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FIG. 8. Angular distribution for v =v'=0; j,j' odd
(E=2.3 eV). Note similarity to even-j, 7 results, with

the exception that j=1—3 is slightly larger than j=1—5,

we find monotonicity in that case also; but note

the difference in magnitude here as well as in Figs.

1 and Fig. 3.

Figures 7-12 give various angular distributions.
Salient comments on these are included in the fig-
ure captions.

In assessing the comparative results of Chen and
ourselves, the following points should be kept in
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FIG. 9. Angular distribution for v=0—1; j,j’ even
(E=2 eV). Note almost pure atomic d-wave character
of j/=0—0 cross section but not of others.
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FIG. 10. Angular distribution for v=0-—1; j,j odd
(E=2 eV). Note d-wave character of rotationally diago-
nal cross section in this case also.

mind: First, his calculation was done before the
most important recent developments were made in
ab initio calculational theory of low-energy elec-
tron-molecule scattering.* Second, his calculation
refers to the resonant contribution only in such a
way that it effectively factors between electronic
and nuclear parts. The electronic factor was fit-
ted to the magnitude v=0—1 (rotationally averaged)
cross section as it was then thought to obtain. The
detailed resonant structure was then fitted by the
nuclear factor calculation with appropriately cho-
sen parameters. As a result of this factorization
and parametrization, Chen’s results do not depend
explicitly on the electronic state (specifically the
quantum numbers of the resonance partial wave of
the scattered electron). This is clearly not the
case in our detailed theory.

Under these circumstances, it is inappropriate
to press comparisons with our calculation too far.
The accuracy of our absolute cross sections has
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FIG. 11. Angular distribution for v =1—2; j,j’ even
(E=2 eV). The d-wave character of rotationally diago-
nal cross section persists.
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FIG. 12. Angular distribution for v =0—2; j,j’ even
(E=2 eV).

been discussed in Ref. 1. To summarize in a form
appropriate to the present results we would say
that aside from purely elastic cross sections our
results should be correct to better than a factor of
2. For purely elastic cross sections [i.e. the (0,0
-0,0) and (0,1-0,1) cross sections of Figs. 1 and
2] we estimate an accuracy of 25%. [These esti-

mates are based on comparisons with experiment:
for vibrational excitation (Fig. 14 of Ref. 1) the
comparison is better than a factor of 2, and for
total scattering (Fig. 7 of Ref. 1, of which the
dominant part is pure elastic scattering) the calcu-
lation is within 25% of experiment.® To this we ar-
gue further that the introduction of rotational de-
grees freedom via the adiabatic-nuclei approxima-
tion, whose validity may be cogently argued for'
by virtue of T'(R) > AE_,, for all relevant R, does
not add measurably to these errors.| In addition,
there are certainly inaccuracies in the detailed
shape of the fine-structure features, as discussed
in Ref. 1 (cf. in particular Fig. 14 of Ref. 1°).

For these reasons, therefore, it would clearly be
desirable to have experimental results of at least
some of these simultaneous rotation-vibration
cross sections. However, these measurements
are very difficult because of the small rotational
spacing (~10eV) of N,. Nevertheless, such mea-
surements are underway in the laboratory of the
late George Schulz at Yale.

We are grateful for the inspiration and encour-
agement provided us by the late Dr. George Schulz.
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