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Percus-Yevick and hypernetted-chain models connecting the structure factor S(k) with effective pair potential

$(r) have been studied in detail. Recent neutron-scattering data of Yarnell et al. , for liquid argon at 85'K,
have been employed to generate these potentials. Using 0.01 uncertainty in the experimental data, the

uncertainty in the pair potentials has been computed. Having developed a general method of error propagation

analysis, the effect of experimental errors in S(k) on Percus-Yevick and hypernetted-chain potentials is

investigated and the resulting potentials are compared with Lennard-Jones and Barker, Fisher, and Watts
potentials.

INTRODUCTION

Recent accurate measurements of structure fac-
tors S(k} have led to a renewed interest in the ap-
proximate theories of liquids. Typically, the data
for the measured structure factor are inserted in

one or the other of integral equations used in the
theory of liquids, and information about the pair
potentials is obtained. This procedure has been
used for example, for liquid metals, particularly
liquid Na and K,' ' in order to calculate effective
pair potentials.

More recently, Yarnell et aL.' have measured
structure factor of liquid argon at 85'K with an

accuracy of 0.01 by neutron-diffraction techniques.
These experimental data are in agreement with
the molecular-dynamics data on S(k} of Verlet, '
based on the Lennard-Jones (L-J) potential (6-12),

4( ) =4 [( / )"- (o/ )']

with e/ks =119.8'K and a =3.405 A as parameters.
The data of Yarnell et al. ' are also in good

agreement with the simulations based on a rather
different pair potential, which includes three-body
effects. ' Thus, one is led to the conclusion' that
liquid argon can be equally well described by the
L-J potential, Eq. (1), or by the Barker, Fisher,
and Watts (BFW) potential. '

In an effort to obtain some information about the
effective pair interaction, the Percus-Yevick (PY)
and hypernetted-chain (HNC} approximations have
been studied for a long time. ' It has been pointed
out'" that the PY equation (and perhaps HNC)
leads to quite accurate pair potentials at low den-
sities but breaks down at liquid densities. Also,

in order to obtain 10% accuracy in the calculated
pair potentials, an accuracy of 1% is needed in

the measured structure factor. '"' More recent-
ly, it has been shown" that the equilibrium struc-
ture of simple liquids is dominated by the repul-
sive part of the potential and that the attractive
part of the potential can be treated as a perturba-
tion '4

In this paper we reconsider the following prob-
lem: Given the equilibrium structure factor, can
we obtain information about the pair potential~
In particular, we restudy the PY and HNC equa-
tions for the reason that more accurate data on

S(k} are now available, and thus the limits of the
reliability of the inversion process need to be
thoroughly investigated; i.e., for a given accuracy
in the structure-factor measurements, how much
error is propagated in computing pp„(r) and

P„„c(&), the potentials obtained from PY and HNC

equations; and we examine if their differences
from L-J and BFW are due to experimental er-
rors. Such a comparison might indicate if either
of the two (PY and HNC) is closer to L-J. Ontheo-
retical grounds, there seems to be no clear argu-
ment for preferring one approximation or the
other; the same is true for the Born-Green equa-
tion as well, although for liquid metals, the po-
tential derived from Born-Green theory is usually
preferred because of long-range Friedel oscilla-
tion s.

For this purpose, a detailed analysis of the
effect of the uncertainties of the input structure-
factor data on the derived pair potentials Q,„(r)
and +Ngf) is carried out. In particular, we have
attempted to develop a general method for treating
the errors, which yields not just the magnitude

14 434



14 PERCUS- YEVICK AND HYP ERNETTED-CHAIN APPROXIMATIONS 435

METHOD

Experimentally one counts the number of neu-
trons scattered at an angle 0 to determine the dif-
ferential cross section o(8):"

dQ
= o(8) = (f (8)*f(8)) . (2)

For n scattering by a nucleus of mass M, atomic
number A, f (8) is given by" [m = M/(A+}]

f(s)= —s,k. Jk" s( )s . (3)

The potential V(r) is assumed to be of Fermi type
and is obtained by introducing a coherent scatter-
ing length b and summing over all the N particles:

(4)

of the error in (I) but the density distribution there-
of in the &- P space.

p. (k) =T,.p. (8), (12)

where p, (8) is a density distribution function in

the 0-v plane and is identical with the scattergram
of the experimental points in that plane; p, (k) is
the corresponding density distribution function in
k-s plane. Thus the fact that all experimental
values of S(k) are normally distributed about the
mean S,(k) with a constant variance v' (e.g. ,
v =0.01}can be stated as

potentials. To convert the experimental neutron
counts into u(8}, a number of experimental param-
eters, such as cell geometry, detector efficiency,
etc. are needed and all of these have some errors
in them. To calculate S(k) from o(8), cross sec-
tions and limiting values of S(k-0) and g(r-0) are
needed. Details of the error analysis in this pro-
cedure are discussed by Yarnell et at. ' Symboli-
cally the entire above analysis can be thought of
as a transformation T„such that

which yields

2 g s (
- "-,—.-,)}s.- .

ij
(5)

and

z(s(k)} =s, (k) = J s(k)x(s„*)ssl.
0

E[(S —S,)') =v'

(13)

(14)

s(")= Es(;—,))pN i

so that

dn(r) = n4)(r' g(r) dr,

(6)

The pair distribution function g(r) is defined by
where N(SO, v ) is a normal distribution with mean

S, and variance v', and E(x] is the expected value
of x. Knowing S(k) and g(r) [from Eq. (11)]we can
calculate g(r) by using Eq. (11) and then the PY
and HNC potentials can be calculated by the well-
known relations

where dn(r) is the number of particles in a spheri-
cal shell of radius & and thickness d&, n being the
number of particles in a unit volume. Combining
it with Eq. (5}, we have

4)p„= ksT in[1 —c(r)/g(r)],

(t)„„=ksT( g(r) —c(r) 1 —lng(r)],

where

(15)

(16)

(s) = k* Jk(s( ) -(]""'s ) k'(k) (8) ( )=w J (s(k)-(] "' sk
S k

from which one defines the structure factor S(k):

s(k)=( ~ k J "'(s(")—()s . (9)

S (k) = 1 + [ g(r) —1]r sin kr dr,4nn
(10)

s( ) = ( z J (s (k) - k] k

with A = 1/(2](n'r). This series of well-known steps
Eqs. (2}-(11)is reviewed here to point out the
sources and analysis of errors involved in this
procedure and the subsequent calculation of the

By combining Eqs. (8} and (9), a simple relation
between o'(8} and S(k) can be obtained. After inte-
grating the angular part, S(k) and g(r) can be writ-
ten as a pair of Fourier transforms:

We shall now discuss how the errors in S(k) are
propagated through g(r) into 4)p„and (t)„„c. The fact
that the precision in calculating the pair potentials
is strongly dependent on the measurement preci-
sion in S(k), has been well established, e.g. ,
Levesque and Verlet. " Gehlen and Enderby" de-
veloped a model of linear propagation of errors
and applied it to Na. However this model is rather
restrictive and may lead to doubtful estimates.
We shall now formulate the general problem and

indicate a solution. Mathematically speaking, the
experimental function S(k) is a set of stochastic
variables with arbitrary distributions in k-S space
and thus all operations on S(k), e.g. , differentia-
tion, integration, etc, should be done in conformi-
ty with the rules appropriate to stochastic vari-
ables. We introduce an experimental error func-



A. CHOUDRY, P. K. BANER JEE, AND N. K. AILA WADI 14

tion e {k,s):
S(k) =S, +e(k, S)

ables q, where

q,. =a& k,. sink, - t Ak, (26)

so that

z(~(k, s)) =0.
From Eq. (11) it can be shown that the error

function 4g(r) for g(r) is given by the following
stochastic integral.

Is@(r)=~I s(S, S)Ss,.SrSS (20)

ng(r) =T„e(S,k). {21)

Similarly using Eqs. (15}, (16), and (17) the fol-
lowing can be defined:

ac(r) =r„e(S,k),

Sy,„=r„e(S,k),

~&aNc=Tss'(S "}~

(22)

(23)

(24)

All of the above involve stochastic integrals of the
type in Eq. (20). Ballentine and Zones'2 have re-
placed the above stochastic operations by a linear
relation in assuming that the T's are matrices.
As an illustration we shall indicate the evaluation
of Ag(r) from Eq. (20). For a finite number n of
experimental points, in machine computation,
Eq. (20) can be written as

n

ag(r) =Q e, k,. sink,.rnk, ,

which is a sum of n independent stochastic vari-

It should be noted that () g(r) is also a set of sto-
chastic variables and Eq. (20) may be interpreted
as a transformation T„ in the spirit: of Eq. (12),
l.e. )

The moment-generating function $;(t) of q,. is de-
fined as

g, (t) = q, (s)e"ds
0

in terms of which (25) can be written as

ss( )=I III (I) "«,
O i=1

which is a density distribution in &-g space. Ex-
pressions to be similarly evaluated corresponding
to Eqs. (22), (23), and (24) are

-e(k) " k sinkr
(29)

{26)

& p„„c=rg(r) +&c(r) —ln(1 + n), (30)

a( „=1 1'Is I ——s ~ (I ~ )Q (-II)")s ss*
n=1

CONCLUSION

Using the structure factor data of Ref. 7 and the
error of 0.01, we have calculated HNC and PY
potentials and the errors in them. These poten-
tials are compared with L-J and BFW in Figs. 1
and 2, respectively (¹B.the errors in HNC and
PY as displayed in these figures are magnified
10 times}. The errors in PY (cf. Fig. 2) are much

where o. =kg/g and P =&c/c. Thus in principle it
is possible to translate the density of experimental
points in the k-s space into the corresponding
density in &-{t) space for arbitrary error functions.
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FIG, 1. AQH~c and QHNC compared with L-J and HFDF(. FIG. 2. h, gpss and Qp+ compared with I -J and BFW.
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more pronounced (up to 15')0) than in HNC (cf.
Fig. 1). In particular, the well depth of PY is
rather severely affected by the errors in S(k).'"'"
It is interesting to note that the well depth of HNC

agrees with L-J' better than with BFW. Of course
this agreement does not necessarily imply the
superior validity of one or the other potential.
However, one can conclude that by using the gen-
eral analysis developed here, the differences from
L-J and BFW are beyond experimental errors. A
recent perturbation calculation of Madden and
Fitts" for liquid Ar based on HNC gives much

more accurate results, and our analysis supports
this conclusion.
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