
PHYSICAL REVIEW A VOLUME 14, NUMBER 1 JULY 1976

K-MM radiative-Auger transition rates for argon
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We present the results of the first calculation of the spectral distribution of emitted photons
following K-MM radiative-Auger transitions in the free argon atom. The calculation is
based on second-order perturbation theory, and the total transition rate found to be "-.68
x 10 ~/h eV, or 4% of the calculated Kp& 3 rate of 6.7 x10 /h eV. The calculated rate and
photon spectrum agree fairly well with the experimental data of Keski-Rahkonen and Utriainen.
Difficulties which preclude a direct comparison between theory and experiment are discussed,
especially the effects of the spectrometer response function on the experimental data. The
need for more high-resolution data is emphasized.

I. INTRODUCTION

The radiative-Auger process is thought to be
responsible for some of the observed structure
on the low-energy side of ordinary x-ray emission
lines. ' ' In this process, the filling of an inner-
shell vacancy by a less tightly bound electron is
accompanied by the simultaneous emission of a
photon and excitation of another electron into a
bound or continuum level of the atom.

Thus far, two calculations of the total transition
rate for the radiative-Auger process have been
presented, but none of the partial rates into the
possible different final states of the system or the
detailed spectral distribution of the emitted pho-
tons. Bloch, ' who first postulated the existence
of the radiative-Auger process in order to ex-
plain the continuum observed by Bloch and Ross
on the low-energy side of the KP, of molybdenum, '
estimated on the basis of Richtmyer's double-jump
theory' the total radiative-Auger transition rate
for the special case where such transitions re-
place dipole forbidden transitions. More recently,
0
Aberg' has shown that the simultaneous emission
of an x-ray photon and electron can accompany
dipole allowed transitions as well, and attributes
the process to the change in the average potential
acting on the electrons in the atom when the
inner-shell vacancy moves to an outer shell
(shakeoff), and to the interaction between single-
and double-hole configurations in the final state
(configuration interaction).

In this paper we present the first detailed cal-
culation of the spectral distribution of photons
emitted in the radiative-Auger process. The cal-
culated spectrum is for the K-MM radiative-Auger
transition in the argon atom, and the total rate is
obtained by summing over the individua, ' transition
rates. In our approach, we explicitly treat the
atom and the radiation field as one system, and

consider transitions from one state of the atom
to another due to the interaction between the two

systems. This is the usual way of dealing with
the familiar radiation processes such as emission
and absorption. While the calculation of the tran-
sition rate for these processes is carried out to
first order in perturbation theory, the calcula-
tions of transition rates of more complicated
radiation processes, e.g. , scattering of a photon

by an electron, or processes involving more than
one photon, etc. , require higher orders in per-
turbation theory and proceed via intermediate or
virtual states. ' We consider the radiative-Auger
process an example of a more complicated radi-
ation process, and calculate its transition rate in
second- order perturbation theory.

II. THEORY
A. Previous approaches and calculations

Thus far, two calculations of the total transition
rate for the radiative-Auger process have been
presented. The first was developed by Bloch, '
and although it was only an estimate of the order
of magnitude of the effect, we discuss it in some
detail to show that it is in a sense a forerunner
of the present and Aberg's' calculations. The
estimate was base 0 on Richtmyer's double- jump
theory, ' which attributed the existence of x-ray
satellites to the simultaneous transition of tzvo

electrons in doubly ionized atoms produced in
the initial excitation process. Bloch considered
the radiative-Auger process in two steps, treating
the creation and filling of the two vacancies sep-
arately. The calculated transition rate was given
by the product of the probability for the simulta-
neous ejection of an outer-shell electron from an
atom owing to the sudden removal of an inner-
shell electron, and the probability of a simulta. —

neous transition, accompanied by the emission of

363
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a photon, of two interacting electrons to the two

unoccupied levels (inner- and outer-shell vacancy).
The initial and final states of the two electrons
undergoing the transition were taken as

UO

u. (1)u.(2) + ™~I~a
u„(1)u (2)

6~+ 6

and q =u (1.)u (2), where u, is the unperturbed
single-particle state of the atom with correspond-
ing single-particle energy q, and the sum is over
unoccupied states. The probability that an outer
electron is excited following the creation of an
inner- shell vacancy was given by

2

6=1- u 'u dT

transitions accompanied by photon emission in
which an outer-shell electron in orbit nl jumps
to an inner-shell vacancy npl p and another outer-
shell electron in orbit n'l' is simultaneously ex-
cited into a bound or continuum sta.te @7[Fig.
1(c)]. The energy of the emitted photon is h&u

=I„, —I„, „„,—e, where f„, is the neo ioniza, -
tion energy of the neutral atom and I„,„, is the
energy of the simultaneous ionization of the two
electrons nl and n'l' from the neutral atom. Sep-
arate self-consistent-field (SCF) equations are
solved for the initial (nolo)

' single-hole state and
for both the single-hole (nl) ' and double-hole con-
figuration [(nl) '(n'l') ']E/ final states T.he final
state is taken as a linear combination of both
single- and double-vacancy states, i.e. ,

where u, "and u, are single-particle states in an
atom with nuclear charge Z+1 and Z, respective-
ly. The radiative-Auger rate W&, was then esti-
mated from

2n, g&li'n=
@

IMI', 1 P(E~)

where g is the number of equivalent electrons
occupying level b, p(E&) is the density of final
states available to the ejected photon and electron,
and M= (g&l (e/mc)p, A(r, ) l g,) is the matrix ele-
ment for the process. No detailed calculations
were presented, and only an estimate of the total
radiative-Auger rate was given for the special
case where such transitions replace dipole for-
bidden transitions.

Apart from calculational details (e.g. , the Cou-
lomb potential v =e'/r„was expanded in only a
few terms in one of the electron's coordinates
and all exchange terms were neglected), Bloch's
expression for the radiative-Auger rate is very
similar to the the one that would be obtained if the
effect were treated as a polyelectron phenomenon
and the rate calculated in the sudden approxima-
tion "'"

This brings us to the only other, more complete
calculation of the total radiative-Auger rate, based
directly on the sudden approximation and developed
by Aberg. ' The basic idea of Aberg's approach is
that the orbitals of all the electrons in the atom
rearrange as a result of the change in the average
potential acting on the electrons when the x-ray
hole moves from the inner to the outer shell and
gives rise to photon emission. Those bound elec-
trons which have velocities small compared to the
propagating hole suffer a 'Sudden" perturbation
due to the change in the screening of the nuclear
charge and may undergo transitions to excited
states.

Specifically, Aberg considers double electron

sI nI,~or

el
n'I'

nl

n'I'

nJO ~n, l, —2)—nOIO

(a) (b) (c)

FIG. 1. Schematic representation of (a} radiative,
(b} nonradiative or Auger, and (c} radiative-Auger
processes, illustrating the notation used to designate
quantum numbers that characterize the states of inter-
est.

j%2

where the functions P, and P,- as well as the initial-
state wave function are Slater determinants built
up from separate SCF orbitals. The spontaneous
dipole transition rate between initial and final
states of the atom is then evaluated. In atomic
units, this rate is'

A;~ = —,
' n'g, .'E', ~S,~,

where o. is the fine-structure constant, g, is the
degeneracy of the initial level, and E,.&=E,. —E&
is the energy of the emitted photon. S,&

is given by

gr, a
ag b j=l

and the summation is carried out over the degen-
erate initial and final states a and b. The dipole
matrix element in S;& gives rise to two terms (in
the lowest nonvanishing order in both overlap
elements (ln, ln, f,) and mixing coefficients U, J)
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so that both shakeoff and configuration interaction
in the final state give fix st-oxder contributions to
the radiative-Auger transition probability, with

the corresponding transition amplitudes either
adding or subtracting. The calculated probabilities
A(K I.')-and A(K-M') of x ray emission accompa. —

nied by simultaneous excitation of an electron to
any of the excited «p(s) states are divided, re-
spectively, by the transition probability of the
normal (ls) '- (2P) ' and (ls) ' —(Sp) ' x-ray lines
to give the relative shakeoff probabilities P(K-I )
and P(K M'), w-hich are then calculated for a,

number of elements. In this calculation it follows
directly that radiative-Auger transitions can ac-
company allowed dipole x- ray transition.

B. Present approach

We consider an N eeltcr ona-tom (atomic number

Z) with an inner-shell vacancy already created and
the radiation field as one system. The Hamiltonian
for this system (neglecting the usual l. S, A',
eic. terms) is given by

E @2 g 2 g 2

H= — &; — — + +H, + K A
2&2 Xi 2(g Y2$ 2 I

where the first two terms in the Hamiltonian de-
scribe the atom, H„„is the free radiation field,
and the last term gives the interaction between
the atomic electrons and the xadiation field, i.e. ,

Q'Ic, (A) = Q 2 [p, .A(r,.)+A(r,.) p,.]. (3)
i"-I i =I 2' C

%e assume that an N- electron single-particle
separable Hamiltonian approximates the atom

p....- Q
"

v*,.
".v"ir, j)m

and hence Eq. (2) can be written as H =H„, +H„„
+ H~, where H~, the perturbing Hamiltonian for the
system, is given by

g 2 N

V"(,.) g X,.(A), (5}
i&j iJ i 2=I

and where V"(r;) is some (as yet unspecified)
central field. The unperturbed wave functions of
the system Hatom+ Hrad ar
particle wave function describing the state of the
atom and a function describing the free radiation
field. The wave functions of the free radiation
field are given by'

@(f) e istlh II i! e istlhq

and ax'e characterized by the nuxnbex' of photons
n„, each of a given energy, polarization, etc.

present in the field. The total energy E of the
radiation field ts E =2 n 8(d.

The many-particle states of the atom which is
approximated by the model Hamiltonian (4} can be
represented by Slater determinants constructed
from the solutions P„, , (r, , a,.) of the single-n I -222is&

particle Ham iltonian

, (r, ir,.), (6)

where the q„, denote the single-particle energies.
The Slater determinant is given by

4a a(rishi " r~&~)=8(&a(1}" 0a(&)},
where 8 is the antisymmetrization operator
Q=(I/WN!)Z~( l)~P-." In Eq. (7), the set of
single-particle quantum nuxnbers n,.l,m,.s,. of an
electron with position and spin coordinates r,.oi
is denoted by k, , and r,.o,. by (i), and the sum in
the operator 6 extends over all permutations P
of the standard ordering 1,2, . . . ,X of the set of
electron spac and spin coordinates. The Slater
determinants of order X eonstrueted from the
single-particle states P, (i) which a,re the solu
tions of Eq. (6) form an antisymmetic, ortho-
normal, and complete set of eignefunetions. "

The Schrodinger equation for the unperturbed
system of atom plus radiation field is

(H„, + FI„,)&f&,,. ., i!t...„....
-&a "~-~" "@~".a i!'" . , (g)

I N & I

N

"~ ~"n " = &y+

The ground state of our noninteracting system (8)
is approximated by $~ ...~ ...P...„..., where the
N electrons are distributed among the single-par-
ticle states k„k„.. . ,A„which are ordered so that
the most tightly bound state is k„ the next 0, ,
etc. , until all N single-particle states are popula-
ted sequentially, and in g...„..., all the n„'s are
zero. Excited states Q, ..., ...P...„,... are ob-
tained by promoting any number of electrons from
the occupied states k„k„.. . , k~ to unoccupied
states l, and by populating the radiation field
with the desired number w„' of photons of a given
description. (In actuality, in forming excited
states of the system, the maximum number of
promoted e/ectrons wQl be two, and the nuxnber
of photons either zero or one. )

The above is the starting point for the calcu-
lation of radiation processes, and transitions
from one state of the atom to another result from
the interaction Hi [Eq. (5)] between the atom and
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radiation field. The transition probability for any
given radiation process, whether simple emission
or absorption or a more complicated process, can
be obtained readily. ' However, before calculating
the radiative-Auger rate, we first consider how

the usual radiative"" and radiationless" tran-
sitions involving deep core levels can be obtained
in this framework.

1. Radiative transitions

In the ordinary radiative transition, a deep
inner-shell vacancy (ng, ) is filled by a less tightly
bound electron (nl) and the liberated energy is
carried away by an emitted photon [Fig. 1(a)].

The initial state IiO„) which describes the excited
atom and unexcited radiation field can be written

IiO„& = fl(4, (I) . P„,(t) ~ ~ y, (N))i!, , (10)

and th«inal state If, 1„), which describes the
deexcited atom and excited radiation field, is

If, 1 &=if(@,(I) . A„...(t) 0 „(N))0 . (11)

(In the wave function describing the radiation field
we have set all the n„'s equal to zero except those
describing the photon of interest, in which case
n„ is either 0 or 1„.) The matrix element of the
interaction Pz[Eq. (5)] between the inital and final
states given by Eqs. (10) and (11) reduces to

m(1) n j„(t) ~ ~ m„(N), 1„(g 3c,. (A)v'N! Q
I g, (I) ~ ~ nl (t) ~ ~ k„(N)0„&.

j=l
(12)

In obtaining (12), we have made use of the fact
that H~ commutes with the antisymmetrization
operator 8, 8,'=V ¹&8,"and the terms inthe inter-
action III which do not depend on the electro-
magnetic potential vanish between states differing
by the number of quanta present in the radiation
field. The matrix element (12) vanishes for final-
state wave functions which differ by more than
one single-particle state. Consequently, in this
approximation, all the remaining N- 1 electrons
remain in their single-particle orbits. Expression
(12) reduces to &n, lol„(X(A) Inl0 ), so that the
spontaneous emission transition rate in first
order of perturbation theory is given by the fam-
iliar expression'

and the final state, since no photon is emitted, by

= fl(0, (I) A...,(P) 4, —, (q) 0 „(N))t!. .

(15)

Because of the orthogonality of the single-particle
wave functions used to construct the Slater determin-
ants, the only final states (15) which give nonvan-
ishing matrix elements of the interaction Hz [Eq.
(5) J are those that differ from the initial state
(14) by the two-pa. rticle states involving electrons
p and q. The terms in HI involving single-particle
operators or the electromagnetic potential vanish
by the same arguments as above. The terms that
survive are

Iv„g „q——(27l/ri) ( &neo, 1„(K(A)Inl, 0„)('p(Ey),

(13)
where p(Et) is the density of final states ava, ilable
to the emitted photon, whose energy, according
to Eq. (9), is hm = a„, —e„, .

Z. Radiationless transitions

&f0„(H~(i0„& = &nj,pit (e'/r„) I@in'1'&

—&n,l,ql( (e'/r„) In'l'nl&.

If we denote the right-hand side of Eq. (16) by

&n,l,el
(
(e'/r»)

I
nln'l'&„,

(16)

Similarly, we can consider nonradiative or
Auger transitions in the above framework. In a
nonradiative transition, a vacancy in the nplp

inner shell is filled by an electron from the nl
orbit, and simultaneously, an electron is excited
from orbit n'l' to &l, typically in the continuum
[Fig. 1(b)]. In this case the initial state of the
atom and radiation field is described by IiO„),
where

Iio„&

=!2(@„(I) ' ' A„g(P)' ' ' 0;) (e)' ' ' Ag„(N))40„~

(14)

we get the Auger transition rate in first order of
perturbation theory":

W oo tfl, e g

= (2v/") I &noioef
I
(e'/r»)

I
nln'I'&~ I'p(Et) (17)

where p(E&) is the density of final states available
to the ejected Auger electron of energy & =E&, and
again from Fq. (9), Ez =—e=&„,+e„., —e„, . In
this approximation, the electrons not participating
directly in the transition remain in their single-
particle orbits. Equation (17) is known as
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Wentzel's ans3tz'"" and is the starting point for
calculations of nonradiative transition rates. "

After a radiationless transition fills the single
inner-shell vacancy, the atom is left doubly
ionized in the inner shells. The states of such
nearly- closed- shell configurations with two holes
can be expressed in terms of completely- closed-
shell configurations together with the correlated
two- electron configurations. '"" In LS coupling,
the electrostatic energies are the same for the
two systems. The initial and final states can
therefore be represented by the two-electron con-
figurations correlated to two-hole configurations
that consist (initially) of one inner-shell vacancy
and one hole in the continuum and (finally) of two

inner-shell vacancies. In LS coupling, for an

appropriately normalized electron continuum wave
function, the total transition probability into all
possible states of L and S for a given configuration
of the atom xs"

given by

(19)

x 5(E~ —E;&, (21)

(20)

The matrix element of the perturbation H, [Eq.
(5)] evaluated between such unperturbed states of
the entire system vanishes in first order. In

second order of perturbation theory, the transition
rate is

2v ~ &f 1„I8, I«'„)(«'„ IH~Ii0„&

W' =
(2S+ 1)(2I, + 1)

2(2l, + 1)

—(ng„l;@ST
I
(e'/r„) Inl, n'I', SL&

3'. Radiaiive-Auger transitions

We consider radiative-Auger transitions in free
atoms, and restrict ourselves to cases where a
single inner- shell vacancy results in the excita-
tion of an electron and emission of a photon. Spe-
cifically, we consider processes involving elec-
tro~.s initially in single-particle states nl and
n'l' and finally in ng, (initial vacancy) and nzf&
(either bound or in the continuum) accompanied
by an emitted photon [Fig. 1(c)]. The initial and
final states of the atom plus radiation field are

where n and n'„are summed (or integrated) over
all intermediate or virtual states, and E„, E, , and

E& are the unperturbed energies of the entire sys-
tem in the intermediate, initial, and final states,
respectively. The summation indices n and n„ in
Eq. (21) denote different intermediate states of the
system for which the N electrons populate single-
particle states n„. . . , n„, and the radiation field
is characterized by the presence of -n'

photons of each description. The intermediate
states I«„& which will give nonvanishing matrix
elements are of the form

where g„. has the same meaning as in the above
discussion of radiative transitions. The matrix
element («„' IffzIi0„& is then

QK (A))IN!!)I),,(() ((() . '!'(q)' 0„()();0 ) .

In (23) the only terms that survive are those that involve intermediate states with the bra that are identical
to the initial state or differ from it by only one- and two-particle states. Expression (23) then reduces to
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provided we make use of the following:

g &n, , [{e'/~„)ln, a,&„=&n,lv" ln, &.
"j

In calculations of the ground-state energy of an
atom,

(25)

(28)g & ...I("/ „)l.,L,&.=&., tv"j~,&

nj

defines the Hartree- Fock potential. " In our case
we do not take the Hartree- Fock approach direct-
ly, since it is not designed to provide a complete,
orthogonal set of functions such as that given by
the Slater determinants constructed from the
single-particle states of the model Hamiltonian
(4). Nevertheless, the approximation given by
Eq. (25) formally amounts to the Hartree-Fock

approach, and we can therefore choose for V"
the Hartree- Fock potential, or a single-particle
potential which approximates the Hartree-Fock
potential. This potential can then be used to gen-
erate single-particle states from which al/ the
required many-particle wave functions (Slater
determinants) a,re constructed.

Evaluation of &fl„ lffilnn„'& yields an expression
similar to (24), which multiplied by (24), divided
by the energy denominator E„-E, , and summed
over all intermediate photon states n'„results in
the following expression for the radiative-Auger
transition rate:

Wq,
—(2w/h) W(ng„nqfq, 1„;sf,n'L', 0„)5(E,. —E~),

(2L)

W[n, f„nqfq, 1„;nL,n'L', 0„]=
nW{n l ), {nl )

nq

2

&n. f.n&L& j (e'/~») )n,n. &„&n~,1„lZ', ,z,.(A) lnfn'L'0„&
~~+~~+@~- &nl —~n l

nj, 4{nl ), {n*l')

(n, L~ L l„jg, ,x, (A) In~,o & &n~, l
(8'/r„) lnfn'L'&„

&p+ 6

The summations in (28) extend over all unoccupied
single-particle states to which the electrons are
promoted, with the unavailable states as noted.
This expression for the radiative-Auger rate has
the following interpretation: Consider first one of
the terms in the first summation in Eq. (28); an
electron in one of the initial single-particle states
interacts with the electromagnetic field and makes
a transition to an intermediate state, where it
interacts with the other electron (still in the in-
itial single-particle state) via the Coulomb inter-
action. As a result of this interaction, one elec-
tron jumpst to n, fo (the initial vacancy) and the
other to n&L& (the final single-particle state of an
excited electron) and the process is accompanied
by the emission of a photon of energy h{d. The
direct and exchange processes representing terms
in the first summation in (28) are shown schema-
tically in Figs. 2(a) and 2{b). Similarly, the terms
in the second summation represent two electrons
initially in the single-particle states nl and n'I'
which interact via the Coulomb interaction, one
electron scattering to an intermediate state, the
other to, say, Splp The electron in the inter-
mediate state interacts with the electromagnetic
field and makes a transition to nfl&. The process
is again accompanied by the emission of a photon
of energy h~. The direct and exchange processes
are shown schematically in Figs. 2(c) and 2{d).

The square of the sum of all the terms partially

nflf
Or

elW)
--- '"-- n I

+~

nf lf

el
'Ahh~

-- nlPP

n' I'

nl

(a)

n, lo

nf I)

el
'VA~
n I AUD

or
eI
VM~

-- n IPP

n'I'

nl

n' I'

nl

nolo

({:) (d)
FIG. 2. Schematic representation of the various terms

in the expression for the radiative-Auger transition rate
[Eqs. (27) and (28)]. (a) and (b) correspond to the direct
and exchange terms, respectively, in the first sum of
Eq. (28), (c) and (d) to direct and exchange terms in the
second sum. The wavy line represents the Coulomb in-
teraction between electrons, and nP& designate the
quantum numbers of the intermediate state.
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represented in Fig. 2 (between initial and final
states of the system that satisfy conservation of
energy) is shown in Fig. 1(c), and corresponds
to the radiative-Auger process. In this approach,
just as for radiative and nonradiative transitions
discussed above, the electrons not participating
directly remain in their single-particle orbits.

In order to get the transition probability per unit
time, Eq. (27) has to be multiplied by the number
of states per unit energy interval p(E,)availa. hie
to the system and integrated over all energies E,
The number of states dN is p(E, ) dE„and this

can also be written as dN = dÃ, dN„, by analogy
with P decay, "where dN, and dX„are the number
of states available to the emitted electron and
photon, respectively. Now dN, and dN„are given
by p, (E,) dE, and p„(h(d) d(k(d), where p„and p,
are the number of states per unit energy available
to the emitted photon and excited electron. Thus

6(E& E;) -p(E, ) dE, =5(E„., + &+8m& —e„,—e„,, )

x p, (e)p (h(d) dad(K&u), (29)

and the transition probability 8'&, is

W(ng, n~l~, 1;nl, n l, o )p (6„(+t„)- s„( —I„( )
nylon

F. +g y g~6

p f '' ((( g «,),„(;,n),(0) ''p(,e„,+c„., —r., , -a)p. (c)dr.
l~ P

To obtain Eq. (30) we have made use of the relationship

f
. ()0 C

f xg ~ ~-x-p dxdy= xgc —x dx,

(30)

which can be verified using the Heaviside function representation of the Dirac 5 function. "
The first sum in Eq. (30) represents transitions of an electron to bound states of the atom, and the sec-

ond sum represents transitions to the continuum.
In order to calculate the radiative-Auger rate explicitly, we proceed as in the Auger case discussed

above, and evaluate the matrix elements in Eq. (28) between antisymmetrized and properly normalized two-
particle wave functions of total angular momentum J and projection M. In the I.SJM representation, the transi-
tion rate from an initial two-electron state of total momentum J„orbital angular momentum L„and spin Sp to a
final two-electron state of J, I., and 8 is obtained by replacing

W(n, f„nqlq, 1;nf, n'f', 0„)

ln Eq. (30) by

W(nol„n&l&, SLY;1 ~nl, n'l', SQQ, M„'0 ),
where

W (n,l„n, l, , SLJM; l„~nl, n'f', Sgp, M, ; 0„)
UO a nip n ls

L, ~ g'J'M'

UO, nplpnflf

alp, n l Wnl, n' l '
gt gt Jj~j

(n, l~,l, LSJM j (e'/~„) I n,f,n,l, L'S'Z'M')

(n, f,n, f,L'S'Z'M', 1 ~Z', ,3C, (A) ~nfn'f'L, S,Z, M, ; O„)
X

En l +&„ l + 8 —&nile —6„lPP ee

,&,.(A) In, t, n, f,L'S Z M', O„)

(n,t,n, f,L'S'M'
~

(e'/~„)
~

nfl'f'L, SgPS.) (31)
~n&l&+~n l

The matr ix elements of both the Coulomb and p ~ A interaction are evaluated between antisymmetr ized two-
particle states of total angular momentum J and projection M. The total radiative-Auger transition rate into
all final states of the system is obtained by summing Eq. (30) [with the replacement (31)]over all projections of
angular momentainvolved, over all L and S(commensurate with J) as well as the Jof the atom allowedbyangular
momentum selection rules, and averaging over initial states of the system.
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C. Comparison with previous descriptions of the
radiative-Auger process

We consider next the comparison of the present
approach with previous descriptions of the radi-
ative-Auger process. As discussed above, there
exist, at present, only two calculations of the
total radiative-Auger transition rate,"both of
which are based on the sudden approximation. In
what follows, we compare the present calculation
with the more recent, systematic, and more com-
plete work of Aberg. '

If we let P, (x„.. . , x„) describe the initial single-
vacancy state, and i()z(x„. . . , x„) the final single-
or double-vacancy core plus excited electron state,
then Eq. (1)of Ref. 6 and Eq. (1) of this paper fol-
low directly from the general expression for the
transition rate:

In obtaining Eq. (34) we ha, ve to remember that
we are treating the atom and radiation field as
one system. If we then approximate P,. 4, by

(35)

that is, if we expand the initial state (which is an
eigenfunction of the initial Hamiltonian of the
entire system) in terms of the eigenfunctions of
the final Hamiltonian of the entire system to first
order in perturbation theory, then for P 's and

4„, 's individually orthonormal,

0;= g (4.l4;)p. , (33)

where

(The initial and final Hamiltonians describe an
atom with one initial and one or two final vacan-
cies, respectively. ) The matrix element in (32)
can be written ((()& C, l Hl

l P; C „), where HI is
given by Eq. (5), since the matrix elements of
the Coulomb interaction and the single-particle
potential V"(r, ) vanish between wave functions
which involve a change in the number of quanta
present in the radiation field. Substituting Q;
[Eq. (33)] into the matrix element ($&C', l«zl P;4)0 )
gives

((( @,„lH l &f;@"„)

(34)

(32)

The functions g&, f, , and 4 „have the same in-
terpretation as given following Eq. (8), and in
Aberg's work, ' P, and g& are N-particle Slater
determinants constructed from single-particle
states obtained by solving the separate SCF equa-
tions for the initial (ngo), single-hole, and final
[(nl) '(n'I') ']&I and (nl) ' configurations. In the
sudden approximation, the eigenfunctions P,. of the
initial Hamiltonian are related to the eigenfunctions

Pf of the final Hamiltonian at the instant the per-
turbation is turned on by"

It follows immediately that

(C,~,.IH, I~,~..)

= (0 C' .IH
I 0;@.„)

(36)

,g (64,.1«,ls.~„.)(C.C„„I«,ls, c. )

The first term in Eq. (37) vanishes by the same
arguments presented in Sec. II B. Substituting (37)
into (32) leads directly to Eq. (21), the expression
for the transition rate in second order. This ra-
ther sketchy derivation shows that Eqs. (32) and
(21) are the same if one assumes that Eq. (35)
holds. The latter expresses the initial state of the
system in terms of wave functions which are eigen-
functions of the final or fully relaxed system and
considers, at least to first order, inte ra ctions be-
tween all the electrons and the electromagnetic
field. Thus in the above sense the present ap-
proach and the approach based on the sudden ap-
proximation are theoretically equivalent.

With Eq. (21) as starting point in the present ap-
proach, and the condition that excited (and inter-
mediate) states of the atom can be constructed
from single-particle states of a model Hamilton-
ian, it follows that the electrons not participating
directly in the transition remain in their single-
particle orbits and serve only to generate the field
in which the participants interact. That one need
consider only correlations between the two partic-
ipating electrons greatly simplifies the problem
and enables one to calculate the spectral distribu-
tion of the emitted photon, something not readily
done with Eqs. (1) or (32) a.s starting points.
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III. K-NN RADIATIVE-AUGER TRANSITION RATE IN
ARGON

A. Wave functions

In this section we calculate the K-MM radiative-
Auger rate in the argon atom. Although there ex-
ist a number of spectra in the literature in which
the structure on the low-energy side of emission
lines is attributed to the radiative-Auger pro-
cess, ' ' we chose the experimental K radiative-
Auger spectrum of argon' as a test of our approach
and calculations because of its apparent complex-
ity of features.

In order to evaluate the K-MM radiative-Auger
transition rate in the free argon atom according to
Eqs. (30) and (31), some appropriate choice of sin-
gle-particle wave functions is required, i.e. , a
choice of V "(r,)has t.o be made in our model Ham-
iltonian (4). According to the discussion in Sec.
IIIB, the appropriate choice of potential is a Har-
tree-Fock potential or one that generates single-
particle wave functions that are quite similar to
those obtained from a Hartree-Fock potential.

We have calculated the radiative-Auger trans-
ition rates for bound states using screened hydro-
genic wave functions and corresponding energies"
in a preliminary check of Eq. (30). It was observed
that while the matrix elements involved were
somewhat sensitive to variations in the wave func-
tions (via the effective charge), the transition rate
and obviously the position of the lines were very
sensitive to the single-particle energies used.
Since a large number of wave functions and single-
particle energies are required, speed of computa-
tion is an important factor. In order to verify our
approach and compare the calculation with the ex-
periment, we have chosen to calculate the trans-
ition rate with single-particle wave functions de-
termined by a one-electron potential in an Ar' ion
obtained from a. scaled Thomas-Fermi (STF) ionic
charge distribution" where the scale factors are
chosen to make the one-electron binding energies
agree with experimental ionization potentials. [The
introduction of the scale factor corresponds to a
uniform dilation and contraction of the Thomas-
Fermi (TF) charge distribution which compensates

p

P„',(r) dr= 1, if e„, &0,
(36)

P(r) = cos[kr+5(r)], if k'k'/2m &0.

Enclosing the atom in a large spherical volume of
radius Rp that tends to infinity, the requirement
that the wave function must vanish on the boundary
r=Rp results in a density of states per unit energy
interval p, (e) for the ejected electron given by

2 2m '/'1.() =—„
where & is the electron's energy and m is its
mass.

B. Evaluation of the matrix elements

The matrix elements of both the Coulomb and

p X intera, ction were evaluated between antisym-
metrized, normalized two-particle wave functions,
which in the XSAM representation are of the form"

for all the omissions and approximations of the TF
model. ]

K and M binding energies for neutral argon'4 and
tabulated experimental Ar' and Ar" energy val-
ues, "'"tpgether with some Ar autpipnizatipn data
of Ogurtsov et al. ,

'"were used to determine the
scale factors in the STF ionic charge distribution.
In those instances where experimental energy val-
ues were not available, e.g. , the (3s) '(3p) 'nl Ar'
configuration, energies were extrapolated from
tabulated Ar and Ar'+ energies' " (energies with
asterisks in column 3 of Table I). (The STF wave
functions for the neutral argon atom agree very
well with Hartree-Fock wave functions. " The 3s
and 3p STF functions showed deviations from the
calculated Hartree-Fock functions very similar to
those shown in Fig. 3 of Ref. 23 for neutral kryp-
ton. ) Using these wave functions, the Kp, 2 emis-
sion rate (K-M, and K M, ) in-argon is found to be
0.0067 eV/8 compared to 0.0054 eV/1z calculated
with the relativistic Hartree-Slater theory. "

The bound- and continuum-state radial wave func-
tions R, (r) =P„,(r)/r, calculated in the STF field,
satisfied the usual normalization conditions":

g„(n,l„n,l~; SLJz11)= g (SMsLM~
~

JM) [p(n, l„nslSLM~)+ ( —I)'~'2 '
Q(n, l2, n, l,LM~)]X(, ,$31g, ——(39)

where

P(n I, nslsLM~) = g (l~m~lsms
~

LMz) Q, (1~m~)

x $2(lsms)R, (n l, )R2(nsls),

(40)

X(22S+ s) Z (2ms2ms ~SMs)K (ms@ (ms)&
mS mg

(41)

and Q, (l&zn&), R, (n&lz), and X;(ms) are the single-
particle angular, radial, and spin wave functions
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of electron j with quantum numbers n&, l, , m&,
and ply.

The evaluation of the p A matrix element in Eq.
(31) using the wave functions (39) gives rise to
four terms, each of the type

&n.f.n, f,I,M„1.
I Q x, (X) In„f„n,41,'M,'0„&,

where In f n()f()I,Mzo„) is a, product of Eq. (34) and
the function describing the radiation field. These
matrix elements can be calculated most conven-
iently be expanding the vector potential A. of the
electromagnetic field in K, (A) [Eq. (3)], in a series
of standing spherical @&aves about the origin. of a
sphere of radius z0.31 For dipole radiation the
matrix element of 3C((A.) between single-particle

states,

&n.f.m. l„Ix(X) In, f,~,o.&,

is given by

&n,f,m, l„I3o(X)In,f,m, o„&

BSHE)
1

=e
9 @ &„, —q„, n, ),rn, y'Y, n )~m, ,

p mj

and the density of states per unit energy interval
available to the emitted photon, p (k(d), is ~,/
eh'. " After some algebra, the matrix element
of the p A interaction in Eq. (31) becomes

&n, l,n, lpLJM; 1
I
'gz, (A) In, f,n,fp'I o'M', 0„)

ames
1O' J

= e 2 6aa, [(2J+1)(2J''+ 1)(2I + 1)(2I,'+ 1)]'~~(-1)s
9~,hc' S L«&„,—e„) n~l~ r n~/„ l~

l~

+'. "') '-»"'
l~ E,

(e...-~...)&n.f. II~II .f.& «. Ill' Ill.&

E, l~

(z„, -z„, )&~.z. (l(l~(l(l~z&&z. (l(lv, (l(lz.)), (43)

2 3 d j]. 22 23

ling

PE2 PE3 ~2 ~3

are the signer 3-j and Racah 6-j symbols, "respectively, and &nIICII p& denotes the reduced matrix ele-
ment of the operator C.'

The evaluation of the Coulomb matrix elements in Eq. (31) follows along similar lines. The Coulomb
interaction potential is expressed in terms of a scalar product of irreducible-tensor operators, "

=Z. ~„(~„~,)C.*.(fl,)C„.(fl,),
12

(44)

and the F„"'s are the spherical harmonics. Straightfonvard angular momentum algebra yields
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(n, l,n),l)LATM
~

(e'lr»)
~
n, l,n~l~L'S'J'M')

=e )-)) ' ' (Q)', ),l„ i, i„ ,i, i) (—i)- ' G,),i„ i,i„, ii) i, .1, i, n„„, ,
V

(45a)

where

F„(n,l„n) l)„n,l„n~l~, L) = (l, ~~C„~ l,)(l, ~C„ l~)
'

On, l, )
~
(n, l, ), (n, l, ), v, (n„l )},l, lq L

l„ l, v

(45b)

(45c)

Following the notation of Ref. 14, the radial matrix elements are denoted by

OO

((n l ) ~(n))l8), (n„l„),P, (nnl, ))= r', dr, Jl y~(r„r, )R„, (r, )R„, (r,)R„, (r,)R„& (r, )r', dr, (46)

C. E-Wf radiative-Auger transitions in Argon

. If we examine expression (31) and replace h~ in
the denominator of the first series of terms by

0~= C i+& ~ v-n n np p nf f &

which follows from conservation of energy in the
transition, the denominator becomes

+En„l„nztz nplp nf1f '

The matrix element of the p A interaction, [Eq.
(43)j gives rise to energy differences e„, —e„,

Ol Q P P
in the numerator, and since the values n, l, and

nf lf are exc luded from the intermediate states in
this case, the typically large single-particle ener-
gy e„, (K binding energy) which appears in the

nplp
denominator does not appear in the numerator
(This is not true for the second summation, in
which the n, l, and nflf values are not excluded from
n„l„and n, l„and e„, can appear simultaneously

0 0
in the numerator and denominator. ) Since the K
binding energy is always appreciably greater than
the binding or excitation energies of the other elec-
trons involved, one would expect the magnitude of
the first sum in Eq. (31) to be smaller than that of
the second sum, and hence the major strength of

the radiative K-MM Auger transition due to the
latter. That this is not unreasonable can be seen
from Fig. 2. Figures 2(a) and 2(b) depict the Cou-
lomb interaction between an electron in one of the
initial single-particle states and an electron in
some intermediate state n„l„ to which it has been
promoted following its interaction with the elec-
tromagnetic field. One would expect this process
to be much weaker than the one shown in Figs.
2(c) and 2(d), where electrons in very similar or-
bits first interact via the Coulomb interaction, a
situation analogous to the dominant first-order
Auger process.

In light of the above, we have neglected ia the
present calculation of the K-MM radiative-Auger
rate the first summation in Eq. (31). Substituting
Eqs. (43) and (45) into Eq. (31), and neglecting the
first summation, we find that the total radiative-
Auger rate from an initial state of the atom with
a K vacancy to a final state of an atom involving
two vacancies in the 3l and 3l' levels, an electron
promoted to nial~ (a bound or continuum level of
the atom), and an emitted photon of energy

S(d = E3~+ E3p —En 7
—61S

is, in atomic units,

4n3
W= P (2L+ 1) g E„(e»+e»,—e„, —e„)+is,n&l&, SL

~

3l3l'SOLO)
L, S nf if

7f
cg 3l 3l 18 f t f 0 0 I~ &&I2 (4 I)

where
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F,(n»/», 1s, 3/, 3/', L)+( 1) -~o'~G (n,/„1s, 3/, 3/', L,

f„g +&~

The summation over n»/» in Eg. (48) extends
over the same values as in the second sum in Fq.
(31), and the F, and G, factors are given by Eqs.
(45b) and (45c).

The transition rate W [Eg. (4'/)] was evaluated
numerically for a."yon on R PDP-10 computer,
wit~ the only input d ~ being the ~E and nE'of the
M sI1811 RQd the single-pc. ticle bindIng energies
of the electrons involved (se ' Sec. III A). Wigner
3-j and Bacah 6-j computer subroutines~2 selected
the possiMe final- and intermediate-state electron
angular mornenta, as w'ell as the possible final
L and 8 values of the atom, and calculated the
appropriate angular factors. All radial matrix
818IQents %'ere 8VRluated numerically with STF
wave functions generated by another eomputex
subroutIne bRsed on Ref. 23

In evaluating W [Eq. (4'/)], it was found that the
major contribution to the transition rate occurs
when the iQtermediRte states n„l„are the SRIQ8 Rs
ill or 'Pl l the initial single-pRx'tlcle states of the
electrons, a result similar to that observed by
Bloeh. ' Furthermore, the total rate did not change
Rppx'eclRbly when the summation ovex' intermediate
states contained bound states beyond 8for continuum
states, and hence the summation over these states
was terminated at 8f

A. Radiative E-NN Auger transition rate and spectral distribu-
tion of emitted photons

In Table I we pxesent the calculated txansition
rate for transitions in which an eleetxon is excited
into a bound state of the argon ion by the K-MJI/I

radiative-Auger px ocess. The fix st column shows
possible final configurations of atom and excited
electron vrith principal quantum numbexs m up to
n = 7. The energies of these transitions relative
to the KP, ,(e»-&„) line are shown in column 3.
These were obtained either dix ectly from optical
data'"" or estimated (entries followed by a.sterisk).

The calculated partial transition rates per unit
energy interval for electrons excited to continuum

states, evaluated at a nuQ1ber of energies of the
ejected electron, are shown in TaMe II. The en-
cl gles of the continuum thresholds relative to
the KP, , line, whi. ch are shown in column 4 were
obtained from Ref. 5 and are based on expeximental

LCM Auger energies" and Ar L, and M, binding

energies. " The more intense xates are plotted
versus energy in Fig. 3, wit the discrete transi-
tion rates converted to transition rates pex unit
energy interval owing to the finite lifetime broad-
ening of the initial level.

The effect of the finite lifetime of the K vacancy
is included by convoluting a Lorentzian line shape
whose width is that of the K level with the calcu-
lated transition xate. The K-level width in argon
(0.656 eV) was taken as the sum of the calculated
radiationless, "radiative, and radiative-Auger
widths, with the last two calculated using STF
wave functions. The intensity and width of the
calculated KP, , line are shown for comparison.
The resulting spectral distribution of the emitted
photon (transition rate per unit energy interval
versus energy), which is the sum over the indi-
vidual contributions shown in Tables I and II, is
shown 1n Fig. 4(a).

The totRl K-MM xadiatlve-Auger transition xRte,
summed over the possiMe contributions from
transitions to bound states and integrated over
contributions to excited states in the continuum,
is given in Table III. The total K-MM radiative-
Auger rate is 2.68 & 10~ eV/h, or 4' of the cal-
culated KP... rate of 6.7 x 10 ' eV//I.

8. Comparison with experiment

We compare our calculated results with the
experimental dRtR Gf Keskl-RRhkoneQ Rnd

Utriainen, ' who measured the K-MM radiative-
Auger spectrum in argon gas with a single-crystal
I.iF spectrometer whose horizontal divergence
was limited by a Soller eollimator. "

Keskl-Hahkonen Rnd Utriainen Rssoclated the
various features in the spectrum [dots in Fig. 4(b)]
labeled A, 8, ...with transitions from the initial
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(ls) "S state of the atom to the following K-Ms
final- state multiplets:

((3p} ', 'P, 'D, 'S)np or &p'P',

((3s) '(3P) ', 'P, 'P)ns, nd, or qs, gdsP';

((3s) ''S)np or &psP'.

On the basis of energies of these multiplets, ob-

Final- state
configuration

Transition Energy shift
probability from Kpf &

(«/&) (eU)

p P3/2, f/2

5p
6p
7p

(3P) D 4P P3/2 f/2

5p
6p
7p

(3p) "S 4p P3/2 f/2

5p
6p
7p

(3» "D 4f P3/2, f/2

5f
6f
7f

(3s) 8 4p P3/2 f/2

5p
6p
7p

(3s) '(3p) ''P 3d P3/2 f/p
4d
5d
6d

(3s) (3p) P 4s P3/2 f/2
5s
6s
7s

(3s) (3p) P 3d P3/2, 1/2
4d
5d
6d

(3s) (3p) P 4s P3/2 f/2
5s
6s
vs

0.378 (—4)
0.114 (-4)
0.035 (-4)
0.006 (-4)

O. 926 (-5)
0.286 (—5)
o.oov (-5)
0.002 {-5)
0.250 (—5)
0 ~ 072 (—5)
0.002 (-5)
(10 '

0.097 (-7)
0.112 (-v)
o.122 (-v)
0.063 (—7)

0.738 (—7)
o.251 (-v)
0.019 (-7)
0.006 (—7)

0.393 {—5)
0.045 (-5)
0.018 (—5)
0.011 (-5)

0.325 (-6)
0.175 (-6)
0.007 (—6)
(10-9

0.468 (—5)
0.083 (—5)
0.043 (-5)
0.010 (—5)

0.112 (-5)
0.057 (—5)
o.oo5 (-5)
0.002 (-5)

-19.9
—23 ~ 6
-25.2
—25.9

—21.4
—23.6
-25.3*
—26.1*

-23.8
-26.9*
—27.8*
-28.6*

-25.9
—27.2 +

—27.7 +

—28.5*

—48.2
—51.2
-52.2
-5,3.0

-36.2
—40.5
-42.3
—44.2*

—33.3
—39.1
—41.2
-41.6*

—32.6
—36.9
—38.7
—39.3
—30.1
—36.5
—38.6
-39.6

TABLE I. Calculated partial K-MM radiative-Auger
transition rates in argon for an electron excited into dif-
ferent bound states of the argon ion. The energies of the
K-MM radiative-Auger lines (relative to the Kpf 3 line)
either were obtained directly or were estimated (entries
followed by asterisk) from optical data, Refs. 25 and 26.
The notation A (n) means A &&0" ~

Sit, )za
(3p)-' S 4p iP„„„

Pwau a l1-4—

K (3S) '(3P) sP 3ff aP3i2

w 3 (3s) '(3p) 'P 3d sPsis

LLJ
1—+2—

100

(3p)-
I

(3p) (3s

0 r(
-70 -So -50 -40 -30 -20 -Io 0 Io

ENERGY SHIFT (eV)

FIG. 3. Calculated major K -jMM radiative-Auger
photon emission rates per unit energy interval in argon,
including effects of K-level width.

tained from optical data and measured .L-MM
Auger energies, the peak A is assigned to the
discrete transition

(1S) "S-((3P), 'P, 'D) 4P'P"

and peak B to

(»)-"S-((3P)-', 'S)4P 'P

((3p} ', 'P, 'D, 'S)np'P'.

The threshold energies for the continua are ex-
pected to begin somewhere in the valley between
peaks B and C. The feature C is thought to con-
sist of contributions from transitions to both the
continuum and discrete states, with the main
contribution from discrete (1s) ' S —((3s) '(3p) ',
'P, 'P)ns or ndsP' transitions. Finally, the fea-
tures D and E are interpreted as the onset of the
(1s}"S-(3s) '(3p) 'es, ed sP' continu a.

On the basis of our calculated partial rates [Fig.
3 (as well as Tables I and II)]we find that we com-
pletely agree with this interpretation of the K-MM
radiative-Auger spectrum. We find, however,
that the main contribution from discrete transi-
tions to the feature C occurs from (1S) "S-((3s) '
(3p) "P, 'P) 3d'P' transitions only, the ((3s) '
(3p} "P,P)ns transitions being quite weak.

In o.der to compare our calculated photon spec-
trum [Fig. 4(a) J with the experimental spectrum
[dots in Fig. 4(b)], the effect of the spectrometer
window function on the former has to be included
(or, alternately, the experimental spectrum cor-
rected for instrumental effects). If S(e) is the cal-
culated (or unmodified) spectral distribution plot-
ted against photon energy &, e.g. , Fig. 4(a}, then
the observed distribution at a spectrometer energy

1s
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S(Z) =
Jl S(&) W(e, t —e) de, (49)

where W(e, & —i) is the spectrometer window func-
tion. '"" The spectrometer window function in
this case depends on the horizontal and vertical
divergence of the beam incident on the analyzing-
crystal as well as the energy of the radiation
(Bragg angle). We have assumed a. triangular
window function W(&, e —C) whose base is given
by &e =2e(o.'+ —,p'tan8) cot8 (Ref. 36), where o. is
the horizontal divergence, P is the vertical di-
vergence, and 0 is the Bragg angle corresponding
to energy e. To simplify calculations of S(i) ac-
cording to Eq. (49) using the S(e) given in Fig. 4(a.),

we take &e to be constant (energy independent) and
corresponding to a value at the midpoint of the
energy range of interest (3.110-3.190 keV). The
horizontal beam divergence in the experiment
determines n, ' and the energy of the radiation,
together with the 2d spacing of LiF (4.01'73 A),
determine 0. Since no vertical divergence is
quoted in Ref. 5, we take Q =0. The resulting
geometrical-window- corrected spectrum is shown
in Fig. 4(b) (continuous curve). The experimental
data' (dots) and the above window-corrected cal-
culated K-MM spectrum (continuous curve) are
overdrawn on the same energy scale with the ex-
perimental KP, , peak normalized to the calculated

TABLE II. Calculated partial K-MiV1 radiative-Auger transition rates in argon per unit en-
ergy interval for an electron excited into the continuum. Energies of the continua thresholds
(relative to the ~& 3 line) were obtained from Ref. 5.

Final-state
configuration

Energy of
excited electron

(eV)

Transition
probability

(1/8)

Threshold shift
from KP& 3

(eV)

(3p) 2 3~

(3p) "D

(3p)-"S

(3s)-"S

(3s) '(3p) ''&

(3s) '(3p) ''Z

1.4
8.2

16.3
27.2
43.5

136.0

1.4
8.2

16.3
27.2

43.5
136.0

1 ~ 4
8.2

16.3
27.2
43.5

136.0

1.4
8.2

16.3
27.2
43.5

136.0

1.4
8.2

16~ 3
27.2

43.5
136.0

1.4
8.2

16.3
27.2

43.5
136.0

0 ~ 121
0.048
0.021
0.008
0.002
0.793

0.282
0.120
0.051
0.019
0.008
0.765

0 ~ 852
0.356
0.149
0.056
0.016
0.290

0.412
0.226
0.116
0.050
0.016
0.218

0.256
0.101
0.040
0 ~ 014
0.004
0 ~ 111

0 ~ 110
0.058
0 ~ 026
0.010
0.002
0.373

(—4)
(—4)
(—4)
(—4)
(-4)
(—7)

(-5)
(-5)
(-5)
(—5)
(—5)
(—8)

(—6)
(—6)
(-6)
(—6)
(—6)
(—9)

(—7)
(—7)
(—7)
(—7)
(—7)
(—12)

(-8)
(—8)
(-8)
(—8)
(—8)
(—9)

(—5)
(-5)
(-5)
(-5)
(-5)
(—9)

—27.6

—29.4

—31.6

—54.7

—41.5

—45.3
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TABLE III. TTotal -MM radiative-Auger transition rates in (10 ~ eV in a
ent final-state configurations. + den t b

r es in eV/8) in argon into differ-
ions. n eno es bound and & "ontinuum electron states.

Final- state conf igurat ion Transition probability

(3p) P +p P)(2 3yp

(3p} D +p Pg(2 3(2

(3p} "S"p P~&2, 3g2

(3p} "D ~f P~y2, y'2

(3s) S np P)y2 y2

(3s} ~(3p)"~ P nd Pg(2 y2

(3s) ~(3p) ~ 3P ms P&y2 3y2

(3s)"~(3p) ~ ~P nd P()2 y2

(3s) (3p) iP ns Pig; y2

(3p) 3P &p

(3p} "D ~p ~f

(3p) "S&p

(3s) ~S &p

(3s) ~(3p) ~ P&d, &s

(3s) ~(3p} ~ 'P &d, &s

Total bound

Total continuum

Total

0.436

0.122

0.033

0.002

0.001

0.061

0.017

0.047

0.005

0.725

1.130

0.320

0.093

0.005

0,121

0.287

1.956

2.681

EP, ~ peak.
If we compare our instrumental-window-cor-

rected spectrum (continuous curve) with the ex-
perimentai data (dots) in Fig. 4(b), we find that
qualitatively the overall spectral features can be
reproduced quite well, the only major difference
between the two being the apparent foreshortening
of the calculated spectrum. A detailed comparison
of theory and experiment is hampered by the lack
of knowledge of the exact form of the spectrometer
window function and experimental conditions under
which the data were recoxded.

The effect of the window function on the expexi-
mental spectrum is somewhat difficult to ascertain.
First of all, the width of the window function is not
constant but changes with energy by a factor of 2
over the energy range of interest. Thus the simp-
ilfying assumption of a constant-width window
function evaluated at the midpoint of the energy
range tends to underestimate this width at higher
energies and overestimate it at lower energies.
The effee e ect of such an enexgy-independent window
function on the spectrum in Fig. 4(a) is to enhance
the height of the "corrected" higher-energy peaks
such as peak A I Fig. 4(b), continuous curve] and
depress and smear out lower-energy peaks peak s

and E. Second, the effects due to vextical di-
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FIG. 4. (a) Calculated photon spectral distribution
emitted in the E -MM radiative-Auger process in free
argon. (b) Above spectral distribution m dif d b t '

angular spectrometer window function of angular di-
vergence quoted in Ref. 5 {solid line), together with
measured distribution (dots). Latter redrawn f R f

, an experimental KP& 3 line intensity normalized to
calculated KP& 3 line intensity.
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vergence are not negligible. Vertical divergence
tends to draw out the low-energy side of the
spectrometer window function. " Although the
extent of vertical beam divergence is not given
in Ref. 5, a spread of 1, not unreasonable for a
typical single- crystal spectrometer arrangement,
broadens the base of the window function by an
amount compa. rable to the width of the K level in
argon (0.66 eV).

Among the experimental details not discussed
in Ref. 5 is the presence or absence of background
radiation. Since the fluorescence spectrum was
induced by x rays generated by a chromium anode
operated at 50 kV and 36 mA, ' a considerable a-
mount of continuous radiation must have been
present. It seems to us therefore that an appreci-
able amount of scattered, or directly incident on
the crystal, bremsstrahlung radiation was una-
voidably passed along with the radiation of interest
at each spectrometer setting. That there was
some background radiation can be inferred from
the general appearance of the experimental spec-
trum at low energies [Fig. 1 of Ref. 5, and same
spectrum redrawn in Fig. 4(b) (dots) of this paper].
An estimated constant background count rate of 3
counts/sec, subtracted from the experimental
data, modifies the spectrum in the direction that
tends to improve the agreement between theory
and experiment.

The above discussion illustrates some of the
difficulties which preclude a more detailed com-
parison of the calculated and experimental spectra,
and points to the definite need for higher-resolu-
tion data. [A factor of 3 or so in resolving power
(X/n X-5000) in the data of Keski-Rahkonen and

Utriainen would have greatly simplified the com-
parison between theory and experiment. ] Con-
sequently, it is somewhat difficult at this point
to reach any definite conclusions regarding some
of the specific differences between the experi-
mental and window-corrected calculated spectrum
[especially on the low-energy side of feature C
in Fig. 4(b), since it is not clear if the observed
discrepancies are due to an overestimation of the
width of the spectrometer window function, the
neglect of the first sum in Eq. (31), or both].

The calculated total K-MM radiative-Auger
rate, which is 4% of the calculated KP, , emis-
sion rate, agrees quite well with the experimental-
ly observed ratio of radiative-Auger to EP, , in-
tensity of 0.05 (no error quoted) Sha. keoff and
configuration interaction predict V.3%.'

V. CONCLUSION

In conclusion, we feel that our calculation, which
is the first detailed calculation of the spectral
distribution of photons emitted in the radiative-

Auger process, reproduces the major portion of
the K radiative-Auger spectrum in argon, and of-
fers some detailed insight into the nature of the
radiative-Auger process. The calculation is in
a sense still preliminary, and a number of points
have to be investigated further. These include the
use of other wave functions, the effects of neglect-
ing some of the terms in the expression for the
transition rate, and the truncation of the summa-
tion and integration over intermediate states. The
investigation of these points, together with a more
complete calculation of the K-MM radiative-Auger
process in a number of elements based on the above
above approach, is currently in progress. (Pre-
liminary results, using single-particle energies
and wave functions obtained from solutions of a
Hamiltonian with a Hartree-rock-Slater potential,
indicate that none of the major conclusions will
ha.ve to be cha.nged. )

In our calculation of the radiative-Auger transi-
ition rate we used wave functions that approxi-
mated the fully r elaxed Ar' ion and Ar' experi-
mental excitation energies. While the matrix
elements in the transition rate are, relatively
spea.king, not too sensitive to the wave functions,
the calculation is very sensitive to the single-par-
ticle energies used, and single-particle energies
other than those of a fully relaxed Ar' ion (obtained
from experimental data) lead to spectra va, stly
different from that shown in Fig. 4(a). Thus core
relaxation plays a very important role in the cal-
culation of the radiative-Auger process, an ob-
servation also noted by Aberg. '

On the experimental side, we feel that there is
definite need for higher-resolution data on the
radiative-Auger process in argon. As discussed
in Sec. IVB, the comparison between theory and
experiment in the present case has been greatly
hampered by the unknown shape of the spectro-
meter response functions, the effect of which on
the observed spectrum is decidedly not negligible.

The reasonable success in reproducing at lea, st
qualitatively the general form of the radiative-
Auger spectrum in this case points to the potential
use of the radiative-Auger process in the investi-
gation of unoccupied bound states of various sys-
tems, including highly excited ions produced in
energetic ion-atom collisions, and atoms in ag-
gregates. The latter would require fairly high-
resolution emission spectra; such spectra can be
readily obtained for any number of elements and
compounds with the aid of intense synchrotron
radiation sources in the x-ray region.
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