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Solution of the equations for nonlinear interaction of three damped waves
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Three-wave interaction is analyzed in a coherent-wave description with assumption of different linear damping

(or growth) of the individual waves. It is demonstrated that when two of the coefficients of dissipation are

equal, the set of equations can be reduced to a single equivalent equation, which in the nonlinearly unstable

case where one wave is undamped, asymptotically takes the form of an equation defining the third Painleve

transcendent. It is then possible to find an asymptotic expansion near the time of explosion. This solution is of
principal interest since it indicates that the solution of the general three-wave system, where the waves

experience mutually different dissipations, belongs to a higher class of functions, which reduces to Jacobian

elliptic functions only in the case where all waves experience the same damping.

I. INTRODUCTION

It is an important property of a plasma to sus-
tain a great variety of different types of waves.
These waves may be caused by external perturba-
tions or generated by instabilities in the plasma
itself. In yarticular, when a magnetic field is
present, the number of possible types of waves
becomes large. These various waves do not only
propagate with their characteristic phase veloci-
ties, determined by the dispersive properties of
the medium, they also experience different dissi-
pative yrocesses by which the wave energies of
the individual modes change. Accordingly, the co-
efficients of the linear damping terms (and also
of the nonlinear terms contributing to the attenua-
tion) may be very different for different types of
waves. For an electron plasma wave or an ion-
acoustic wave the Landau damping differs appre-
ciably from the collisional damping of a micro-
wave or of laser radiation penetrating a plasma.
When the amplitudes are small so that the equa-
tions can be linearized, the effect of dissipation
on the uncoupled waves can easily be described.
However, the problem of studying a system of non-
linearly coupled waves, which experience mutually
different linear dampings, is a far from trivial
problem. ' ' In fact, even to lowest order in non-
linear resonant wave interaction, it does not seem
possible to obtain a comylete analytic solution for
the general case where all three waves are damped
differently. This situation is most frustrating since
the experiments carried out on laser-plasma, inter-
action and on heating of toroidal devices are now

approaching power levels where nonlinear yhenom-
ena. , as described by the above three-wave system,
become essential.

With few exceptions"' the nonlinear processes
occurring in laser-plasma interaction and in the
heating of magnetized ylasmas have been treated

in the parametric approximation, assuming the
yump wave to be unchanged during the interaction
process. If the parametric approach is applied,
a difference between the linear damping constants
of the excited waves, e.g. , an ion-acoustic wave
and an electromagnetic wave, causes no problem.
Even if the yarametric approximation provides
valuable information on the thresholds, i.e. , on
the power levels needed to start nonlinear inter-
actions, it fails to describe correctly the nonlin-
ear evolution of the field amplitudes during the
process of interaction. Since in current and future
experiments the depletion of the pump wave is not
a minor fraction of the incident wave, detailed
studies which do not make use of the parametric
approximation, but instead treat the full three-
wave system with apyroyriate boundary conditions
and take into account mutually different linear
dampings of the interacting waves, are certainly
well motivated.

For several of the three-wave interactions (e.g. ,
the stimulated Brillouin and Raman scattering pro-
cesses, where the incident radiation gives rise to
either an ion-acoustic wave or an electron plasma
wave and a scattered electromagnetic wave) two
of the waves (i.e. , the incident and scattered elec-
tromagnetic waves) experience the same linear
damying. The third wave, which is a collective
wave, experiences by Landau damping a linear
dissipation, which is, however, different from
that of the two other waves. For the process
where an incident electromagnetic wave, in quan-
tum language a photon, decays into two plasmons
we have again a similar situation. As is well
known, these processes are all of great interest
when considering laser-plasma interaction. It is
therefore worthwhile to study seyarately the case
where two of the waves have the same linear damp-
ing, ""an assumytion which enables us to describe
the dynamic system in a more tractable form which
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yields, in fact, a generalized equation for a
damped nonlinear pendulum including an extra term
accounting for initial conditions of the three-wave
system.

For other yrocesses than the above mentioned,
e.g. , the decay of a photon into a plasmon and a
phonon, one is faced with the difficulty of different
linear dampings of all three waves.

It is the purpose of the present paper to discuss
the properties of the resonant nonlinear three-
wave system with different linear dampings of the
waves, in order to indicate the difficulties of the
complete problem with all three linear dampings
different, and to formulate an equation for the case
where two of the dampings are equal but different
from the third one (all three dampings being differ-
ent from zero).

For the case where two of the dissipation con-
stants are equal and where we consider nonlinearly
unstable situations, certain asymptotic solutions
can be obtained analytically. For a more complete
description of the evolution of the system, includ-
ing stable cases as well, one has to rely on com-
puter results, or, under certain conditions, to
use, for example, an approximate analytic de-
scription based on a generalization of the con-
stants of motion. '

Our study, which is carried out within the frame-
work of a coherent-wave description, elucidates
the fact that the set of nonlinear equations with
mutually different dampings (and also the case
where two dampings are equal) corresponds mathe-
matically to a class of functions having new prop-
erties which do not reduce to those of the Jacobian
elliptic functions except for the case where all
attenuation coefficients are equal. "

II. BASK EQUATIONS OF THE THREE-%EAVE SYSTEM

where we have assumed that the wave frequencies
and wave vectors fulfill the matching conditions

&0=&1+(d2 and k0=k, +k, . (2)

In Eqs. (1), 4 denotes the linear combination of
phases of the individual waves 4=$0 fy f2 and

the 8,&
represent the phase angles of the coupling

constants C, , = ~C, , ~

ee~j, where in (1) the absolute
values ~C, , do not appear because of the normal-
ization chosen for the amplitudes. '"

The phase angles 8,.&
of the coupling constants

C„.determine if the system is nonlinearly stable
or not. A necessary" and sufficient" condition
for the system to be nonlinearly (explosively) un

stable (assuming that all v& are equal) is that the
phases 6,, define complex vectors which all point
in the same half-plane. If this is the case all am-
plitudes have a, tendency to grow as u„.

- {f„—t) ',
where t„ is the time of "explosion. """4 However,
if the complex vectors do not all point in the same
half-plane (still assuming that all v,. are equal),
the solutions are stable. If the medium is free of
dissipation (and has no linear growth), the coupling
constants are real quantities.

Their signs depend on factors of the form
[s(&u'«)/s&u]„„, where «(ur, )t) is the dielectric

td=4)
~

&

constant associated with the mode i. The phase
angles 8,, may then take the values 0 or m as de-
termined by the sign of the related coupling con-
stant.

In order to study particularly the dependence of
the solutions of Eqs. (1) on the different attenua-
tion coefficients v, , we may neglect the imaginary
parts of the coupling coefficients; i.e. , we may
take for 8„- the values 0 or m in spite of the fact
that the coupling coefficients and therefore the 8„.
depend on the attenuation constants v, %e then
have to consider the equations

The basic system of equations describing reso-
nant wave-wave interaction can be formulated in
terms of normalized amplitudes u,. and mutually
different linear damping ~&,

"as follows:

BQ0

Bt
+ voto = B~g2 cos(4 + 8») ~

Bt
+ viv, j = Qotc2 cos(C'+ 802),

Bu0

Bt
+ ~ouo S12ufu2 COS

Bt
+ V~Q~ = S02Q0Q2 COS@'

~

BQ2

Bt
+ V2Q2 ——S0~Q0ul COS@',

B4 Qju2 Q0Q2 Q0Q~S ~2 + S02 -+ 80~ Sln@ .
Q0 Ql Q2

(4)

(6)

BQ2
2 2 0 j.+ V2Ã2 = QOQ~ cos{4+8O~)01

BO' Q~Q2 Q0Q2' 'sin(4+8») — ' 'sin(4+8„)
0

sin(4 + 80~),
Q2

In the system of equations (3)-(6) for the normal-
ized amplitudes Q,. and the phase variable 4, the
s„.denote the signs associated with the phase an-
gles 8,.&

in (1), which are, in (3)-(6), 0 or v.
As is well known, Eqs. (3)-{6) can be solved ex-

actly in terms of Jacobian elliptic functions in the
case where all v,. are zero and also in the case
where the v,. are different from zero but then only
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when they are all equal, i.e. , v,. = v. "
Even in the case where all v,. are different, the

system of equations (3)-(6) has a. constant of mo-
tion which can be expressed by the relation'

the invariant I', we obtain the following differen-
tial equation for the single dependent variable g:

u,u,u, sinC exp(v, + v, + v, )f = I', (7)

III. CASE OF TWO EQUAL LINEAR ATTENUATION RATES:
DERIVATION OF A SINGLE EQUIVALENT EQUATION

To start with, we note that for the special case
where two of the v,. are equal there exist only three
independent possibilities with regard to the choice
of signs s,.&. Owing to the symmetry of the equa-
tions, . any other combination of signs and choice
of v, , with two v,. being equal, can by a change of
signs in the normalization of the amplitudes be re-
duced to one of the three above-mentioned possi-
bilities.

We here take vy v2: v assuming v, different
from v, and consider the three following combina-
tions of signs:

s» —-+1, +1, —1;

s„=+1, +1, +1;

SOI + 1 1 + 1 ~

(6)

Case (a), si2 +1 so2 +1, so~ =+1

This case corresponds to a situation which is
nonlinearly (explosively) unstable when all the v,.

are equal. "
For the case where v] v2 v & vo it is conve-

nient to introduce the new variable $ and the con-
stant 0 according to the transformations

where l is a constant determined by the initial con-
ditions, i.e. , I' = u, (0)u, (0)u, (0) sinC'(0}.

It should be noted that relation (7) is valid what-
ever the signs s,&

in Eqs. (3)-(6) may be.

Case (b) i2 +1, so2 +1, soi —1

This case corresponds to a situation which is
nonlinearly stable when all the v, are equal. "

We here introduce the transformations

u, = Qe "' sin&g,

u, = Qe "'cos2$,
(14)

(15)

where now 0'= u', (0)+u', (0), and we obtain in a sim-
ilar manner as in case (a) the following differential
equation:

(16)
Equation (16) may be considered as an equation

for a damped nonlinear motion of a pendulum with
an exponentially changing length, the equation be-
ing supplemented by a nonlinear term which ac-
counts for the initial conditions.

Case (c), si2 -1, so2 +1, sos +1

For the remaining case we again use the trans-
formations (9) and (10) and the same constant of
motion given by (11), and we obtain the equation

(13)

where the constant of motion I' is again given by
Eq. (7), in which we let v, = v, = v.

It should be noted that the right-hand side of Eq.
(13) is proportional to the square of the ratio be-
tween the two constants of motion I' and 02.

u, = Oe "' sinh2$,

u, = Qe "' cosh-, g,

(9)

(10)

8'5 9$ . 16I' cosh'
+ v + Q2 e 2vt sinhq e 2vo

gt2 ' gt 0 sinh'g '

18$
u cos4= ——.

2 et

Taking the derivative of Eq. (12) and using
Eqs. (3)-(6), Eqs. (9) and (10), and Eq. (7) for

(12)

where the real constant of motion 0 (which is, in
the general case, different from zero) is given by

f12 —(u u2) e2" ~ = u2(0) u2(0)

and we assume, without lack of generality, that

u', (0) & u', (0) .

By making use of the transformations (9}and

(10), we deduce from Eqs. (4) and (5)

(17)
It should be emphasized that Eq. (17) differs

from Eq. (13) only in the sign of the third term on
the left-hand side of the equations. It turns out
that the sign of this term is decisive for the sta-
bility or instability of the motion, where the sta-
bility of the motion described by Eq. (16) does not
depend on the sign of the third term in the left-
hand side of this equation, owing to the periodic
nature of this term.

Even in the case where two of the coefficients
of dissipation v& are equal but different from the
third, it seems impossible to find complete ana-
lytic solutions to the corresponding equations (13),
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(16), and (17), also in the case where I'=0, which
corresponds necessarily to 4(0) = 0 and therefore
to C (f) = 0 for all times. The reason is that even
in the simplified form of the equations correspond-
ing to I'= 0, the remaining equations are in fact
nonlinear differential second-order equations of
polynomial class as can easily be seen by means
of a change of variables cosh/ = V in Eq. (13) or
(17) and cosg = V in Eq. (16). The equations then
obtained in terms of V do not belong to the class
of nonlinear differential equations which are free
from movable essential singularities. Aeeordingly,
the general solution of Eqs. (13), (16), and (17)
possesses certainly movable essential singularities
(movable meaning that their location depends on
the initia, l conditions). This fact, indeed, removes
any hope one might have of obtaining a complete
analytic solution. It is nevertheless possible to
investigate some of the asymptotic properties of
the equations. In the unstable case corresponding
to Eq. (13), the explosive nature of the solution
facilitates such an analytic description of the as-
ymptotic solutions.

IV. ASYMPTOTIC SOLUTIONS OF THE NONLINEARLY

UNSTABLE CASE

In the nonlinearly unstable case with v, = v,
= vev„governed by Eq. (13), we can assume
without lack of generality that () &0, since the equa-
tion is invariant with regard to the sign of g. I et
us here investigate two particular eases, namely,
(i) v, = 0 and explicitly taking into account the term
in I', and (ii) v0 v, WO but asymptotically neglecting
the term in l.

In both cases we have in the limit when g-+ ~,
sinhg- —,e" and also cosh/- ~e .

Asymptotically we obtain the following equation:

B'q ey Q' „,„, 64r'
Bt~ Bt 2 Q4

Case (i)

As is well known, the main property of this tran-
cendent is that it is free from movable essential
singularities.

Equation (21) indicates what we may regard as
the lower limit with regard to the complexity of
an analytic solution to the original set of Equations
(3)—(6), retaining at least two of the v,. different
from each other.

Here let us only remember the successive sim-
plifications that we have used to obtain Eq. (21):
(a) absence of frequency, or wave number, mis-
match, ", (b) 8,.„=0, i.e. , all nonlinear coupling
constants are assumed real; (c) v, = v,. W v, =0, i.e. ,
two of the real linear attenuation eoeffieients are
assumed equal and different from the third which
is zero; (d) in the case where g is large, sinhg is
approximated by &e".

Case (ii)

In this case Eq. (18) t:akes the form

Bg Q
+ v ———e" '"'=0

Bt2 Bt 2
(22)

where P(Z) is a function of Z only. We then obtain
the following equation in p:

ZP —+ V0P + 2 &0 V —P Q Z = 0 .4p
dz

where it is assumed that g is a large positive quan-
tity. By the change of variables

2vt Z (f)

Eq. (22) becomes

Z BZ BZ 3Z ——+ v Z—+2v vZ' —Z'=0. (24)
Bt2 Bt 0 Bt 0 2

We here note that in Eq. (24) the time no longer
appears explicitly. This allows us to introduce
the new change of variables

=Zp(Z), —BZ
Bt

In this case, Eq. (18) becomes

Bt2 2 Q2

Equation (19) can be shown, by means of the sub-
stitution

Equation (26) is an Abelian-type first-order ordi-
Dary dlffelentlal equatloD which cannot be inte-
grated analytically.

%e can, however, find an asymptotic solution for
Z-+ ~, by expanding the function p(Z) as follows:

p (Z) = a,Z'l '+ a, + a,Z '/' lnZ

x=e "' F=xe~ (20) + a,Z-"'+ a,Z-' lnz+ ~ ~ ~ . (27)

B2y g gy ~ ygy Q2 y~ 64P2]
Bx' F Bx x Bx 2v' x Q4v'7 (21)

to be of the form of the canonical third Painleve
transcendent (cf. Ref. 15): By substituting Eq. (27) and its derivative into

Eq. (26) and identifying order by order the succes-
sive terms, we obtain for the coefficients a,. the
following values:
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2vo(vp —v)
0 1 -2v0 2 0 )

ymptotic solutions for u, and u, :

limu, = limu, = —,'Q exp(zg —vt) = zQZ'~'
2v, (v, v) 8 v', (v, v}

3 g ~ c 3 g2

t- too

[I+ —,v, (t„—f) ——' v, (v, —v)(t„-t)'
1

—=QZ"'- 2v Z+ ' ' Z"'lnZ.
at ' 0 (28)

Limiting ourselves to the first three terms in P(Z),
we obtain from (25) the following asymptotic ex-
pression for the time derivative of Z:

xln-.'Q(f„- f)+ ~ "].
Furthermore, we obtain for the remaining vari-
ables u, and 4, from Eqs. (7), (12), and (32), the
following two relations:

We may then write the formal integral relation as
follows:

+00 dz

„z z' '[1 —2v,z '~'/Q+ 2v, (v, —v)z ' lnz/Q']

= Q(t„—t), (29)

where t„ is the explosion time.
In order to evaluate integral (29}, it is conve-

nient to make a change of variables
z-'~'= v;

u, sin4 = I'(I„—t}2 exp[ (v, + 2v)t]

x [1—v, (t„ I)+-,'v, (v, v)(f„ t)'

x In-,'Q(f„- f)+ ],
1 1hZ

u cos4 =&+———
2Z et

[I+ (v —zv, )(t„—f)

+ —,
' v„(v„v)(f„—f)'

x In-.'Q(f„—I)+ "],

(34)

(35)

we then obtain the following integral expression:

J
z-i/2 dV

1 (2v, /Q) V 4[v, (v, v)/Q'] V' lnV

= —.'. Q(f„ f). (30)

from which we find the asymptotic expressions for
uo and tan4, namely,

u, = [I+ (v —,
'

v, )(t„—f)t„—f,

+ —', v, (v, —v)(f„—t)'ln2Q(t„— t) + ], (36)
In the upper limit of the integral in (30) we note

that Z is a large quantity so that in the integrand
the quantity V takes only small values, and we ob-
tain by expanding and integrating term by term

tanC = I'(t„—I)' exp[ —(v, + 2v)t]

x[1—(v+-,'v, )(t —t)+ „].
We note that to lowest order, but only then, uo has
the same asymptotic behavior as u, and u.„i.e. ,
the effects of mutually different linear dissipations
enter only in the higher-order terms. We also
observe the fast approach to zero of the phase an-
gle as I; apyroaches the time of explosion, accord-
ing to relation (37). Furthermore, expressions
(33) and (36) clearly show that the influence of the
initial conditions becomes more and more negli-
gible close to the explosion time.

We have thus succeeded in obtaining satisfactory
asymptotic solutions in the unstable case when two
v,. are equal. However, the problem of connecting
the time of explosion with the initial conditions re-
mains —a problem which in our opinion is equiva-
lent to solving the whole problem, for which, as
we have already discussed, the solution does not
seem accessible.

Within the accuracy of our expansion, which
keeps only the three first terms, we can introduce
the lowest-order approximation

z-'~' ,'Q(f„=f)—-
into the second and third terms of relation (31).

We then obtain the asymytotic solution

Z '~' = —,'Q(t„—t)[1 ——,'v„(t„—t)

+ ' v, (v, —v) (I„—t}'

x In-,'Q(f„ f) + "] . (32)

From Eqs. (9}, (10), and (23) we then find the as-

Z-'» —'Z-' — ' ' Z-"'InZ+ ~ ~ = (f -f)—0 3 2'- '.
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