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A stochastic theory of line shape is considered for describing molecular reorientational processes in liquids.

The theory takes into account both secular and nonsecular terms in the interaction Hamiltonian. A general

solution for the line shape is given in a matrix form by assuming a Markovian modulation for the random

process. The usefulness of the theory is demonstrated by doing perturbation theory calculations in the

motionally narrowed limit. A resolvent-operator technique is employed for collecting higher-order terms in

perturbation theory. Two models for molecular motion, (i} rotational diffusion and (ii) strong-collision

approximation, are treated and their predictions compared. In the case of the rotational-diffusion model, the

results are illustrated by considering a g-tensor interaction in liquids. Expressions for line width and shift are

given up to fourth order in perturbation theory, and a detailed comparison is made with the existing theories.

I. INTRODUCTION

The random-f requency- modulation theory as
developed by Kubo and Anderson, among others,
has been widely applied to study relaxation effects
in various line-shape problems. '~ In this theory,
the frequency of the resonating system is assumed
to undergo transitions, due to interaction with the
surroundings, between a number of possible values.
The effect of the rates of transition between these
frequencies on the position and width of the reso-
nance lines is then calculated by assuming a Mar-
kovian character for the stochastic process.

The generalization of the Kubo-Anderson model
to include quantum-mechanical effects is seen to
give rise to important contributions to the broaden-
ing and shift of the resonance lines. ' These so-
called nonsecular ox nonadiabatic effects arise
from the fact that the different forms between
which the Hamiltonian of the system jumps do not
commute with each other. The theory developed in
Ref. 5 (hereafter referred to as I) is found to give
simple and tractable results for interpreting
va, rious types of diffusion processes in solids. '~

In this paper we present a theory, developed in
parallel to I, which takes into account many cases
of relaxation in liquids, e.g. , quadrupola, r relaxa-
tion through molecular reorientations, effects of
molecular tumblings on the g tensor and chemical-
shift tensor, etc. , in electron and nuclea. r magnetic
resonance experiments. As an illustration of the
theory, we consider a specific example throughout
the paper. This involves a spin-resonance experi-
ment on molecular ions in liquids where the g-ten-
sor interaction between the ionic spin and the ex-
ternal magnetic field undergoes rotational relaxa-

tion due to molecular tumblings. We write the cor-
responding Hamiltonian in Sec. IIA in terms of ro-
tation matrices. The Euler angles which appear in
these rotation matrices and which desex"ibe the
instantaneous orientation of the molecule with re-
spect to a laboratory frame are assumed to be ran-
dom functions of time. As in I, the stochastic pro-
cess which governs the pxobability of change of the
orientation of the molecular frame from one direc-
tion to another is assumed to be Markovian. In
Sec. IIB, we give the solution to the line-shape
problem for such a process.

The theoretical study of rotational relaxation in

liquids is not new and has previously been under-
taken by several authors. '0 In this paper we pre-
sent a different approach to the problem and point
out the relationship of our work to the existing treat-
ments. Sillescu and Kivelson" start from a rotational
diffusion equation which is assumed to describe
the change in molecular orientation due to colli-
sions. They write the final expression for the line
shape in terms of a set of coupled differential
equations. Our theory, on the other hand, does
not require at the outset that the molecular motion
be governed by a diffusion equation, and the final
expression for the line shape is written in the form
of a matrix which is the solution of an integral
equation. This matrix form is quite suitable both
for numerical and perturbation-theory calculations.
We demonstrate the utility of the theory in Sec. III
by doing perturbation theory in the region of fast
relaxation or the so-called motionally narrowed
limit and show how higher-order terms can be in-
cluded in the theory. Our perturbation-theory cal-
culation, albeit performed on a stochastic solution,
is simila, r to the resolvent operator technique em-
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ployed by Fano" in connection with the pressure
broadening problem in atomic spectroscopy and
later applied by others in the ab initio treatments
of Mossbauer line shapes"'" and perturbed angular
correlation of y rays."

A spin-relaxation calculation which also includes
higher-order terms in perturbation theory has been
developed by Freed, "who used the generalized
cumulant expansion techniques introduced by Kubo. "
This technique is quite powerful and leads in a
straightforward manner to a number of results in
the many-body theory of line shape, where the
physical idea of motional narrowing is used, al-
though not stated explicitly, in summing up the ef-
fects of higher-order diagrams in perturbation
theory. "'" However, as Freed points out, the
cumulant theorem is useful in the long-time limit
t »7„where v', is a correlation time for the ran-
dom process. This yields a. time-independent re-
laxation or R matrix which in turn produces Loren-
tzian spectral lines. But as we well know, the in-
tensity of a Lorentzian line does not fall off
fast enough near the wings to yield convergent mo-
ments. '" Freed demonstrates how the inclusion
of finite-time effects leads to a weak, subsidiary
line which has a negative intensity. " The very
broad subsidiary line is most effective in subtract-
ing out some intensity from the wings of the main
line, and the resulting line does have finite mo-
ments. Our approach, on the other hand, has the
advantage that the line-shape function is Fourier
transformed at the very beginning of the calcula-
tion, before any perturbation expansion is per-
formed. Therefore the frequency dependence of
the R matrix and hence the appearance of the sub-
sidiary line are natural outcomes of the theory.
Also, the higher-order terms, both secular and
nonsecular, turn out to be quite simple to handle.

Our method is also related to Kubo's stochastic
Liouville equation approach. " However, while
Kubo uses a density matrix, we prefer to work
with a Hamiltonian, which we find conceptually
simpler. The stochastic Liouville equation, like
our method, also has the advantages of working in
the frequency space ard is free from some of the
difficulties associated with the cumulant method,
which is natural in the time domain. " Freed and
his co-workers have extensively used the stochas-
tic Liouville equation in the spin-relaxation prob-
lem." The perturbation theory we develop is a dif-
ferent attack to the problem and provides a differ-
ent intuitive understanding of the spin-relaxation
phenomenon in liquids.

As we have mentioned before, our approach is
closely related to the Fano-Zwanzig projection
operator method. " The latter has recently been
shown by Yoon et al."to be equivalent to what has

been called the total time-ordered cumulant
(TTOC) method, as opposed to the partial time-
ordered cumulant (PTOC) method used ear-
lier by Freed." In fact, for secular perturbation
in the rotational diffusion model (Sec. IV A), we
shall derive results in Sec, V which are identical
to the ones obtained by the TTOC method in Ref.
22.

To illustrate our perturbation-theory calculation,
we consider the g-tensor interaction which we in-
troduce in Sec. DA. Two different models for mo-
lecular motion in liquids are treated. In the first,
the motion is assumed to be governed by a classi-
cal isotropic diffusion equation. The diffusion
equation is introduced in Sec. IVA. In Sec. IV B,
we write results up to fourth order in perturbation
theory. The actual calculations are performed in
the appendices. Analysis of the results, effects of
secular and nonsecular terms on the position and
width of the resonance line, and the appearance of
the subsidiary line are subjects of Sec. V.

In the second model, which we refer to as the
strong collision approximation, the effect of molec-
ular collisions is assumed to make the directions
of molecular axes change by any angle with equal
probability after each collision. ""'" This model
therefore deals with a situation which is in some
sense the opposite to the one described by the ro-
tational diffusion equation. While in the rotational
diffusion model the orientations of the molecular
axes before and after a collision are correlated to
each other through the diffusion equation, they are
completely uncorrelated in the strong collision
model. The actual physical picture of molecular
tumbling in liquids may lie somewhere in between
the two models. For this reason, it is instructive
to compare the results of the two models. Although
the strong collision model allows us to give the line
shape for all values of the relaxation time, the
comparison is most clearly seen in perturbation
theory. This is done in Sec. VI. Finally, Sec. VII
contains a brief summary of our work.

II. THEORY

A. Hamiltonian equations

The existence of rapid molecular motions of ran-
dom character in liquids in the nature of rotational
tumbling of individual molecules can be studied in
a magnetic resonance experiment. ' The effect of
these motions is to reduce the coupling between
different spins and that between spins and external
fields and thereby give rise to narrow resonance
lines. The spin-spin coupling in liquids of the di-
pole-dipole or quadrupole-quadrupole types, etc. ,
and is so weak that it is appropriate to consider in-
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K= /AS' g 'H, (3)

where p. ~ is the Bohr magneton and the principal
axes of the tensor g are fixed to the molecular
frame. This Hamiltonian also describes the chem-
ical-shift tensor interaction in a nuclear magnetic
resonance experiment. '

Because of tumbling motions in liquids, the mo-
lecular frame changes its orientation randomly.
The g tensor in the lab frame is related to that in
the molecular frame by

g=R(Q) g'R(Q), (4)

where R(Q) is the rotation matrix corresponding to
the Euler angles Q((t), 8, (t)) of the molecular frame
relative to the lab frame. We assume, for sim-
plicity, that the tensor g' is axially symmetric;
thus

dividual spins or groups of spins inside a molecule
as separate systems coupled independently to a
heat bath. The effect of the heat bath is then to
produce fluctuating local magnetic fields or elec-
trostatic field gradients at the positions of the
spins. The aim of the theory is to study how these
rapidly fluctuating fields or gradients induce trans-
itions between the energy levels of the individual
spins and broaden the resonance lines, which are
very sharp in the first approximation. Many such
problems involving molecular reorientations in
liquids can be described by a Hamiltonian,

K=X,+K,(t),
where X, is the time-independent part that gives
rise to unperturbed resonance lines. The time-de-
pendent part can be expressed as

X, (t) =g V" ' 5)"'*(Q(t)) (2)
fmn

where the V '„'s are spin operators and the Wigner
rotation matrices S '" are functions of the Euler
angles Q($, 8, P) describing the instantaneous mo-
lecular orientation with respect to a laboratory
frame. The Euler angles are random functions of
time because of molecular motion in liquids. In
general, X0 and K, do not commute with each other,
so that K, can induce transitions between the dif-
ferent eigenstates of X0. This gives rise to the so-
called nonsecular effects.

To illustrate the kind of physical problem that
could be described by this picture, we consider an
electron-spin-resonance experiment on a molecular
ion of spin S in a liquid. " The interaction between
this spin and an external magnetic field H is given
by

Voo' —
o tie(g(( —gd)HS, .

In writing Eq. (I), we have usedo'

S ,("o( (,teq) = (-' v)' "Y, (8, (t ) . (8)

B. Solution of the problem

In this section, we start with the Hamiltonian
given by Eqs. (1) and (2) and derive an expression
for the line shape by assuming that the probability
distribution of the Euler angles 0 for the molecule-
fixed frame undergoes a stationary Markovian
modulation. Our derivation here is quite similar to
that described in I, with, of course, different no-
tations suitable for describing molecular reorien-
tational processes in liquids. For the sake of com-
pleteness, we indicate here the essential steps in
the derivation without getting into too much detail.

The magnetic resonance line shape is obtained
from the Fourier or Laplace transform of a corre-
lation function, "'

where p =ie, p is a density matrix for the spin-
system, the trace is calculated over the spin
states, S, is the component of the spin in a direc-
tion perpendicular to the external magnetic field,
[ ~ ]„denotes an average over the random proper-
ties of the system Hamiltonian and U(t) is the so-
called time-development superoperator for the
system, given as a time-ordered exponentiated
operator

the symmetry axis. We also assume that the ex-
ternal magnetic field is applied along the z direc-
tion in the lab frame. Then, writing the elements
of the rotation matrix in terms of spherical har-
monicso' and using Eqs. (3)-(5), we have

X= p, ss,gH+ t(s(—,', v)'~'(g„—g,)H

x [(;)'t' Y„(ey)s, + Y, ,(ey) s. Y„(ey)s ],
(6)

where g= ,'(g„-+2g, ) and the Y, ($, 8)'s are time
dependent. Because of the axial symmetry of g'
about the body-fixed z axis, angle g, which mea-
sures rotation about that axis, does not appear in
Eq. (6). Comparing Eqs. (1), (2), and (6), we find,
for /=2, n=0,

3C = p, gS gH

V&2& = V&'& =020 20

gaa=gd+(g)( —gd) 5&de &=X 3' Seee (5)

where the molecule-fixed z direction is taken to be

t
U(e) =exp (' ee (d)dt*

0
(10)
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In Eq. (10), K"(t) is the Liouville operator corre-
sponding to the Hamiltonian 3C(t) 2' From Eqs. (1),
(2), and (10}, U(t} is found to satisfy an integral
equation,

by

(U(t)]„=Jdt), dt)P(t), )(t),
)~

(t)(~t)), (12)

t
U(t) =1+ ' dt U(t )'tt,'+F )U"*td "t ( t)(t)))

0 lmn

(11)
where V'"" is the Liouville operator associated
with V"„'. The average indicated in Eq. (9) is given

where p(n, ) is the a priori probability of the occur-
rence of the initial orientation n, . (For brevity of
notation, we use a single integral instead of multi-
ple integrals over solid angles throughout our pa-
per. ) As in I, we make use of the stationary Mar-
kov property and write, for Eq. (11),

(t)[ (t) [t)) (t) )P=(t)(U)t fdtt 'dtt. f dt '(t)
I

(t')It) )(t) I
tt +F U."."tt'!*) )t)) (U. IP(t- t ')I tt),

0 lmn

(13)

where (n, ~P(t)
~
n) is the probability that the ori-

entation is Q at time t, given that it was Q, at t =0,
and +&l& i.s a diagonal matrixs defined by

(n, i
mt '„)

i n, ) = ~& („)(n,) 5(n, - n, ) .
Equation (13) can be written in matrix form as

p Q dQ=1, . (21)

On combining Eqs. (15), (16}, and (18}, we find

where the P(n)'s are the a Pri ori probabilities in-
troduced in Eq. (12). We also have

t
(t) P(t)+t f dt=(t)''

0
u(p) = p1 —W —i X,"+ p V(»"~(')"

l, myn

(22)

K + V~ '"+"'~ P t —t'
lmn

(15)

As in I, the matrix P(t) is given by

The required Laplace transform in Eq. (9) in the
line-shape expression is then given from Eq. (15)
by

(P) P(P)+t (P) (z, + I;=U."„'*tt."„'~ P(tt),
l&mzn

(16)
where

where 1 is the unit matrix. Equation (22) is equiv-
alent in form to the solution of the stochastic Liou-
ville equation. "

Equation (22) together with Eq. (9) consitute the
solution to the line-shape problem. The matrix
u(p) is labeled by quantum-mechanical indices as
well as the Euler angles Q which are the stochastic
variables of the problem. The form of the matrix
W relevant to the physical problem under consid-
eration has to be specified before the matrix in-
version in Eq. (22) and subsequent calculations can
be performed. However, useful progress can still
be made in the two regimes of slow and fast mo-
tion." We shall see this in Sec. III by treating the
fast-motion regime.

P(t) =e ' (18)
III. PERTURBATION TREATMENT IN MOTIONALLY

NARROWED LIMIT

dQ2 Q~ W Q2 =0. (19)

Since the stochastic process is assumed to be
stationary, detailed balance requires

p( }n( ~nw) )n=p( n)( n) w~ n), (20)

where W is a stochastic matrix whose off-diagonal
elements (n,

~
W~ n, ) are equal to the probability

per unit time that the orientation changes from Q,
to Q, in time t. The conservation of total probabil-
ity requires that

The physical picture that we want to derive
mathematically in perturbation theory is as fol-
lows: The role of the unperturbed Hamiltonian K0
in Eq. (1}is to generate resonance lines for the
spin system. The effect of the time-dependent
Hamiltonian 3C, is to produce modulation of these
lines. Although the instantaneous effect of X, on

K0 could be quite large if the relaxation processes
are rapid enough, the resonating system "sees"
only a time-averaged effect of the perturbation
which is quite small. This makes a successful
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perturbation theory possible. Thus the physical
domain that we shall be concerned with in our cal-
culation is where W»K, (t). This is a reasonable
assumption for relaxation processes in low-vis-
cosity liquids at not too low temperatures. The re-
lative strength of X„however, is not crucial for
our calculation.

The perturbation expansion for u(P) in Eq. (22) is
written

in the absence of the coupling term.
Next, for the second term in Eq. (27) we have

dQodQdQxdQa~ Qo Qo gP ~ Q

x(QilM(p}IQ ) (Q. lu'(p) IQ),

using Eq. (30), which is equal to

dQp dQy dQpP Qp Qp Q P Q

(p) ="(p)."(P)M(p) "(P), (23)

where

u'(p)=[pl-tK, " W]-', (24)

M(p) = ft+ 8 u'(p) 8+ au'(p) 8 u'(p) 8+
(25)

x(Q, lM(p)lQ, )(pl iK;)-~,

using Eqs. (19), (21), and (29)-(31) a.s before.
In

dQO~ Qo Qo Q P Qy

~ y&r&x~&i~
m:n mn'

lan
(26} if we use the same procedure as above and also use

the detailed balance condition (20), we can write

The desired average in Eq. (9) is then obtained
from Eqs. (12) and (23) as

[u(p)]„=[u'(p)]„+ dQodQp(Q, )

x(Q. lu'(p) M(p) u'(p)
l
Q),

(27)

dQOP Qp Qp u' P Q, =& Q, P1 —ihip" '.
We have, finally, for Eq. (27}

[u(p)]., = (pl —t K.") '(1+ [M(p)]., (pl —i K.") '),
(33)

where

where

[uo(p)], «fdQ dQp(Q )(Q, lu'(p)l Q).

If we make an expansion of u'(p) in the form

u'(p) = (p1 —i K,") '+ (pl —iK,") ' W(p1 —'K,") '

+(Pl —iK,") ' W(P1 —iK,") ' W(P1 —iK,") '

+ ~ ~ ~

(28)

(29)

[u(P)]„=[Pl—i K()™,(P)] ',
where

(35)

(«(())J~~ ~(),=((D)(()lM. ((),l() ), ()4). ,

defined in accordance with Eq. (12}.
After some algebraic manipulation, "we can re-

write (33) in a very useful form:

under the integral in Eq. (28} and make use of the
completeness and orthogonality relations

dQ Q Q =1,

(Q, lQ, )=5(Q, -Q,),

(30)

and of Eqs. (19) and (21), we can show easily that

(32}[ '(p)].,=(pl- K.") '.
(Ko, although a quantum-mechanical Liouville op-
erator, behaves like a number in the stochastic
space spanned by the Euler angles Q.) The result
(32) is physically obvious. If the term e which
couples the spin system to the lattice is absent,
u(p) is given entirely by ua(p) [cf. Eq. (23)]. Upon
taking the average over the stochastic variables,
the effect of W must completely be gone, because
the heat bath represented by the matrix 8' does not
have any influence at all on the resonating system

M,(p) =g (-1)"([M(p)]., (pl - iK;)-'j"[M(p)]„.
n=0

(36)

The subscript c in Eq. (36), which stands for
connected, is used in a manner similar to that of
Fano,"who shows that the expansion for M,(p) is
related to the "linked-diagram" expansion in many-
body theory. The expansion (36) for M, (p), in con-
junction with the expansion (25) for M(p), gives us
a series in the perturbation Q. In principle, M,(p)
can be calculated to any desired order in pertur-
bation. In the generalized cumulant expansion
technique, the higher-order terms are grouped in
the exponent of the time-development superoper-
ator [u(t)]„[cf.Eq. (10)].'6" In our method, on
the other hand, they appear in a "resolvent super-
operator. " The frequency dependence of the re-
laxation matrix [M,(p), in our notation, where p
=i&u] is already evident in Eq. (35).
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The relaxation matrix M,(P) is defined in terms
of the stochastic average of M(P) given by Eq. (34).
Thus M, (P) is a, superoperator for the spin sys-
tem only. Therefore the problem as expressed by
(35) reduces to the determination of the inverse of
a finite matrix which can often be handled on a
computer. However, the average of M(P) cannot
be performed before the stochastic modulation pro-
cess is specified. In Secs. IV-VI we shall consider
two specific examples for such stochastic pro-
cesses.

IV. MODELS

A. Diffusion equation

(42)

we can, from Eq. (40), write for the elements of
the W matrix

(Qo
~

W~ Q) = —Q Dl(l + 1)&' "*(Q ) &' "(Q)
2l+1

lcm, n

(43)

Equation (43) can be easily verified if we make an
expansion of (18}into a power series in Wt and use
(43) to make a term-by-term comparison with Eq.
(40). In this procedure, we have to use Eq. (30) and
the following properties of the S matrices":

Molecules in liquids undergo rotational Brownian
motion. We assume that this motion is correctly
described by a diffusion equation. ""'Let &I ($8),t)
=4(Q, t} be the probability of finding the orientation
0 of the molecule-fixed frame with respect to the
lab frame at time t. We assume the Debye model,
in which the motion of a liquid molecule is de-
scribed by that of a rigid sphere of radius a in a
medium of viscosity q:

l, m, n

Also using"

(44)

dig @(&)g g /(&' ) g 4I) g g 45

s g2 1II D+2 +94 D, (37)

where &'„ is the Laplacian operator on the surface
of a unit sphere and the rotational diffusion con-
stants D, is assumed to be given by the Stokes
formula

D, = KT/6((aq, (38)

where K is the Boltzmann constant and T is the
absolute temperature of the liquid. The general-
ization of Eq. (37) to include the case of anisotropic
diffusion is straightforward. "

To carry out our theory described in Secs. II and
III, we need the function (Q, ~P(t}

~
Q), which is the

probability that the molecule-fixed frame has the
orientation 0 at time t when we know that it has the
orientation Q, at time zero.

(Q,
~
P(t)

~
Q) is the solution of Eq. (37) which sat-

isfies the initial condition

e(Q, 0) = 5(Q Q, ) . — (39)

The solution of (37) can be written in terms of ro-
tational matrices as"'"

8&(2 P+Dl(l+1)

If we use the fa.ct [cf. Eq. (18)] that

(41)

(Q ~P(t)~Q)= P & "*(Q )S" (Q)e
ly mtn

(40)

the Laplace transform [cf. Eq. (17)] of which is

P(Q, ) = I/8v'.

Thus the detailed balance condition (20) is also
satisfied if we remember that"

Q(&&s(Q) —( 1)m-n~((& (Q) (48)

and that the summations over m and n in Eq. (43)
run from —l to +l, where l is an integer.

B. Results up to fourth order in perturbation theory

In this section we work with the Harniltonian
given in Eqs. (1) and (2) and assume the diffusion
equation introduced in Sec. IVA for the molecular
motion in liquids. Our perturbation theory in the
motionally narrowed limit will be seen to be good
when the diffusion constant D is large compared to
the matrix element of 30& [cf. Eq. (2)]. The diffu-
sion constant D, however, could be comparable in
magnitude to the eigenvalues of K, . This condition
can be reasonably realized in the laboratory for
small-sized molecules in low-viscosity liquids at
moderate temperatures [cf. Eq. (38)]. Perturba-
tion-theory calculations are performed in Appen-
dixes A —C. Here we simply write the results.

From Eq. (35), we can write, up to fourth order
in perturbation theory,

(49)

the probability conservation equation (19) is check-
ed for the form (43) of the W matrix. Further-
more, for isotropic diffusion, the a priori proba-
bilities in (12) are all equal:
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where I,'l is the expression for I, in the kth or-
der of perturbation (/ = 1,2, 3, 4, . . .).

1. First-order contribution

Since, from Eq. (18), we have

/&(p) =(pl —&) ',
and we can write

(51)

From Eqs. (36), (25), and (26), we have

M(1)(p) [8] z g V())x(Q())g)

lf m, n

~'m'n'" 8,z

u'(p) =(pl W zK,")-' =/&(pl- zK,"), (52)

because K, acts like a number in the stochastic
space. The matrix elements of u'(p) in the stoch-
astic space are therefore given from Eqs. (41) and

(52) by
l, mf n

X dQO dQ QO 'n Q
(

~
( )~ ) ~ 2 + 33"„'" f/ 8'"//

8v'-Pl —i 3C,"+D/(I+ 1)
l, mfn

using (34) and (47); this equals

i ~ V()&x dg ~(l)m(g)
mn 8&2 mn

lfmfn

from Eq. (14), and equals 0, from Eqs. (46) and (7).

2. Second-order contribution

Equations (36) and (25) yield

(53)

Using Eqs. (50) and (53), we show in Appendix A

that

] )m-n
M(z&(p) ~ ( i V(t x&

c ~ 2l+1 mn

l, m, n

x [pl —iK,"+Dl(l+ 1)] ) V&'&"„.

M( '(p) =[8u'(p)8]., (5o) (54)

3. Thirdmrder contribution

M,'z'(p) = [8u'(p) 8 u'(p) 8]„
l l / ) / l lV'""[Pl —iK;+D/(/+ 1)] ' V")'" [Pl —iK;+D/, (l, + 1)] ' V"z'*

l, mf n m I m)(n n )z
l~f m~ f n~

(55)
where the

l l, l~

m m, m,

are the Wigner 3-j symbols . This is worked out in Appendix B.
4. Fourth-order contributi on

V« "[pl K,"+D/(/+ 1)]-'V" '"

l f mf n l",m", n" l2/Of m» n2
l f m ~

n' l3f m3f n3

x (2/, + 1) ( 1)mz~ z [pl —i K,"+Dl,(l, + 1)] ' V"„"&,"

x [pl —i K,"+Dl, (l, + 1)] ' V()z &"

(/ l' / 3/zl l' l 3//z l" l )//z l l }

m m' m, n n' n m m" m, n n" n,

( 1)m-n
+ g V"'"[pl —i3C,"+Dl(l+1)] 'V'"" [pl —iK ]"

lf m, n
mii ~ii

V"„"~&,*[Pl—i 3C,"+D/" (/" + 1)] ' V";,'"„„,
l ii m ii n ii

From Eqs. (36) and (25), we have

M," (p) =[8u'(p) 8u'(p) 8uo(p) 8],—[8u (p) 8]„(pl—iKO) ' [8u'(p) 8],
=[8u'(P) 8uo(P) 8 u'(P) 8],—M,'z (P) (Pl —zK') 'M,"'(P),

from Eq. (50). From Appendix C, we find

[8u'(p) 8u'(p) 8u'(p) 8],„=
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where we have used"

l l l' 0 I (0 l l' (-1)™
(2l + 1)t /2 tt '0b-bb'

lm m' Of l0 m m'
(58)

Comparing Eqs. (54), (56), and (57), we find

M,"'(p)= Q
l, m, n l" fm" fn" l2fofm, n

l' f m' f n' l3 f m3 f fl3

V"J"[Pl —i K,"+Dl(l+ 1)]-' V", ~t* [Pl —i K,"+Dl2(l2+1)] ' V",', „'„"

X[P1 —iK02+Dl, (l, +1)] 'V '2„'"(2l,+1)(-1) 2 "2

H2 m 'M
2 'Pl Pg FL~ 2N ~ Pl Pl3 $2P 22 83

(59)

Since in a resonance experiment we expect a
resonance to occur near P =i&bed, (&tt, is the eigenval-
ue of the Liouville operator K,"), the terms in-
volving (Pl —iK,") ' are the most divergent terms
in a perturbation theory. However, as we have seen
above, these most divergent terms get canceled out
exactly in the higher-order terms.

In principle, we can carry out our calculation, if
necessary, to still higher orders in perturbation
theory. This, however, is tedious and we do not
present it here.

V. ANALYSIS OF RESULTS: COMPARISON WITH THE

THEORIES OF SILLESCU AND KIVELSON AND OF FREEO

In this section, we analyze the results obtained
in Sec. IVB. For illustrative purposes, we con-
sider the Hamiltonian for g-tensor interaction dis-
cussed in Sec. II. Also, for simplicity, we assume
that the molecular spin is,'- (S =-,'). We find, from
Eq. (7) that in V~'„', l =2, m =1,0, -1, and n =0.

0 0

00 -bf-
(64)

The rows and columns in (64) are labelled by
1 1 1 1 1 1 1 1+ &+» —2 —» + &

- 2, and ——,+ -» respectively.
If we use Eq. (64), we can, after some straight-

forward algebra, write for the line shape

9 (~) -Re(-'--' ~[u(p)l..~

l --'-)

4(htd}'

[cf. Eq. (49}]. The matrix elements for S= —,
' Liou-

ville operators are written in Ref. 7. For the sake
of completeness, we list them here again.

A Liouville operator of the form

= aS,'+ bS "+cS,",
for S = -„has matrix elements

A. Second-order contribution

Using Eqs. (54) and (7),

M,"(p) =
—,', (b,m)2 [ 2 S",(pl —itbtS,"+6D) 'S ",

(n+)2 -1

15(i&bed + 6D)

where we have set p = i(d.

(65)

where

~ = Ptt (gii —8't. }H b

+= ~afH.

+S,*(pl —itdS;+6D) 'S"

+S "(pl —itdS", + 6D) 'S*,],
(60}

(61)

(62)

1. Bloch- Wangsness-Redfield and Kubo- Tomita theories

Since in Eq. (65) there is a resonance nea, r ~ = ur,

we can write, by the method of successive approxi-
mations,

4(d, (d)2 (h(d)2

(66)

[u(p)]„=[pl —i~S", -M,"'(p)] ' (63)

If we confine our attention to the &
—--,' transition,

the ESR line shape at high temperatures (p= const}
from Eq. (9) is given by' (—,

' ——,'I[u(p)]„I2 2},
where up to second order in perturbation theory

This yields a Lorentzian line centered around co

=td. The result (66} can also be obtained from the
Bloch-Wangsness -Redfield"' "or Kubo-Tomita"
general theories as applied to this special prob-
lem.
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The secular terms in V"o' (terms which commute
with the unperturbed Hamiltonian X,) produce a
contribution to the linewidth given by

(67)

The nonsecular terms (those which do not com-
mute with 3C,), on the other hand, give a width

= —' (~"}'6D/[(6D}'+("}'] (68)

and a shift

k = ((o /6D)T, 4( (69)

T, is the so-called transverse spin-lattice relaxa-
tion time. '

Equations (67)—(69) are identical to Eqs. (Al),
(All), and (A12), respectively, obtained by Sil-
lescu and Kivelson. " [See also Eq. (6.2a) of
Freed. "]

The secular width of the second-order line de-
creases as the relaxation rate (= 6D) increases.
This is the usual phenomenon of motional narrow-
ing. ' The nonsecular width, on the other hand,
increases with the relaxation rate as long as 6D
&(d, shows a maximum when 6D=(d, and then
starts to decrease when 6D& ~. This broadening
of the line with the increase of the relaxation rate,
however, does not show up in the actual spectrum,
because the nonsecular contribution in this case
is dominated by the secular narrowing effect. ' In
the completely motionally narrowed region (6D
» (o) the total width becomes -', times the purely
secular width. This is analogous to the "—' effect"

3
for the linewidth first suggested in connection with
exchange narrowing in electron resonance. "

2. Subsidiary line

The approximation indicated above in obtaining
Eq. (66) is seen to yield a frequency-independent
relaxation matrix [M, ((o), in our notation). This
assumption, in the generalized cumulant method,
is equivalent to going to the asymptotic limit t
» r, (the relaxation time r, is 1/6D in our nota-
tion). " This, however, yields a Lorentzian line
which does not have finite moments. ' Freed shows
in the cumulant method how the inclusion of finite-
time effects introduces a subsidiary line on top of
the main line. "' The net effect is to produce a
line which is not Lorentzian. In our theory, we
work in the frequency space, which is the natural
space to work in for line-shape problems. (This
is not so in a time-differential experiment such as
angular correlation of p rays. ') Hence the relaxa-
tion matrix in our theory turns out to be explicitly
frequency dependent. This frequency dependence,
while not being effective near the central line ~
= (o [cf. Eq. (65)], has the effect of subtracting out

some intensity from the wings of the main Lorentz-
ian line. We shall demonstrate this below by ob-
taining the subsidiary line of Freed.

If we retain only the secular part, the second-
order line shape, from Eq. (65), is given by

i((o - (o) + r
[x((o —(o)]'+is, '((o —(o) + 6' '

where we use Freed's notation in setting

,' (4(o}'=4' and 6D=r, '.
We rearrange the above expression in the follow-

ing form:

-'[1+v '(v ' 4h') '~']
('(rd — ) ~ -'T ' --'(T * —44*)"*

—,'[1-'f (T,' —44') ' ']

~ ~

1 +24t 2
C

(td —td)+ 4 T i( —td) T )

since 4'7'2«1 in the motionally narrowed regime;

1 1
(p((o) = 6'v

(td -td)*T (4'T )* ( )'+T ') '

(71}

The result (71) is identical to Eq. (2.28) of Freed"
and can be interpreted as follows: The first term
in (71) yields the main Lorentzian line centered
around (o = (o and of width &'r, = 72' [cf. Eq. (67)].
The second term, on the other hand, produces a
very broad Lorentzian line of width 7,'. The in-
tensity of this subsidiary line is negative and very
weak; its amplitude at resonance is only 4 r4

times that of the main line (or very small) [cf. Eq.
(70}]. The ratio of the integrated intensities is,
however, ~'7'",. Thus the subsidiary line is actual-
ly a second-order correction to the main line. The
effect of the subsidiary line in subtracting out
some intensity from the wings of the main line
has been pictorially demonstrated by Sillescu and
Kivelson" (cf. their Fig. 2).

B. Third-order contribution

From Eqs. (55) and (7), we have

(p) = —i Q V "(pl —i(o$"j.6D) V
my may m2

x (pl -i(oS",+6D) 'V"",

2'}(2 2 2'I

(m m, m j)(0 0 Oj
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Using"

(2 2 2) (, )
I,

(oooo
('l2)

and the fact that

m+m, +m, =o,

we get

(72)

2 2 2
M,"(P)=i( ')' '—Q V",'"(Pl i(dS-;+6D) 'V"'" (Pl —i(dS' 6D) 'V(z)"

ftlz ffl I m ml —Pl+ ml

From Eqs. (64) and (7), it follows that the matrix elements which make nonzero contributions to
(—,
' ——,

' IM(z)(p) I —,
' ——,') are given by

(2) 1 (,)„
'0 pl —i(dS",+ 6D pl —i(dS*, +6D

y(2)x y(2)x y(2)X
p1 —j&$"+ 6D ' P1 —g(dS" + 6D

(2

(0 -1 1 ))

Using (72) and"

(2 2 2 i2 2 2)
)-1 1 0 (0 -1 ll

and Eqs. (7) and (64), we obtain

'85 x 27 (P —i(d+ 6D)' P+ 6D P —i(o+6D

. 2(4(())' 8 6 1
35 x 27 (6D)z z(()+6D 6D

since there is a resonance near P =z(d (cf. Sec. VA);

5 'i' 2k 5 X/2

2(sec) 2(sec)

(74)

('l5)

using Eqs. (67)-(69). The first two terms in Eq. (75) yield the third-order line shift, and the third term
gives the third-order contribution to the linewidth. A general feature of higher-order contributions is that
a mixing between secular and nonsecular terms occurs, as is evident in Eq. (75). Equation (75) is identical
to Eqs. (A6)-(A10) of Sillescu and Kivelson. " [Also, see Eq. (6.2b) of Freed. "]

C. Fourth-order contribution

The fourth-order contribution [cf. Eq. (59)] involves several terms, and the algebra, although straight-
forward, becomes a bit messy. Thus instead of considering all the terms, we take into account the secular
terms only in order to have a complete comparison with the theories of Sillescu and Kivelson and Freed.

From Eqs. (59) and (7) the fourth-order secular contribution is given by

M, '(,'„)(P)= . , Q (2l, +1)
i

[Pl —i++Dl, ( +11)] (V6)

where we have used the symmetry properties of the 3-j symbols";

(V"'*)' (224'
( p 1 —iQ 6D+) + i9 (p 1 —i3PO+ 20D)

(0 0 0
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where the triangle relations for the 3-j symbols have been used in concluding that only f, =2 or 4 contrib-
utes to the summation in Eq. (76)";

(4)
( )

16 (L&4&}'(S;)' (,}, 5 9
61 (Pl —4 S;~ 6D) ' Pl t46' SD Pl

' S*~ 20D)'

using the tabulated values of the 3-j symbols. " Therefore

4 (6D)
40 (S l* ( —'

SD4 P —'' ~ 6D P —'
~ 20D)' (77)

using Eq. (67). The secular contributions up to fourth order [cf Eqs. (65), (74), and (77)] are found to be
identical to Eqs. (5.18) of Yoon et al."

If we consider secular interactions only, the line shape up to fourth order in perturbation theory is given
from Eqs. (65), (67), (74}, and (77) by

1 6D
cp(„,)((o) = i((d —up) +

T2( ) $ ((d —CO j + 6D

i2& (6D)' ' 4 1 6D 5 9

7(T,(„,p) [i((d —&d) + 6D] 49 (TS(„,)) [i((d —&d) + 6D]' i((&p —&d) + 6D i((4p —&Sp) + 20D

Now, 6D» ((d —e) in the motionally narrowed limit. Thus we write

1 1 i((u —(d) ((d —&d)'

i(&u —&d) +6D 6D 6D (6D)'

When we substitute Eq. (79) into Eq. (78) we observe that there is a, resonance near

i(d =i(d —1p'TS&„„+(higher-order terms).

(78)

(79)

1 1 1
F&„,)(&) = i(&d —~) + +

2(sec) 2(sec) 2(sec)

Therefore we obtain by the method of successive approximations up to terms of order (1(TS&„,&)1(6DTS&„,&

i2V 5 1 1 22 1 1

1 i2&5 1 13 1
(80)

Eq. (80) is identical to Eqs. (A5) and (A6) of Ref. 11 and Eq. (6.2c) of Ref. 16.

VI. STRONG COLLISION MODEL

In this model it is assumed that the molecule-
fixed axes jump instantaneously from one orienta-
tion to another due to collisions, with a probability
which does not depend on the initial or the final
orientations before and after a jump. "'" This
means that the jumps are completely uncorrelated
and occur in angular steps of arbitrary size. This
is in contrast to the rotational diffusion model,
where the molecule reorients in small angular
steps. While in the rotational diffusion model
progress can only be made in perturbation theory
in the regions of slow and fast relaxations, ' "the
strong collision model, on the other hand, is ex-
actly soluble for all values of the relaxation rate.

Oversimplified as it may seem, the strong col-
lision model may actually, in some circumstances,

(81)W= 4&(J- 1),
where A. is the relaxation rate (A.

' measures the
mean time between two successive jumps) and the
matrix P is given by

(QD ~„'j
~

0) = 1/8(&'. (82)

The special form of the transition matrix in Eq.

give a better description of molecular reorienta-
tional processes in liquids than the rotational dif-
fusion model. ""Also, in cases where the strong
collision model is not strictly applicable, it can
still serve a very useful role of providing an inter-
polation scheme for the line shape from slow to
fast relaxation rates. The model has been treated
in detail in Ref. 6 and here we simply apply the
results of that paper to Eq. (22}. The matrix W,
in the strong collision model, can be expressed as
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(82) enables us to perform the stochastic average
in [u(p)]„exactly. It is given by

[e(p)].,=G'/(I —& G'),

where

(88}

1

dn p+x 1-~ X,"+
g, m, n

(84)
is a quantum-mechanical superoperator for the
resonating system alone and does not depend on the

heat-bath variables.
The matrix G' in Eq. (82) can be obtained by in-

verting a finite matrix (4 x 4 in the case of g-tensor
interaction for a spin--,' ion') and by a numerical
integration over the solid angle dg. Equation (81)
then yields the line shape for all values of X.

Let us now examine the results predicted by Eqs.
(81) and (82) in the regime of rapid relaxation (i.e.,
X large compared to the eigenvalue of V"'" and
compare them with the results of the rotational
diffusion model. Such a perturbation expansion up
to fourth oxder may be written'

[g(p}]-'=(g&)-' X=P i3C,"+ g V"&"[(P+»)1—iK"] 'V"&&" dna)"'*(0) S'"'*(g)1

l, m, n

+i p y(&&x[(p+ &&)I iKx]-& I&(&&&x[(p+ &&)1 iKx]-& y(lplx

1y mpn

m1 ~ n1

&( 3&(&&e(g) 33(&&&g(g)2&(&2&e(g)
87' 2 1 1

l, m, n l2vm2&n2

~1 ~ ml ~ n1 13v m 3~ n 3

V'""[(P+&&)1—iK"] ' I&'"&'*[(P+X)l—iK"] ' V"&&"[(P+»)1—iK"] '

& y(&q&~ dg33(&&g(g)3&(&&&+(g) 3&(&2&+(g) 33(&~&g(g)x
3"3 S7r2 mn m1 n1 m 2n2 m3n3

r
y(&&x[(p+y)1 iKx]-& I&(&&&x dg (3lHc&{g)3&(&&&e(g)

0 m1n 8+2 mn 1 1
l, m, n

&& g V"2'* [(p+X}1—i3C*] ' V ' '"
m2n2 0 m n3 Sm2

l2~ m2en2

13,m3en3

X dn'n&'2&+ a' &'~&+ 0' . 85
m2n2

Comparing this result with that of Sec. DIr B, we
find that up to the third order in perturbation theo-
ry the two models yield identical expressions if
we set » = D/(I+ 1), I being a fixed integer deter-
mined by the nature of interaction (I = 2, for ex-
ample, in the g -tensor interaction problem).
Since the rotational diffusion constant D is a pa-
rameter in the theory (to be determined by fitting
the results to experimental data}, this identifica-
tion is not unrea, sonable. " The fourth- and higher-
order terms are, however, different in the two
models, as pointed out also by Lynden-Bell. "

The above analysis shows that although the
strong collision model gives a much simplified

picture of spin relaxation in liquids, its predic-
tions are in accord with those of the rotational
diffusion model in the motionally narrowed re-
gion."" They are also, on physical grounds,
expected to be similar, at least qualitatively, in
the slow-motion regime (when». or D is very
small). The actual physical mechanism of mo-
lecular reorientation in liquids may be expected
to lie somewhere in between the two pictures
painted by the rotational diffusion and the strong
collision models. Since in the intermediate
regime of relaxation pexturbation theory fails
and therefore the rotational diffusion model be-
comes untra, ctable, the strong collision model
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gives us some useful notions of what goes on in
that region.

VII. SUMMARY

A stochastic theory model for magnetic reso-
nance line shape is developed in this paper for
describing molecular reorientational processes
in liquids. The solution for the line shape, albeit
obtained from a Hamiltonian picture, is found to
be equivalent to the stochastic Liouville equation
for a density matrix. The line shape is obtained
in the frequency space. The advantages of working
in the frequency space for magnetic resonance
problems over other methods which are natural
in the time domain are pointed out. The solution
for the line shape, which is given in a matrix
form, is found to be quite suitable for numerical
as well as perturbation-theory calculations. We
demonstrate this by developing a perturbation
theory in the motionally narrowed regime. It
is shown that the theory can be worked out to
any desired order in perturbation.

Two different models for molecular motions in

liquids are considered. In the first the molecules
are assumed to undergo rotational Brownian mo-
tion, while in the second they are assumed to re-
orient through arbitrary angles after each colli-
sion. Although the physics of the two models are
different, they are seen to yield identical results
for the line shape in the fast-motion regime. The
fact that the strong collision model is at least not
qualitatively incorrect gives us a rather manage-
able handle on the theory in the intermediate re-
gime of relaxation. For illustrative purposes, we
consider the g-tensor interaction for molecular
ions and compare our results with those obtained
by other methods.
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APPENDIX A

From E(/s. (36), (34), (25), (26), (30), and (14) we have

M"'(0)=(() '(P)t)].,= — . fd&. d() Q )'"'*&""(())(().
)1

'()))1()) Q )'"'*~".'"(())
ltm, n l', m', n'

d~o ~n/'n'" m'n'* 0
'

~ P —& 0 + ~I ~I+ '
m

'n'* ~O m"

lstmstn

from E(l. (53). Using E(/s. (48) and (45), we obtain
1)m-n

M"'(p) =- g ' V"'"[pl —i3C", +D/(/+1)] 'V""
ltmtn

APPENDIX B

From E(/s. (36), (34}, (25), (26), (30), and (14), we obtain

M,"'(p) = [Qu'(p)8(('(p)Q] „
dQ, dQ dQ, g V"„)"n"„)*(Q,)(Q, ~u'(p)

~
Q, ) g V","u",'„),*(Q,) (Q, ~t('(p)

~
Q)8m' ltmtn latm~, n

l",m'', n"

dQodQ dQ, Q V"„"5)"„)*(Q,) Q ' t [pl —i Ko+ D/, (/, + 1)] '&,'„,*(Qo)&",„,(Q, )
1 t mt n lIt ml t nl

V( (' ) ~( t' )gc(Q )
Ptm~tn

x g ', [pl —i3CO + D/, (/, + 1)]
21+1

l2, m2, n2

x n'"'*(Q )u"t'(Q)
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from Eq. (53);

M,' '(p)= —6, dn, Q (-1) "V«J"B'" „(Q„)[pl —i3CO+Dl(1+1)]8m'
1tmtn

V.".'„',"~."a'~*(n& ) Q &„'"~~(n,)[P1 —iX." +D/, (1, +1)]
- 'V«2~*,

from Eqs. (48) and (45).
Using Eq. (48) and the relation"

dna"i' (n)31"t'(n)n "t' (n) = ~

Sg min i mt~ m3fl 3
ml rn2 Pl3 nl n2 n3

we finally obtain for M,"'(p) the expression given by Eq. (55).

(B1)

APPENDIX C

fn the expression for M',"(p) in Eq. (56), we obtain the term

[8u'( p)8u'( p) 8u'(p) 81„
dn, dn dn, dn, g V."J"n."J*(n,)(n. ~u'(p)

~
n, ) p V.".~*&.",„',*(Q,)(n, ~u'(p)

~
Q, )

1

ltmtn lr, mr, nr

1
CfQO d0 dQ1 dQ2

7'r mr r n"t ~

V."...'*~.",,'„,*(Q,) (Q, I "(P)( Q)
~rrr mr r ~ nrrr

v&&"')x ~&&'")t (Q)

ltmtn

[pl —iX~O+Dl, (l, +1)] '8""*(Q)&'"'(n )
2l +1

11t mlt nl

g tm t nr t2t m2t

lrrtmrrtnrr

from Eq. (53).
ff we use Eqs. (46) and (45) in the above expression, we obtain

l3tm3t n3

x[pl —i Ro+ Dl~(it+ 1)]

(l"r )x (L"r )8x g V~rgs&g ~ tSmt ~ ~ ggt ~ ~ (Q)
~rr ~ mr ~ r nrr ~

[8u'(p)8u'(p)8u'(p)8] „
dn dn, Q ( 1)--~V & *g)& & (Q,)[P1 -i jC +Dl(l+1)]-'

2 I 2
t t

~ I
m n I m I n i ~ ~ iI ! 0

V" ~D'~*~, & '*~ & ' ~ Pl, m n' l2tm2 n2

X V rr rr+mrrnrr
mr ~

This, together with Eq. (Bl), yields Eq. (57).

g& "3'*(n,)[pl —iK",+Dl, (it+ 1)] 'V~t~" ~

l31m3t n3
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