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Optimized effective atomic central potential*
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A self-consistent set of equations is derived for an atomic central potential such that the energy given by the
orbitals for the potential is minimized. It is shown that this effective potential behaves like —e /r for large r
values. The equations have been solved for carbon, neon, and aluminum, and the resulting total energies

exceed the Hartree-Fock total energies by less than 0.005%. The theory leads to an effective, local, central

exchange potential analogous to the Xa potential.

I. INTRODUCTION

It has long been known" that the Slater determi-
nant that gives the best approximation to an atom-
ic wave function in the variational sense is the
solution of the Hartree-Fock equation. A familiar
aspect of the Hartree- Fock method is that the
equations for the single-particle orbitals are
rather complicated integrodifferential equations
involving the nonlocal exchange potential.

In this article we consider the related question
of finding an effective local, central potential that
is variationally optimized. That is, we consider
a, central potential V(r), solve the radial
Schrodinger equation for the single-particle orbit-
als, form a Slater determinant, and calculate (H).
Then V(r) is to be varied to minimize (H).

A system of self-consistent equations is derived
for this problem, in which V(r) is the solution of
a linear integral equation. It is shown that if the
exchange terms in (H) are neglected, then the so-
lution of the problem is just V(r) = V„(r) where
Vz(r) is the Hartree potential constructed from
the atomic charge distribution. The integral equa-
tion derived is an equation for V(r) —Vs(r) and can
be interpreted as an equation for an effective cen-

tral exchange potential.
In Sec. II the self-consistent equations for the

potential will be derived. A complicating feature
of the Hartree and Hartree-Fock methods is the
question of angular averaging. Since the present
problem is ab initio spherically symmetric, it
should be possible to reduce the problem by elim-
inating the angular dependence completely. This
will be described, and the purely radial equations
given, in Sec. III.

It is shown in Sec. IV that V(r) behaves like
-e'/r for large r, so that at large distance an
electron moves in the potential of the ion it leaves
behind.

The results of applying the method to carbon,
neon, and aluminum are given in Sec. V. The re-
sults for the total energies differ from the Har-
tree- Fock results by less than 0.01 Ry, although
there are greater differences in the single-parti-
cle energies.

We use units such that 2m = e'/2 = jg = l. Ener-
gies are then in rydbergs, and a, =1.

II. GENERAL THEORY

The expectation value for the energy for a
Slater determinant formed from orbitals &t),(r) is

(2. I)

A spatial integration also represents a spin sum.
The single-particle orbitals are assumed to

satisfy (2.4)
—v (j), + V(r) &j), = e, &f),

The variational problem to be solved is

(2.2) and is just the left-hand side of the Hartree-Fock
equation. Here

(2.3)

The variational derivative (2.5)
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V.«r')=2 Q &~(r)'lr -r'J 'e, (r') (2.6) the fina, 1 form

The variational derivative of Q; with respect to
V is obtained by introducing a, variation 5V(r) in

V(r) in the Schrodinger equation (2.2) which be-
comes, to first order,

&r'H(r r')[V(r') —V (r')]=9(r),

where

(2.11)

H(r, r') = p g (s&- e&) 'A&(r)*A;(r)*4&(r')@,(r'),

If the subsidiary condition that P, is to remain
normalized is imposed, (2.7) has a unique solu-
tion:

()(r)= —g J
dr' JPr" ((r)"G, (r, r')

&«.(r', r")4&(r")

(2.12)

(2.13)

G, (r, r') = P (e, —& ) '(t), (r)*4;(r'), (2.9)

(2.10)

The results (2.4) and (2.10) can now be substi-
tuted into (2.3), and, if the Schrodinger equation
(2.2) is used, it is found that

Qfu7'(I )'(~ ) s, )'„(» ))((i)',. '

+ d V r r Q r G r r

The terms in e,. in this equation are zero since
G, (r, r') projects into the subspace orthogonal to

The variational equation is then reduced to

in the subspace orthogonal to (t), It is seen from
(2.8) that

~V(-) =-G((r', r)4;(r).

The sum on j in (2.12) need be taken only over
unoccupied states, since the summand is anti-
symmetric in f and j. It is then seen that H(r, r')
is symmetric and also positive definite provided
the ground-state configuration is considered.

The nature of Eq. (2.11) is now apparent. If the
exchange terms in (H) had been ignored, Q(r)
would be zero and the unique solution of (2.11)
would be V(r)= V„(r). In the actual situation, the
solution of the integral equation for V(r) —V„(r)
represents an effective local central exchange po-
tential V„(r).

III. RADIAL EQUATIONS

In this section the problem of reducing Eqs.
(2.2) and (2.11) to radial equations will be con-
sidered. For a closed-shell atom the sums ovex'
magnetic quantum numbers in Eq. (2.1) can be
performed using the spherical-harmonic addition
theorem. The result of the angular integrations is

(+)= E +& f ((&))(&)(d&+
2 E r. J &s J dr'(, (~)*,(~,r')y(r')*.

0 j 0 0

dr' y, (r)y, (r') (vrr').y, (r)y, (r'), . (3.1)

where so&&=n&n, , n, being the number of electrons
in shell ~. Also

v~(r, r') = 2 min(r, r')~/max(r, r')~" (3.2)

and (t), (r) is the reduced radial wave function for
shell i. The sums in Eq. (3.1) are now over shells
rather than single-particle states.

If the atom contains n„valence electrons outside
a closed core, the angular dependence can be re-
moved by averaging (H) over the degenerate states
of the particular configuration being considered.
In Hartree-Fock calculations this averaging pro-
cess has been called the hyper-Hartree-Pock

so&,.——n,.n&, i or j4v
N) = n„(n„—1)V/(V- 1),

where V is the number of valence states.

(3.3)

method. ' In the present calculation, no approxi-
mation is involved in doing this since the degen-
erate states of a configuration x'emain degenerate
in the presence of the effective central potential.
Therefore the values of (H) averaged are all the
same.

It can be shown' (Appendix 3 of Ref. 4) that the
xesult of perfoxming this averaging is to replace
'N)g by
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The variational calculation is now much the
same as in Sec. H. The final result is

H(r, r») = Q n, Q;(r)G, (r, H)p, (r'),

H x, x' Vx' —V y' Ch'=Q x, (3.4)
(3.6)

+ "V"
1

~

«' 4.(&)G,(&,&')4.(~') 1.(~', ~")y„(~")'«".
40 »»» o

The function G&(r, r') is the Green's function for
the reduced radial Schrodinger equation projected
into the subspace orthogonal to 4&. It satisfies
the equation

C,.= P, (~)4,(r) «
4O

(3.11)

=6(&- &') —4&(&)4;(&'). (3.8)

A symmetric solution of (3.8) is

G;(~, ~') = 0; (~()4;(r)) 41(~')q'—;(~)

-41(~)@;(~')+C;A1(~)4((~'), (3 ~)

where g, is any second solution of the homoge-
neous equation such that the Wronskian 4&4',.
—(t)P»'=1. Also

+;(») =»;(») j»(» )»;(» )«;''
~ »';(») j»i(»')'«' (3.10)

ls the solution of the lnhomogeneous equation
(3.8) with P, (r) on the ri.ght-hand side.

The third and fourth terms in (3.9) are solutions
of the homogeneous equation added to maintain
the symmetry of G, (r, r') and the orthogonality to
Q, (r). The value of C,. is determined by the latter

It may be noted that the homogeneous equation
corresponding to Eq. (3.4) has a solution V(r)
—V„(r)= V,„(r)= C. It is therefore natural to add
a further boundary condition that V„(r)-0 for

In px'actice, the integral was cut off at an

upper limit of about j.5a„and this condition vvas

fulfilled automatically. If, however, the cut-off
were CI1oseI1 to be too lRrge the InteglR1 equation
which is approximated by a system of linear equa-
tions, would become singular and it vrould be nec-
essary to impose the boundary condition in another
WRy.

IV. BEHAVIOROF Vfr) FOR LARGE r

For large ~» the terms in H(r, r') and Q(r) in

Eq. (3.4) decrease exponentially and are dominated
by the term contributed by the most weakly bound
(valence) electron. The sums on f. in Eqs. (3.6)
and (3.7) then reduce to a single term (i = v).
Equation (3.4) then is asymptotically

(4.1)

y(~) = A„(~)V,„(~),

00 CO

&(~)=-(~~„)'ga'. &4;(&)g " ' «'f&(~ &)A„(~')0;(~')+ "V"
1 4.(~) ~.(~, ~')4„(~')'«'.

O O O 0
(4.3)

If Eq. (4.1) is multiplied by the local differential
operator /E j«+ V(F-) —8„» the result is» fl'Gill

Eq. (3.8),

»(») - »( )- ».( ) j ».( ')[»(»') - »( ')1«' =().
(4.4)

It follows from this that y(r) = h(r)+ X(t)„(r) where
A. is arbitrary. This arbitrariness is because of
the possibility of adding a constant to V,„(r)but»
the added condition V (r) 0 shows that A. =O and

y(r) =h(~).
For large y, the sum on j on the right-hand side
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TABLE I. Total energies in rydbergs for carbon,
neon, and aluminum atoms calculated with the optimized
potential, the Xn method, and the Hartree-Fock (HF)
method (Ref. 5).

f/ Op

02 .05 .I .2 .5 I 2 5
I I I I I I

Optimum
Xu
HF

C

-75.3160
-75.3072
-75.3194

Ne

—257.0899
—257.0662
—257.0942

-483.7454
—483.7224
-483.7536

-5—

-IO— ~r~r+

of Eq. (4.3) is dominated by the term j= v. It can
then be readily verified that the leading term for
large r is given by L =0 and that

FIG. l. Optimized effective exchange potential. , solid
curve, and the Xe exchange potential, broken curve,
for carbon.

V,„(r)= —2/r . (4.5)

V. RESULTS AND DISCUSSION

(5.1)

where a is an adjustable parameter. There are
various criteria for choosing n, one of which is
to choose o. to minimize the value of (If).' Other
choices of n are such that the virial theorem will
be satisfied or that the energy of a certain model
Hamiltonian involving a will equal the exact Har-
tree-Fock energy. The total energies calculated

The radial Schrodinger equation and Eq. (3.4)
have been solved numerically for the cases of
carbon, neon, and aluminum atoms. The self-
consistent procedure converges satisfactorily in
about seven iterations if the average of the initial
and final V(r) is taken at each iteration. The re-
sults for the total energy are given in Table I to-
gether with the results for the hyper-Hartree-
Fock calculation of Mann' as quoted by Slater. '

Another approach to the problem of an effective
central local exchange potential is the Xo method
which has been espoused by Slater4 among others.
In this approach, V„(r) is approximated by

V„(r)= -6a[3p(r)/8m]' ',

for various a values differ, however, by less
than 0.001 Ry. ' The Xn values of the total energy
for the cases considered are also given in Table
I. These were calculated in the same way as the
energies for the optimized potential and differ
slightly (by less than 0.002 Ry) from previous
calculations. ' It is seen that the optimized poten-
tial represents a substantial advance, by a factor
of about 4, toward the "best" Hartree-Fock re-
sults.

The single-particle energies for the cases con-
sidered are shown in Table II. These are seen to
be close to the Hartree-Fock single-particle energies
for the outer electrons. This is evidently because
the optimized potential has the correct asymptotic
behavior for large r.

The effective exchange potentials for the three
cases are shown in Figs. 1-3, together with the
corresponding Xo, potentials. The r ' dependence
of the optimized potentials compared with the ex-
ponential dependence of the Xn potentials is no-
ticeable. The kinks in the optimized potential may
be of interest, but there is no clear physical in-
terpretation of them. If the potential were con-
sidered to arise from a unit positive charge dis-

TABLE II. Single-particle energies in rydbergs for carbon, neon, and aluminum, using the
optimized potential, the Xe method, and the Hartree-Fock method.

Atom Potential is

C

Ne

Optimum
Xn
HF

Optimum
Xe
HF

Optimum
Xo
HF

—20.71
-20.21
-22.64

—61.78
—61.06
-65.54

-111.4
-111.0
-119.0

—1.45
—1.00
—1.41

—3.46
—2.65
—3.86

—8.38
—7.96
—9.82

—0.81
—0.39
-0.86

—1.72
—0.99
—1.70

—5.52
—5.21
—6.44

—0.79
-0 ~ 54
—0.79

—0.43
—0.17
—0.42

g. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974). The energies for
carbon are for the 3P term.
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FIG. 2. Optimized effective exchange potential, solid

curve, and the Xe exchange potential, broken curve,
for neon.

-20
/

~( I I I I I I I I

tributed in the atom, these would correspond to
regions of negative charge.

Graphs of the total effective potential V(r) show

little difference from the Xa potential. In fact,
one of the conclusions of this work may be that,
for a one-parameter model, the Xe method is a
remarkably good approximation. The optimized
potential described here may be valuable, how-

ever, for those calculations that depend strongly
on the asymptotic form of the potential.

Another variational approach to the effective
atomic potential is that of Bass eI; al."who as-
surne a two-parameter model for the potential and

adjust the parameters to minimize the total ener-
gy. The model assumed has the correct behavior

FIG. 3. Optimized effective exchange potential, solid
curve, and the Xe exchange potential, broken curve,
for al.uminum.

for large y. The resulting potentials are also
very close to the optimum, differing by at most
about 0.2 for y &0.1. The optimized potentials
are, however, somewhat less repulsive at x=0.

It may be of interest to note that the results for
this method do not satisfy the virial theorem since
the trial wave functions do not admit changes of
scale. For the cases considered the kinetic ener-
gies were 75.502, 257.888, and 484.88 Ry.

We are indebted to P. A. Fraser, T. M. Luke,
and W. J. Meath for useful discussions.
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