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A nonvariational equation, called the density equation, is proposed for the direct determination of the density

matrix vvithout using a wave function. It is connected with the Schrodinger equation by a rieeessary and

sufficient theorem. The equation for the lowest order depends explicitly only on the fourth-order density

matrix I (' (or I ' in a special case) and not on the higher-order density matrices. The equation always gives

the density matrix and the associated energy which coincide with those obtained indirectly from the
Schrodinger equation. This is true even if we solve the equation only with the known and tractable N-

representability conditions, although in such a case some unphysical solution may also occur in the non-N-

representable space. The equation is applicable to both fermion and boson systems, and to both ground and
excited states. In contrast to the Schrodinger equation, the labor of solving the equation does not increase
when the number of particles of the system is increased. %'hen we have the Hartree-Fock solution, the
equation is transformed such that the correlated density matrix and the correlation energy are the direct
solution. The correlated density equation thus obtained is suitable for the study of electron correlations.

I. INTRODUCTION

The Schrodinger equation H4 =EC and the Pauli
principle are the two fundamental principles for
the study of stationary electron systems. The
Schrddinger equation is a deterministic equation
and the Pauli principle gives a constraint for the
physically adxnissible solution. The problem
here is that the solution 4 depends on the total N
electron coordinates simultaneously and there-
fore the solution of the Schrodinger equation or
its variational variants soon becomes impossible
with an increasing number of electrons, N, of the
system.

It is well known that all of the physical proper-
ties of a system can be evaluated from the second-
order density matrix, which is defined by'

r"'(s 2 (&2)=„c,fo'0', 2, s, . . . , x)

x 4(1, 2, 3, . . . , N) de dx„.

This quantity depends explicitly only on the four
electron coordinates and is much simpler math-
ematically than the wave function itself. More-
over, whenweuseforce' instead of energy, all that
we need is the electron density p(1). This simplifies
many of the studies and the underlying concepts of
various chemical and physical phenomena. ' ~

Thus it is highly desirable to have a method to
determine the density matrix directly without

using a wave function. The main difficulty in a
variational application of this approach is that the
N-representability condition, which is enforced
by the Pauli principle, remains unsolved.

The variational principle for F', E, «E(I '), is
meaningful only when we have the complete N-re
presentability conditions in a tractable form. So

fax, the number and complexity of the known N-
representability conditions' "are rather dis-
couraging for applications of the variational
principle. ' " For the electron density p(1), the
theorem given by Hohenberg and Kohn, "E, «E(p),
gives a basis for the variational approach. " How-
ever, the theorem is only an existence theorem
and includes an unknown functional. " Although we
have given previously some explicit operational
formulas of this theorem, "their exact applica-
tions still seem impractical.

The method given in this article does not belong
to the variational approach. In Secs. II and III we pro-
pose an equation, called the density equation, for the
direct determination of the density matrix. The theo-
rem given in Sec. II guarantees that the equation al-
ways gives the exact density matrix F and the
associated energy E which coincide with those ob-
tained indirectly from the Schrodinger equation.
This is true even if we do not constrain the com-
plete N-representability conditions simultaneously,
although in such a case some unphysical solutions
may also occur in the non-N-representable space.
Therefore in applications we may use only the
tractable N-representability conditions as a con-
straint, then solve our basic equation, and then
select the physically meaningful N-representable
solution using the rest of the N-representability
criteria. Such a procedure might be more real-
istic to perform than to first construct com-
pletely the N-representable space, which is a pre-
requisite for the variational approach. Our basic
equation includes I"' only (or I ' in special eases)
and not the higher-order density matrices. %e
hope that it may give a simplification over the N-
electron problem of the SchrMinger equation for
large ¹
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In Sec. IV, we transform the density equation
such that the exact correlated density matrix and
the associated correlation energy are obtained as
a direct solution. Summary and conclusion are
given in Sec. V.

II. BASIC THEOREM

In this section we give a theorem which consti-
tutes a basis of the present approach. We imagine
an N-electron system such as atomic and mole-
cular systems, but the theorem is general enough
for any fermion and boson systems. We suppose
here that our density matrix is N representable.

We introduce a symbol ( ~ ~ )„,

(f) ff(1, .„.. , , ~ 1 N)d, ,. . . d „

for only a single n which is larger than or equal to
2 (n) 2). We hereafter call Eq. (8) the "density
equation. "

Proof: Using Eqs. (2) and (4), we can rewrite
Eq. (8) as

(4, (H E)4-')„=0. (9)

It is trivial that if 4 satisfies Eq. (7), Eq. (9) holds.
We prove the converse. Integrating Eq. (8) or (9)
over the last n, n —1, and n —2 electron coordi-
nates, we obtain

which denotes the integration over the last N- n

electron coordinates. Since our density matrix is
N representable by assumption, we may introduce
an antisymmetric wave function42(1, . . . , N) (as-
sumed to be normalized to unity) such that"

(12)

respectively. Here we have used abbreviations
such as fv(1)I'")dx, for f[v(1)I't"(I'~1)], =, dx„and
will use such abbreviations hereafter. On the
other hand, since 4 and H4' have the same symme-
try for permutations of coordinates, we have the
equality

= „C„(4(1',. . . , n', n+1, . . . , N),

4 (1, . . . , n, n+ 1, . . . , N))„, (2)
where „C„ is the binomial coefficient and I" is
normalized to ~C„:

(4, H'4)= 2((id, HHC )

N v 1 G dxy +gC2 w 1 2 G dx dx2

=E v 1 I' ' dx, + 1, 2 I'' dx, dx,

E2

Using 41(1, . . . , N} introduced in Eq. (2), we define
the nth-order energy density matrix as

G "—:G " (1 '
~ ~ n'

( 1 ~ ~ n) = (4', H4)„,

where H is the Hamiltonian of the system,

(4)

The diagonal element of 6 ")satisfies

G'"'(1. n~ 1 n)dx, dx„=E, (6)

where E is the energy expectation value of I' "~,

which is written alternatively as E =(4', H4').
Using these quantities, we describe the theorem
as follows.

Theorem: A necessary and sufficient condition
for 4 to satisfy the Schrodinger equation,

H4 =E4,

is given by the equality

I "l(1' ~ ~ n'
( I ~ ~ n) = (» „CE/) G((1' ~ ~ ~ n'

~
1 ~ ~ n)

(8)

For the second transformation, we may refer to
Eq. (10). We have used the permutation symmetry
of the same two particles in 4* and H4 in pair. "
In the third equality, we have used Eqs. (11) and

(12). Since the two equalities, E =(4, H4') and
E' =(4, H'4), hold if and only if 4 satisfies
HC =E4," the theorem is proven. When E is a
degenerate level, 4 is in general a linear combi-
nation of the degenerate eigenfunctions of H. Such
degenerate states may be discriminated further by
imposing other symmetry requirements on I
(e.g. , space symmetry, orbital and spin angular
momentum symmetries, etc. ).

Because the theorem is a necessary and suf-
ficient theorem, we may use the density equation
(8) as our basic equation instead of the Schro-
dinger equation (7), The theorem guarantees that
every density equation for n ~ 2 is a deterministic
equation in the N-representable space. However,
at this stage, the energy density matrix appearing
in the density equation is defined by Eq. (4) using
the wave function Ild. For our purpose (mentioned
in Sec. I) we have to eliminate this 4 from our ex-
pression and obtain the density equation in the
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form which includes only the density matrix as a
variable. The theorem suggests that the resultant
equation may be used for determining the density
matrix directly without using indirectly the Schro-
dinger equation for 4.

Before perf orming the above transformation,
we want to say a few words about the theorem. A
literal meaning of the density equation is that in
order that the density matrix be exact, it must be
everywhere proportional locally to the energy
density matrix with the proportionality constant
jdC„/E. In the theorem, the first-order density
equation

p(I'
I l) = (&/&)g(I'

I l), (14)

where p(1'
) 1) = I'(' (1'

~
1) and g(1'

( 1)= G(')(1'
( 1), is

missing. This is because our Hamiltonian in-
cludes up to two-particle interaction terms [Eq.
(5)]. It is evident, however, that the first-order

density equation gives a necessary condition, but
for sufficiency we need an assumption discussed
in Sec. IGB. When n=N, the theorem is trivial. The
Nth-order density equation, which is written as
4 "4 =4 *HI /E, is just the Schrodinger equation,
since 4 is nonzero.

III. DENSITY EQUATION

In this section we rewrite the density equation
in the form which includes only the density matrix
as a variable, and we consider a method to use
the resultant equation for the direct determina-
tion of the density matrix.

For the time being, we again assume that our
density matrix is N representable, i.e. , we as-
sume the existence of III(I, . . . , N), as defined by
Eq. (2). Then the energy density matrix G("~de-
fined by Eq. (4) can be transformed as

1l fI n

cw-(„c„) ' I ((1 twt", j) I'"' ( +I)J ( I) I t(, v ~ 1))c'"'vd*„,,
1 & j

n+1 (n+2)+ w (n + 1, n + 2)I'("")dx„„dx„„ (15)

where the operators U and w are defined in Eq. (5). Here we note again the abbreviations such as
Ju(n +1)I'"'"dx„„for

Inthe transformation (15), we have used the permutation symmetry of the same two particles in III* and Iij in
pair. This point will be used later when we expand our space somewhat from the N-representable space.
Inserting this expression into Eq. (8), our density equation becomes

tl n n

drw'= P (')+I w(', j) I'"' ~ ( ~ I) J v( I) I, (', +I)) r'"'vd*„„
i

+
(n+1)(n+2)

w(n+1, n+2)I' ""dx„„dx„„. (16)

In this form, the density equation includes the
density matrices from order n to n+2. It coin-
cides with one of the coupled chain of equations
in a, density matrix form of the equations for the
Green's functions. " However, it is incorrect to
regard Eq. (16) as only one element of such chain
of equations, since the theorem given in Sec. II
shows that for n ~ 2, every density equation is
equivalent with the Schrddinger equation when our
I' is N representable. This point is realized
more explicitly in our formalism by considering
I' "" as our basic variable instead of I' ", since
we have the following recurrence formula for our

density matrix:

r")(I'. . . (P —I)'P
I
I (P - I)P) d»,~ ~

I' ' (1' ~ ~ (p —1)'
~
1 ~ ~ (p —1)).

P (17)

Stressing this point explicitly, we rewrite Eq. (16)
in an alternative form

[X ")(1.~ ~ n; (n+1)(n+2)) —&] I' "' dx„, , dx„, =0,
(18)

where 3C~"~ is a reduced Hamiltonian defined by

(E n)(f)) —n —1)-II'"l(I . ;( ~ 1)t ~ Il)=Q t ) g t, l) ~ tw — ) t ~ I) I t', ~ ll w(n+1, n+2)
5 1)j $ 2

(18)
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+2(N- 2)(N-3)w(3, 4) .

Here, the variable is r' only, whichdepends ex-
plicitly on eight electron coordinates. When the
two-electron operator w does not include the dif-
ferential operator, we can replace

(21)

r~4(1'2' 3' 4'
i 1234)

in Eq. (20} with

r"'(1'2'3'4 ~1234),

and then the problem becomes a seven-electron
problem. When we obtain r~'~ by solving Eq. (20),
we can calculate any observable quantity of the
system from it. Therefore the N-particle Schr5-
dinger equation may be replaced with the second-
order density equation, since these two equations
are connected by the necessary and suf'ficient
theorem. The total number of electrons of the
system, N, is included in our density equation
only as a constant factor in the reduced Hamil-
tonian X'"'. Therefore the labor of solving the

Thus the density equation is given in a closed
form in which only F "" is a variable. The
previous theorem shows that we may use the
density equation (16) or (18) as our deterministic
equation for F'"'"instead of the Schrodinger
equation for 4. Evidently, the density equation is
valid for both fermion and boson systems.

In the reduced Hamiltonian X'"~, the first two
terms are the direct terms due to the first n

electrons. The last two terms are the contribu-
tions of the last N- n electrons represented by
the two electrons, x+1 and n+2, chosen arbi-
trarily from the last N- n electrons. Then
X~"~( 1. ~ ~ n;(n+1}(n+2}}is symmetric for thefirst n

electrons and can be made symmetric for the
representative electrons n+1 and n+ 2, but it is
not symmetric for the interchange between
the first n electrons and the two electrons n+1 and
8+2.

Practically, our interest may lie only in the
density equation of lower order. When n =1, we
obtain the first-order density equation, but since
it gives only a necessary condition for the hidden
4 to satisfy the Schrddinger equation, we post-
pone the discussion to a later section. The nec-
essary and sufficient condition is first realized
when n=2, for which Eq. (18) becomes

f[X*(12;34)-E]r"'(1'2'3'4' )1234)dx dx =0,

(20)
where

X "(12;34) = v(1)+v(2) +m(1, 2)

+ (N- 2)[v(3) +su(1, 3) +m(2, 3)]

density equation does not increase with an in-
creased number of electrons of the system. This
merit, which is common to the density approach,
is in marked contrast with the wave-function ap-
proach, in which an increase in N causes a tre-
mendous increase in difficulty of solution. Al-
though the solution of the density equation itself
might be difficult, we hope that it may still be a
simplification over the N-electron problem of
the Schr6dinger equation.

In comparison with the variational principle for
I', Eo ~E(r~' }, the density equation includes r~"
explicitly. (As described later, it is reduced to
I'" in the first-order density equation. ) However,
as discussed below, the density equation does
not necessarily require the complete N-repre-
sentability condition as a prerequisite for appli-
cation. Moreover, it would be applicable to an
excited state as well as a ground state. This is
evident from the proof of the previous theorem.

A. N representability

So far, we have assumed that our density matrix
is N representable. When the density matrix is
N representable, three expressions of the density
equation, Eqs. (8), (16), and (18), are equivalent,
and the theorem given in Sec. II holds for each of
them. Then, we know that the density equation
(16) or (18) must give a unique" exact solution
(the density matrix r'""~ and the associated
energy) in the N-representable space of I'. This
is true even if we solve our density equation in
the wider space than the N-representable space,
since the equation is a nonvariational equation.
When we constrain our space by the comPlete
N-representability conditions, if known, every
solution must be identical with the one obtained
indirectly by solving the Schrodinger equation. "
On the other hand, when we use only the known
and tractable N-representability conditions, the
solutions may possibly include unphysical ones
which do not lie in the N-representable space, but
at the same time, we know that the solutions
must include the correct exact one which is al-
ways in the N-representable space. The rest of
the N-representability conditions are utilized in
order to select the correct solution. When we
have the experimental values for some pro-
perties of the system of interest, they may be
used as subcriteria, since we don't know the com-
plete N- representability condition.

At present, only the latter procedure is real-
istic. Moreover, it might be more practical than
the former, considering the complexity of the
known N-representability conditions. ' Many
of the known N-representability conditions, e.g. those
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given as inequalities, seem to be moi. e easily
used as the criteria of the N representability of a
given density matrix rather than as the constraints
for the functional space to which the solutions
must belong. For the variational approach based
on E, ~ E(I' "), the knowledge of the complete N

representability condition is required. Therefore
at present its application is impossible in an ex-
act sense. Adding to the difficulty in obtaining the
complete N-representability conditions, the num-
ber and complexity of the conditions known so far
are rather discouraging for applications of the
variational principle.

Some of the well-known necessary conditions' @

for the N-representability are that (a) I' must
be Hermitian, (b) I' must have a finite trace [Eq.
(3)], (c) I' must be antisymmetric (for fermions),
(d) I' must be positive semidefinite, and (e) I'
must satisfy

x 4*(1,. . . , P) d xi z~ dx~ dx, ~ ~ dx~ ~ 1, (22)

for any normalized Slater determinant 4 of P
electrons. For the density equation, an appro-
priate choice of the conditions used as constraints
will serve to reduce unphysical solutions. Es-
pecially conditions (a) and (b} are important in
order to make the equation meaningful. Condition

(c) is also quite tractable. A merit of imposing
condition (d) will be seen below. Condition (e) will
be discussed later in connection with the equation
for the correlated density matrix.

Since the density equation itself is a strong re-
striction for the physically admissible solution,
it works, to some extent, to restrict its solution
in the N-representable space. This is similar to,
and stems from, the fact that the solution 4 of
the Schrodinger equation H4 =E4 always belongs
to the symmetric or antisymmetric space and the
mixed symmetry does not arise. For the density
approach, such automatic selection of the space of
the solution is very valuable.

For instance, we expand our space somewhat
from the N-representable space. We assume that
(i) we can write our density matrix as

I' " (1'~ ~ ~ n'~1 ~ ~ n)

= ~C„C*(1', . . . , n', n +1, . . . , N}

x 4'(1, . . . , n, n+1, . . . , N)dx„+, ~ ~ dx„,

(23)

and (ii) the symmetries of +for permutations be-
tween the first n and the last N- n coordinates
and among the last N- n coordinates are com-

pletely symmetric„completely antisymmetric, and

mixedonesofboth. For the first n coordinates, we

may require the antisymmetric condition (c). We
note that assumption (i) is realized when we im-
pose the Hermitian and positive semidefinite con-
ditions (a) and (d). Let (Q,) be a complete ortho-
normal set for the n-electron space; then our I""I

is expanded as

I'"'(1' n'I 1 n)

=Qd;, P;*(I', . . . , n')P, (1, . . . , n). (24)

Since the matrix d is Hermitian and positive semi-
definite, "we may assume the existence of a set
of functions (}(,}which satisfies"

d, , = yz*(n+I, . . . , N)y&(n+I, . . . , N)dx„„. ~ ~ dx„

(25)

With these functions (X;), we can define 4 as

q(1, . . . , n, n+1, . . . , N)

Q; (1, . . . , n) zt; (n+ 1, . . . , N), (26)~ ~ ~ ~ ~ ~

which satisfies Eq. (23). Thus assumption (i) is
realized as a result of conditions (a) and (d). The
recurrence formula (1 t) also follows immediately
from Eq. (23). Assumption (ii) restricts some-
what the symmetry of 4. It was imposed in order
to assure the transformation of G " —= (4,H4')„as
given by Eq. (15}.

Even in this expanded space of I', the three ex-
pressions of the density equation, Eqs. (8), (16},
and (18), are equivalent and the previous theorem
also holds, as seen from the proof. " Therefore
the solution I' and E of the density equation in
this expanded space should also be identical with
the one obtained indirectly from the SchrMinger
equation, i.e. , 4 should satisfy H4=E4, which is
possible only when 4(1, . . . , n, n+1, . . . , N} is anti-
symmetric for all permutations of N electrons.
Thus even in this expanded space the exact N-

representable solution is the only solution of the
density equation, and no unphysical solutions
accompany it. In general, such automatic selec-
tion of the space of the solution is very interesting.

B. First-order density equation

The first-order density equation given by Eq.
(14) is a necessary condition for thehiddenC to
satisfy the Schrodinger equation. This means that
at least one solution in the N-representable space
is the exact one. Inserting n =1 into Eqs. (16) and

(18), we obtain alternative expressions of the
first-order density equation. They are
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gI =&~&~p+2 ~~2)+~(1, 2) I.~"d~,

+3 gy 2, 3 I, dx2cfx3, (27)

solution, we may use the first-order density equa-
tion for the direct determination of the density
matrix F ' . Finally, the first-order density equa-
tion has properties common to the general cases
studied in the previous sections.

[X ' (1;23}—E] I" ' (1'2' O'
I 123)dx, (fx, =0,

(28)

where the reduced Hamiltonian X ' is given by

3C
' (1;23) = ()(1)+ (N l)I -v(2) +w (1, 2)]

+i(N-1)(N —2)u)(2, 3) . (29)

As seen in these expressions, the unknown variable
is I' '~, which depends explicitly on the six elec-
tron coordinates. When sv does not include a dif-
ferential operator, the problem is reduced to a
five-electron problem. In comparison with the
previous second-order equation, the order of the
variable is reduced here from I' to I' . Since
this simplification would be very useful in practi-
cal applications, it is worthwhile to consider the
condition under which the first-order density
equation can also become a sufficient condition
for the hidden 4 to satisfy H4 =Et.

It is evident from the proof of the previous
theorem that if the Hamiltonian of the system does
not include the two-particle operator w(i, j), the
first-order density equation is also a sufficient
condition for H4 =Et. The same is true for such
a model Hamiltonian, and in this case 4 is the
wave function of the model system (e.g. , the
Hartree-Fock model discussed in Sec. IIIC).
For two-particle systems (where we have at
most F"), a condition for the sufficiency is
that the natural orbitals of p having nonzero
eigenvalues form a complete set. The proof
is given in the Appendix. This condition might
not be unrealistic, since for wave functions
containing interparticle coordinate r» explicitly,
the rank of p, defined as the number of nonzero
eigenvalues, is infinite. " In general, when we

define the N-electron function 4 by 4 —= (H —E)4 in.
Eq. (9), the first-order density equation requires
that the transition density between 4 and 4,
p~c, (1'Il), be zero identically, or 4 and 4 be
strongly orthogonal. If such 4 can not exist except
for 4 =0 (i.e., H4'=EN), the first-order density
equation becomes also the sufficient condition. The
above condition imposed for the two-particle sys-
tems guarantees such a situation (see the Appendix).

Considering the stringency of the restriction set
by the first-order density equation, we believe
that even in general case the equation would be
close to the sufficient condition. Moreover, since
we know from the necessity that at least one solu-
tion in the N-representable space is the exact

p(1'
I 1)= p, (1' Il) —=Q (I(),". (1')y;(1), (31)

where {y,}(i = 1, .. . , N) is an orthonormal set of
occupied orbitals. Then the first-order density
equation becomes, after manipulation,

~(I)PQ(I'Il) = eg(s $*(l')9~J(I) ) (32)

where h(I) and e~; are the familiar single-electron
operator and its matrix element,

N

&())= (() QI&(()-)(.())1, ';;=&a;, &( ).
(33)

Using Eq. (31), we can rewrite Eq (32) as.
h(()y;t( )=$e;;yg((), (34a)

C. Approximate solution and the Hartree-Fock model

We next consider an approximate solution of the
density equation. Since the density matrix has a
probabilistic interpretation, we may approximate
the higher-order density matrices appearing in
the last two terms of Eq. (16) by the products of
the lower-order density matrices. When we intro-
duce such a decoupling approximation, the density
equation (16) is simplified to an equation for the
nth-order density matrix, since we have the re-
currence formula (17). In such a decoupling ap-
proximation, which is commonly adopted in many-
body theories" such as the Green's-function tech-
nique, "'"a caution is necessary for the N repre-
sentability.

In this respect, the first-order density equation
studied in Sec. IIIB may be used as a basic
equation for the one-particle approximation.
Actually, as may be expected from the result of
the Green's-function method, ' the decoupling ap-
proximation of the higher-order density matrices,
I'"~ and F"~ in Eq. (27), by the single-determin-
antal ones leads to the Hartree-Fock (HF} equa. -
tion. In this approximation, the N representabi-
lity of the density matrix is satisfied automati-
cally. '

We approximate I'"' and I'(s~ in Eq. (27) by

& '= F.'"-=(I&P' }det&.(i'Il) po(2'I2), , po(P'IP}},

(30)

and p by
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which is the Euler equation for the HF theory.
Since p, is independent of unitary transformations
among the occupied orbitals, we can choose the
unitary transformation such that e&,. = e;5, &. We
then have the standard form of the HF equation,

I (I)e;(I)= ~(q;(I). (34b)

z, = (e„H,ej = rh(t)p &,.

Second, in the studies of electron correlation,
the HF model is often used as a convenient start-
ing point. " In the present density equation ap-
proach, it would be convenient to write the HF
equation as

()i(0, (Ho —Eo))IIQ)„=0, (35a)

which is written alternatively from Eq. (16) as
n

E,l","'= hi I',"~+ n+1 h n+1 I,""dx„„.
(35b)

In Sec. IV, we consider an equation which gives
the correlation correction to the density matrix
as a direct solution. In the perturbation theory,
Eq. (35) constitutes a zeroth-order equation for
the perturbation expansion.

When we add to both sides of Eq. (34a) a Hermitian
identity and then diagonalize, we have the modi-
fied form of the HF equation. '"" Thus we could
obtain the HF equation as an approximation to the
first-order density equation.

The HF theory may be viewed from different as-
pects. First, it is a theory for a model system de-
fined by the Hamiltonian H, =g";h(i). Since Ho is
the sum of the single-electron operators, the first-
order density equation constitutes a necessary and
sufficient condition for the exact density matrix of
the model system. A complete N-representability
condition for the system is given by Eqs. (30}and

(31}.' Dropping the operator w in Eq. (27), re-
placing v with h, and imposing the N-representa-
bility condition, we can easily verify that the HF
equation [(32) or (34)] is just the first-order den-
sity equation for the model system in the N-re-
presentable space. Evidently, the solution is
identical with the one obtained from the Schrodinger
equation Hp+'0 Eo+'p for the model system, where
4, is the HF single-determinantal wave function
and E, the HF energy given by

IV. CORRELATED DENSITY EQUATION

When we have the Hartree-Pock solution or when
we want to study only the correlation effects, it is
sometimes more convenient to transform before-
hand our basic equation such that the correlation
correction is the direct solution.

For this purpose, we define the "correlated
density matrix" C( ' by

I"'(1 "p'[1" p)=l("(I. . .p ~l. . . p)

+C"'(I' p'I l "p),

where l", is the HF density matrix defined by Eq.
(30). The correlated density matrix C ) includes
the correlation correction to all orders in the per-
turbation theoretic treatment. Since l,~ satisfies
the same normalization condition and recurrence
formula as those of the total density matrix I'~'
[Eqs. (3) and (17)], the correlated density matrix
satisfies

TrC = C+ 1. ~ ~ P 1 ~ ~ P dx ~ ~ ~ dxp=0 37

C(~ "(1' (p —1)' ~1 ~ ~ ~ (p —1)}.
p

(38)

Other N-representability conditions for I' may also
be transformed to those for the correlated density
matrix C. Inserting Eq. (36) into the density equa-
tion [Eq. (16) or (18}]and simI)lifying the result
using the HF equation, we obtain the equation for
the correlated density matrix C. From the
theorem given in Sec. II, the resultant equation,
which we call the correlated density equation, is
a deterministic equation which gives directly the
exact correlated density matrix and the associated
correlation energy in the "N-representable" space
of C.

Practically, our interest may lie only in the
lower-order equation. For n =2, the above pro-
cedure gives the second-order correlated density
equation as

()t'*'((2; 34)-z)c'"a,a*, —
(2 (x-2)tx-31(( tt, 2) E )t'f ((21(2-)- -f*'t ()rap( (12( )q), (3)2)a*,r 1

w 2, 3 I' (21 23)p(3 1 dx, + w 3, 4 I' 12 34I' 34 12 dx dx =0, 39
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where 3C(2) (12; 34) is the reduced Hamiltonian

given by Eq. (21) and E " is the correlation en-
ergy

COIL -& -EHF

where E„, is the HF energy expectation value,

(40)

E„, = e 1 p, 1' 1 dx, + w 1, 2 I'' 12 12 dx, dx, ,

(41)

which is different from the previous E, in the

electron repulsion part. In the correlated density
equation (39}, the correlated density matrix C"'
in the first term and the associated correlation
energy E "are the ones to be solved. The terms
in the large parentheses depend only on the HF
density matrices, which are (assumed to be)
known. They represent the field due to the HF
densities.

Using the recurrence formula {38), the cor-
related density equation (39) is written alterna-
tively as

( (1)+ (2) w (1, 2) —E] d' ( (1, 2) —E '
l 1',' t121121 3 fv (3)d''d*, + fw t 1, 3 )(C3' —1',' (12 I 13)p (312)1 dv,

+ gg 2, 3 3 —I' 21 23 p, 3 1 dx, + ~3, 4 6C'+I'~' 12 34I ' 34 12 dx, dx =0. 42

This expression corresponds to Eq. (16) as the
expression (39) does to Eq. (18). As in Sec. III C,
this form of the correlated density equation would

be suitable for approximate solution. When we in-
troduce a decoupling approximation for the higher-
order correlated density matrices C" and C

Eq. (42) is simplified to an equation which includes
only C~' as a var iable. Since the physics for the
correlated density matrix may be different from
that for the total density matrix, the decoupling
approximation for the correlated density equation
may be different from that for the density equation.

The first-order density equation also gives the
correlated density equation via a similar pro-
cedure. The resultant equation is a necessary
condition that the exact correlated density matrix
must satisfy. It is given by

J

�[
X]'](1; 23) —E]C de dx~ = 2r(N —1)(N- 2)E""po,

(43)

corresponding to Eq. (37), and by

( (tl-E]c"' ~ 2fl.(3), (1, 2)]rw'3*

+3 se 2, 3 C' dx, dx, =Eo"'p, 44

corresponding to Eq. (42). The reduced Hamil-
tonian 3C(2 (1; 23) in Eq. (43) is given by Eq. {29).
In comparison with the second-order equations
(39) and (42), these first-order correlated density
equations have much simpler forms, and the
variable is only C' instead of C @.

Some interesting properties of the correlated
density matrix C are derived from those of the
total density matrix I'. From the N-representabi-
lity conditions (d} and (e}, we obtain the following
conditions for C: We define ~C~ P-particle single
determinants

4 (I, , P)=(p]) '"det[f, (I) f (2) . I (p)}

(45)

composed of the occupied HF orbitals i=cp, given
by Eq. (34). I denotes a set of integers,
2y & i, & ~ ~ ~ & i~. Using these s ingle determinants,
we rewrite the HF density matrix I',~] of Eq (30).
as'

N

rv1(t 3 ]1" 3)=$3;(2', . . . , 3')2, ((, . . . , 3),
(46}

which is a generalization of Eq. (31}. From Eqs.
(22), (36), and (46), conditions (d) and (e) give
the following condition for C~':

—I- & Ad 1
c"'y,*) 0, (47)

where

&y, lc"'yP& = y, (I', . . . , P')c"'(I "P'l l P}

x(t) (1, , p)d,' ~ ~ ~ d ' d, . ~ .d
The left-hand-side inequality is due to the posi-
tive semidefinite condition (d). Similarly, for the
P-particle single determinant Q~ which is ortho-
gonal to all of the (P, {I= 1, . . . , „C~ ), given by Eq.
(45), we obtain

0 & ~ lC(d]~3, ) (I (48)

(49)

Such (pr(1, . . . , p) are constructed from Eq. (45)
by replacing one, two, etc, occupied orbitals with
the unoccupied orbitals. The sum of the sets l (P,}
and f (Pr} forms an orthonormal complete set.

Since the correlated density matrix C is Hermi-
tian, we can define the functions fq;}, which dia-
gonalize C, as

c'"(I' "p'll" p) =g];~;*(I', . . . , p'), (I, . . . , p).



EQUATION FOR THE DIRECT DETERMINATION. . .

The functions [q,) may be called "natural cor-
related P functions. " They form an orthonormal
set (complete if we include functions belonging to
eigenvalue zero). The eigenvalues ix, may be posi-
tive negative or zero (y, «p, « ~ «0 «p, .

~ ) but the sum satisfies

from Eq. (SV). From Eqs. (47) and (48), we obtain
the inequalities which the natural correlated p
functions shouM satisfy. They are

Since ~(Q„q;) (' is positive, the inequality (51) sug-
gests that the natural correlated p functions having
negative eigenvalues would have large ovex'lap with
the HF (occupied) p functions P,. %hen P =1, the
functions xi, (I) may be called natural corx elated
orbitals, and the HF functions P, and P» are
simply the HF occupied orbitals y; and ~, x'e-

spectively. By R similar argument, %'8 expect
from Eq. (51}that the natural cox'related ox'bitals
having negative eigenvalues would have large over-
lap with and therefore resemble the HF occupied
orbitals p; Gl their px'Oper unitary transformation.
These propex'ti. es of the natural correlated functions
may be of value for the description of the cor-
relation effects. Inserting Eq. (49) into our corre-
lated density equation [e.g. , Eqs. (89) or (42)], we
can derive the equation which determines the
natural correlated p functions and orbitals.

ber of particles of the system. %8 hope that the
density equation may give a simplified procedure
dealing %'1th N-electron systems to which the
Schr6dinger equation is difficult to apply.

When we impose simultaneously the complete
N-representability condition, if known, every solu-
tion of the density equation must be exact, i.e. ,
identical with the one obtained indirectly from the
SchlMlnger equRtlon. Even lf we impose Only in-
complete and tx actable N-representability condi-
tions, Rs is possible Rt pl esent, the equRtlon gives
a unique exact solution in the N-representable
space, ~3 although it may possibly give, at the same
time, some unphysical solutions ln the Qon-N-re-
presentable space. The rest of the S-representa-
bility conditions may be used for selecting the cox'-
rect soluti. on. Mox cover, the density equation
wox'ks, to some extent, to restrict its solution in
the N-repr esentable space. 'Zhus we can expand
our space somewhat fx'om the N-representable
space without getting unphysical solutio~s. These
properties of the density equation wou1d be useful
in comparison with the variational principle for

«E(I h) )
When we have the Hartree-Pock solution, which

ls Rn Rppx'oxlmRte solution of the fix'st-Older den-
sity equation, the density equation is transformed
so that the correlated density matrix and the cor-
x'elation enexgy are the direct solution. The cor-
related density equation thus obtained is suitable
for the study of electx'on correlation. The natural
correlated functions and orbitals which diagonalize
the correlated density matrices have px'operties
which may be of vatue for the description of the
correlation effects.

In this paper, a nonvariational equation ls px"o-

posed fox' the Di/ectdetermination Gf the deQslty
matrix without using wave functions. The equation,
CRBed the density equation, is connected with the
Schr5dinger equation by the necessary and suffic-
ient theorem. It gives the density matrix and the
associated enex'gy which co'decide %'1th those Ob-
tained indirectly from the Schr5dinger equation.
The equation may therefore be coQsldered Rs glvlQg
a projective of the SchrMinger equation onto the
fewex'-pal tlcle space. The equRtlGQ fol the 10%'est ox'-

der depends exphcitly only on the fourth-Order den-
sity matrix F 'X (or I'"i in the special case) and not on
the higher-order density matrices. The equation
is applicable to both fermion Rnd boson systems
Rnd to both ground Rnd excited stRtes. In conti Rst
with the Schr5dinger equation, the labor of solving
the equation does not incx'ease with increased num-

I would like to express my gratitude to Professor
R. G. Parr for encouraging discussions and hospi-
talities while I was at the University of North
Carolina. I would also like to thank Professor T.
Tonezawa fox' continuous lntex'est 1Q this wox'k, RQd

Professor K. Fukui, Professor H. Kato, Px'ofessor
H. Fukutome, and Professor S. Aono for useful
dls cuss lons.

Hex'e we show that the first-ordex' density equa-
tion for two-particle systems is also a sufficient
conditon fox the hidden 4 to satisfy the Schr5-
dingex' equation, if the natural orbitals g& of p
having nonzero eigenvalues form a complete set
in the one-pax'ticle space.

Using the expRQslon theorem of Carlson RQd

Keller, " the wave function in Eq. (9) for n = 1 is
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expressed as 4(12)=-(H-E)+ =g u, X (1)f (2) (A2)

(A1)

where A.,' is equal to the occupation number of X;.
By assumption, A., WO for any i which runs to in-
finity [the rank of p(1'~ 1) is infinite]. The dual
functions &; are in general the natural functions
of I' " ' and they correspond to the different
choice of the natural orbitals in the two-particle
case." As given by Smith, the N representable
p(1' (1) of an even-N-electron system has at least
twofold degenerate eigenvalues. Thus by assump-
tion both X&(l) and «(2) form complete sets, and

we can expand (H —E)4' as

inserting Eqs. (Al) and (A2) into Eq. (9) for n= 1,
we obtain

(4, (H —E)4), = — X,a&;X;*(1')X,.(1)=0.

(A3)

Since (X;(1)j is linearly independent, the product
[X,*(1')X,(1)j is also linearly independent. Then
Eq. (A3) gives X;a&; =0 for any f and j. Since all
A.; are nonzero, by assumption, we obtain a&; =0
for any i and j. Therefore Eq. (A2) becomes
(H —E)C =0, which proves the sufficiency. " The
necessity is evident from Eq. (9).
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