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Multiple scattering in the Compton effect. III. Monte Carlo calculations
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Total probabilities, angular distributions, and energy profiles of multiply scattered radiation are calculated

using Monte Carlo techniques. It is found that use of either the Klein-Nishina or the polarization-dependent

Thomson cross section can result in significant departures from the angular distributions and energy profiles

obtained with the polarization-averaged Thomson cross section. The radius of the incident photon beam

appears to have a substantial influence on multiple scattering probabilities and angular distributions for finite

cylindrical samples. Criteria are established for estimating under what experimental conditions a sample may

be considered effectively "infinite, " so that earlier analytic results become applicable. Triple and higher-order

scattering are found to be generally insignificant for finite cylinders.

I. INTRODUCTION

A. Preliminary remarks

In the two yrevious papers of this series"
(hereafter referred to as I and II) we treated the
problem of multiple scattering in a typical Comp-
ton experiment analytically or semianalytically
by introducing a somewhat simplified model of the
experimental situation. The advantages of such a
treatment are as follows: (a) The results obtained
are exact or nearly exact within the limitations of
the model; (b) the calculations lay bare some of
the more important variables in the experiment,
thereby making it possible to develoy intuitions
which can, hopefully, be extrapolated to more
complicated systems; and (c) because of (a) and
the fact that an analytic expression is obtained,
it is possible to quantitatively assess the relative
importance of changes in the variables referred
to in (b). For example, in I and II we were able
to evaluate the effect on angular distributions and
energy profiles, respectively, of employing dif-
ferent forms for the scattering cross section.

As we noted in I and II, some of the analytic re-
sults obtained there may in fact be applicable to
actual experiments, if the attenuation coefficient
and sample geometry are such that the sample
may be viewed as an infinite slab or cylinder.
However, for a wide range of experiments such
conditions are not met, and the extent and effect
of multiple scattering are then best calculated by
Monte Carlo techniques.

A number of such calculations have already been
performed, the most relevant to Compton experi-
mentalists being those of Felsteiner et al. ' ' and
of Williams and Halonen. " The latter investi-
gators, in particular, have developed a highly ef-
ficient Monte Carlo program which realistically
accounts for a number of phenomena present in
an actual experiment, such as binding-energy

cutoffs for inner-shell electrons, variation of the
shaye of the energy profile with sample thickness,
and realistic electron momentum distributions.

In this paper, we again restrict our calculations
to simpler models than those considered by other
workers. Their main interest has been in mini-
mizing the amount of multiple scattering or in
correcting experimental profiles for its effects.
We, too, shall consider these problems in a
fourth paper in this series. Here, however, we
employ the Monte Carlo approach primarily to
assess the approximations of I and II.

B. Statement of the general problem

Before concluding the Introduction, we think it
useful to present a mathematical description of
a rather realistic model of a Compton scattering
experiment. While our formulation will be totally
beyond exact solution, it will enable our work as
well as that of others to be easily described and
classified as subcases of the more general prob-
lem.

Multiple scattering in Cornpton experiments is
an example of the exceedingly complicated prob-
lem of the transport of high-energy particles in
matter. " Fortunately, in the domain of energies
usually involved in Compton experiments
( 0.01-0.2 MeV) only three processes are at all
yrobable, their relative importance depending
upon initial energy and sample composition. "
These processes are (a) Compton (inelastic) scat-
tering; (b) Rayleigh (elastic) scattering, including
coherent scattering at small angles; and (c) photo-
electric absorption.

Let us define the following quantities for the
above processes for some energy E:

(i) p, ,(E) is the linear attenuation coefficient for
Compton scattering from bound electrons in the
sample, i.e. , the fraction of photons Compton
scattered on passing through a thickness dl is
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-dn/n = y. ,(E) dl .

(ii) p „(E) is the coefficient for Hayleigh scatter
ing including coherent scattering.

(iii) p, (E) is the photoelectric absorption coef-
ficient.

(iv) p(E) -=y, (E), + p, s(E)+ p, (E), the total attenua-
tion coefficient. All attenuation coefficients are
in cm '.

(v) f, (E)= g, (E)/p. (E), the probability that a col-
lision with an electron will be a Compton (i = C),
Hayleigh (i =A), or photoelectric (i =&) event.

Consider a cylindrical sample of thickness t and
radius R& as shown in Fig. 1. An arbitrary point
within the cylinder is described by a vector p
[e.g. , p=(r„y„z) or p=(x, y, z)]. The cylinder
is irradiated by a beam of photons. The direction
of the photon beam is given by a unit direction
vector k„but we allow for the possibility of a
distribution of initial photon directions k, about
k~. %'e also assume a distribution of initial pho-
ton energies E around some most probable val-
ue E,. Let &(k„E,) be this distribution of initial
photon directions and energies. An incident pho-
ton is thus described by E„k, and x„y„ its posi-
tion in the photon beam (Fig. 1). We require that
a photon with x~=0 and kp=k~ impinge on the sam-
ple at t'= 0. The total incident photon flux is just

a»lip "Ep

I Rg 2y
x dy, —~

dr,
p If p

Now consider a photon with fixed k, and E„and
let us define a double scattering event by an or-
dered pair (A„A,), where A, = C if a scattering
is Compton and A., =R if j.t is Bayleigh. Define
l, (k „p,) as the path length from the point of entry
pp on the cylinde r face to the cylinder boundary
along k, . Suppose that the photon scatters within
the sample at a point p» from an electron with mo-
mentum pi. Let lo =

I pi —po I
Clearly l,' —l,. The

CYLINDRICAL
SAMPLE

PHOTON
SEAM

Fgo. 1. Model Of a Compton scattering expel~me»»t.

probability distribution for the new scattering di-
rection k, is given by the differential scattering
law (da/dQ)„. Let p, [=p, (E,)] be the initial total
attenuation coefficient and fo „[=f,„(Eo)]be the
probability that the first collision is of type A».
Let l, = l, (k„p,) be the path length from p, to the
cylinder boundary along k,. The new attenuation
coefficient p, depends upon the energy of the scat-
tered photon, which is given by the Compton equation

2 sjn2» +» sjn»

where the scattering angle 6» is given by
cos '(k, k, ) and p, is the projection of p, on
the scattering vector.

Now let a second scattering of type &, occur
from an electron with momentum p, at p„a dis-
tance I', —l» from p». The photon then traverses

d t / f p t th yl d bo d ry
along k„ the new scattering direction, and is ob-
served leaving the sample with energy E, and di-
rection k~ in the laboratory frame of reference.
E, is determined by Eg„anpd, according to Eq. (l).

If we let k~ assume all possible values, then k, also tak'es on all possible values, and we have the total
probability of observing all such double scattering events:

+2m
y Rg

Gg~
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where ~)((p() ~' is the electronic momentum distribution in the sample. The differential cross sections
(do/dA()A will in general depend upon the initial and final yhoton energies E, , and Z(, polarizations
a, , and e, , and directions k&, and k&, as well as upon the electronic momenta y, ." As in Payer I we can
change variables and replace the integration over 0, in Eq. (2) by an integration over Ay, where k, and

(do/dA, )A are now expressed as functions of k and k,.
In an ac/ual experiment one generally observes only those photons which exit the sample with ky in some

given range of solid angle Qy . The probability of observing (A„A,) events under such (.ircumstances is
(for brevity we suppress the arguments R„R&,I)

P&," "x)(k, E fl ~)
2+ 1 y Rb 2g go(go

dy~ — dt'~ dfo I oe fo, A
O

7l e) Q a

dQ, d p, X y, dl', p, ,e "&'xf

x eo, fe'e, ~x(y, )(*( „')
P 2

x e-yxlx(kx, yx) (3)

Equation (3) is easily generalized to any order n of scattering. Let A" be an ordered n-tuple of scatter-
ing types (A„A„... ,A„). Then

p(A")(k E sexy)

~0

] z~ 2g "~o(~ fo
dy — dt' dlo p oe gonzo

where now k„and (do/dg„)„are expressed as functions of ky and ko) k„... , k„,. A change of variable
similar to that carxied out in Papex II will yield an energy profile for A -type scattering.

%e can take account of the syread in initial pho-
ton energies and directions by integrating over
the normalized distribution 4(k„Eo):
p(A") (sexy)

@max

dEo 4 k o, Eo I ~~~"~ k o, Eo, Qp~ .
"a11, k E0 0

multidimensional integrals and complicated inte-
grands involved here is best approached by the
powerful and flexible Monte Carlo technique.

II. MONTE CARLO —GENERAL CONSIDERATIONS

A. Focus of the present cwork

The total amount of n-scattered xadiation is then
obtained by summing the I'~~A ~ over all nonidenti-
cal permutations of scattering sequences (A")~:

pe (sexy) g p(A")I (flexy) (6)

For double scattering (n= 2), the possible (A")J
are (C, C), (C,R), (R, C), and (R, R).

Exact analytic calculation of the quantities de-
fined above seems at best remote. Standard nu-
merical integration techniques, such as those
employed in Paper II, are generally useful only
for single integrals. Numerical integration of the

For the purpose of our Monte Carlo calculations,
we now wish to limit the very general experimen-
tal model described by Eqs. (4) and (5). We intro-
duce the following restrictions:

(a) ky = (0, 0, 1), i.e., the yhoton beam is incident
at right angles to the cylinder face.

(b) &(ko, &o) =()(ko —ky)|)(Eo- Eo); the photon
beam is perfectly collimated and monochx'omatic.

(c) I(P, ) = &(0); the electrons are stationary.
(d) (d(y/d&()„ is given by either the Thomson

or the Klein-Nishina differential cross section.
Under these conditions, Eqs. (4)-(6) for single

scattering reduce essentially to Eq. (10b) of Payer
I, while fox double scattering we have
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I '"~'"2'(R~, f, EO, R~, Aq )

+2%

dfi&F "' 'f~dA

x 'd8P sinep

x dq g "s&g

where the solid angle A&~ lies in the range e~
—8~~ 8&. Generalization to higher-order scatter-
1ng 1s obv1ous.

In Payer I we obtained analytic expressions for
the total yrobabilities and angular distributions
of single and double scattering under certain addi-
tional restx ietions:

(I-I) (R, R,)/f»l-.
(I-2) (do/dQ)„= (3/I6v)(cos'8, .+ I), the normal-

ized Thomson cxoss section.
(I-3) p, is independent of energy, i.e. , y, ,= p,

(I-4) Higher-order scattering could not be cal-
cula.ted.

(I-5) Electrons are stationary.
In Payex II we were able to calculate energy

profiles of single- and double- scattered radiation
by a single numexical integration assuming only:

(II-I) (R, R,)/f»l.
(II-2) Electrons are stationary.
%'e also investigated the effects on energy yx'o-

files of elastic-inelastic scattering sequences, the
use of othex fox'ms of the cross section, and, in

somewhat less detail, the variation of p with en-
cl gy.

The yri, ma. ry purpose of this payer is to use
Monte Carlo techniques to assess the validity of
some of the assumptions of Papers I and II; to
determine when and how badly they fail.

A full investigation via Monte Carlo of the be-
havior of total yxobabilities, angular distributions,
and energy profiles when one or a combination of
the assumptions of Papers I and II axe relaxed
would be a monumental and expensive task. There-
fore only a limited set of calculations, aimed at
qualitatively explox'ing the limitations of those as-
sumptions, have been yerformed. Before di.s-
eussing the results of these ealeulations we first
give a bx'ief discussion of our Monte Carlo yro-
gxams and some of the techniques which they em-
ploy. A mox'e detailed presentation may be found
in Ref. 12.

3. Computational approach (Ref. 13)

The application of Monte Carlo techniques to the
pxoblem of multiple-Comyton scattering may be
viewed in either of two alternative, but eomyatible
ways. Williams and Halonen~' have emyhasized
the mathematical aspects of the problem, i.e.,
that Monte Carlo is a computational technique for
estimating the value of a multiyle integral such as
that in Eq. (7). They have combinai this approach
with the use of variance reduction techniques to
imyrove the accuracy and efficiency of their cal-
culations considerably. %e, on the other hand,
focus our attention, like Felsteinex et el. ,

' ' on
the more physical features; i.e. , we view the
Monte Carlo calculation as a means of simulating
and tabulating the actual yhoton trajectories. %'e

have, however, utilized a numbex' of techniques
similar to those of Williams and Halonen in order
to make our calculations considerably more effi-
cient than those described in Hefs. 3-5.

Our Monte Carlo calculations proceed as follows.
A laxge number m of photons are samyled or sim-
ulated by the computer. Each photon has the same
initial energy E, and initial direction It, = (0, 0, I).
A yoint of entry on the cylinder face is chosen
randomly within the photon beam, and then a yoint
of first scattering is chosen by inverting'3 the ex-
ponential probability distribution P(z) = I -e "'.
Since, esyeeially for thin samples, the probability
of the first scattering occurring within the sample
may be small, the efficiency of the program is in-
creased by "forcing" the first collision to occur
within the sample, i.e. , by emyloying the modified
probability distribution

&(z) = (I —e "')/(I —e "'), (8)

where t is the samyle thickness. Ea,ch yhoton is
then given a "weight" of 1- e "' instead of 1.
Looked at another way, each yhoton is 'parti-
tioned" into two portions: one with weight
e "' which scatters outside the sample (and which
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we need not consider further), and a second por-
tion of weight 1 —e "' whose fate we now follow.

At the point of scattering, a new direction k,
is chosen for the photon by applying the rejection
method" to the probability distribution determined
by the appropriate differential cross section. The
new energy of the Compton scattered photon is
calculated from Eq. (1) and, if appropriate, the
attenuation coefficient in the exponential distribu-
tion is changed to reflect this new energy.

The point of the next scattering p2 must now be
chosen. In previously reported Monte Carlo cal-
culations, the point is chosen by inverting the un-
modified exponential distribution, Eq. (8). The
point p2 is now tested to see if it lies inside or
outside the sample. If outside, the energy and
total scattering angle are tabulated as described
below. If the photon is still within the sample, the
procedure is iterated beginning with the choice of
a new scattering angle.

In some applications we wish to study many or-
ders of scattering or a particular order of scatter-
ing within a small range of observation angles 8~,
e.g. , double scattering at 167'+2'. In such cases,
we have been able to greatly improve the efficiency
of the calculation. We force all coQisions but the

last to occur inside the sample using the modified
distribution (9) with f replaced by/„, the distance
from the point of collision to the sample boundary
along the scattering direction. The last collision
is forced to occur outside the sample. On the last
collision, the range of scattering directions which
will cause the photon to emerge within the desired
observation region is calculated. The scattering
direction is then chosen from the differential cross
section modified in such a way as to force the pho-
ton into this range. In this manner, aE/ photons
are forced to be *'useful" and the large statistical
uncertainties found in some earlier Monte Carlo
studies' are reduced.

In the angular-distribution studies, the cosines
x~ of the primary scattering angles range from -1
to 1. For each multiplicity of scattering this range
is divided into 40 equally spaced channels. When
a photon escapes the sample as descxibed above,
its weight is added to the appropriate channel ac-
cording to the value of x~. In this way, for each
order of scattering, estimates are obtained of 40
integrals simile. r to that of Eq. (7). For example,
for single Compton scattering, let m, be the num-
ber of single-scattered photons escaping the sam-
ple with x~ in the interval [x, , x,.„). Then

MC PklPMc= —'=P&;&(a„f,Z„a„x,.x„,)Pl

p2s' 1 r Ry 2y rt Xg

0 40 5 40 x

2w

40 1Q

Since x,.„-x,.= 0.05, we use the mean- value the-
orem to approximate

sp'c'(x, ) MC

Calculation of the angular distributions of once-
and twice-scattered photons for one sample thick-
ness using 10' photons requires approximately 16
sec of computing time on the Brandeis PDP-10
computer. If n is the multiplicity of scattering
being considered and m the number of photons
sampled, then the computing time t is given rough-
ly by

where C=2.5&10' h.

III ANGULAR DISTRIBUTIONS AND

TOTAL PROBABILITIES

A. Error analysis and overlap with analytic work

As a check on our computer program and as a
means of estimating the errors to be expected

from the Monte Carlo calculations, the program
was run with parameters chosen in accordance
with the assumptions of Paper I. In Table I we
compare the Monte Carlo results obtained by
sampling va. rying numbers of photons with the
values calculated analytically. Here and in the
following sections, the fractional difference 6 be-
tween a quantity q and its Monte Carlo estimate
qMc is defined a,s

'= l(a-, -q)/ei (12

One expects (5 to decrease roughly as the recipro-
cal of the square root of M, the number of photons
sampled. Table I bears out this expectation. We
see in Fig. 2 that even with only 25000 sample
points, excellent agreement is obtained between
the analytic and Monte Carlo double-scattered
angular distributions.

B. Klein-Nishina cross section

In Paper I we were unable to derive analytic
angular distributions using the Klein-Nishina
cross section averaged over polarizations:
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TABLE I. Calculated values of total probabilities and angular distributions of single and
double scattering from an infinite-radius cylinder of optical thickness a=1,0,

Single scattering
Pg 6g

Double scattermg
P2

Angular
distr ibution

Analytic
Monte Carlo, 10 photons
Monte Carlo, 104 photons
Monte Carlo, 10~ photons
Monte Carlo, 10~ photons

0.2715
0.2589
0.2702
0.2717
0.2718

~ ~ ~

0.464x10 ~

0.479x10 2

0.737x10 3

0.110x10 2

Q. 1382
0.1418
0.1370
0.1382
0.1383

~ ~ ~

0.260 x 10
0.868x10 2

0.000
0.724x10 3

0.233
0.669x10 '
0.254x10 '
0.784x10 ~

' Double scattering. Average of fractional difference 5; for the ith exit channel averaged
over the 40 exit channels.

—+——sin 8 (13)

where 8 is the angle of scattering. E, is x'elated
to E, by the Compton equation (1). For E, «1 or
for elastic scattering (E,=E,), Eq. (13) reduces
to the Thomson cross section.

The angular distributions of single- and double-
scattered photons were calculated by the Monte
Carlo program under the assumytions of Payer I,
except that Eq. (13) was employed in place of the
Thomson cross section. Figure 3 shows that the
differences between the Thomson and Klein-Nish-
ina results become quite significant for the high-
er-energy y xays presently used in some experi-
ments. At the lower x-ray energies (e.g. , Mo Xn,
E,= 0.017 MeV), the Thomson and Klein-Nishina
results are nearly indistinguishable. As dis-
cussed in Payer I, the randomizing effect of the
scattering causes differences due to the use of
different cross sections to decrease as the order
of scattering increases. All differences found
between the various angular distributions may be
explained qualitatively by the "Klein-Nishina
asyxnmetry effect": the fact that unlike the sym-
metric Thomson cross section, the K]ein-Nishina
expression causes relatively more photons to be
scattered forward than backward, and this asym-
metry increases with increasing photon energy.

In Table II, we compare the total probabilities
of single, double, and triyle scattering ealeulated
with the Thomson and Klein-Nishina cross sec-
tions. For single scattering use of the Klein-Nish-
ina expression makes little difference for samples
with (d & 1.0. For thicker samples we have

u& increases, however, the probability of scatter-
ing again becomes greatex' for a forward-scattered
than for a backwaxd-scattered photon, since the
path length through the sample will in general be
greater for the former than for the latter. Hence,
single scattering of higher-energy photons will be
reduced and double scattering enhanced, since
these photons wiD be yreferentiaQy forward scat-
tered according to Eq. (13). We therefore also
expect that the inequalities in Eq. (14) will be re-
versed for double scattering and indeed they are
from (d-0. 5 to m-2. 0. For thicker samples, tri-
ple scattering becomes significant, and our simyle
analysis breaks down. Highex -order scattex'ing
appears far more difficult to analyze, though the
table suggests that it may be relatively insensi-
tive to E, and/or to the form of the differential

0.8-

8 cv
Q 0& 0.5-

3
8~ 0A-
CL

0.2-

+Th(~) )PMII ra(~) )~AI(~) )~To(~) (14)
O. I-

I

The intuitions develoyed in Payer I and the Klein-
Nishina asymmetry effect easily rationalize this
trend.

Fox thin samyles, the probability of a second
scattering is nearly independent of whether a pho-
ton is first scattered forwa, rd or backward. As

60 90 f20

ep (degf'ees)

FIG. 2. Normalized anguI. ar distributions of double
scattering arith ~=1.0, RI =104. Solid line is analytic
calculation; circles are Monte Carlo results with a sam-
ple of 25 000 pbotons.
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CL

Q.9-I

Q7-

Q 4-

0
0

o
a

cross section. The randomizing effect referred
to above seems crucial here.

The angular distributions show significant varia-
tion with E, when the Klein-Nishina cross section
is employed. For single scattering and 8~ close
to 180, the asymmetry effect predicts the ob-
served trend, a set of inequalities parallel to
those of Eq. (14). For higher-order scattering
snd/or smaller scattering angles, the effects of
sample geometry and of asymmetry in the cross
section appear to counteract one another, and the
net result is extremely complex. In a number of
cases, angular distributions for Mo Ka x rays
(0.017 MeV) resemble those for Te y rays (0.159
MeV) more closely than either resembles the
distribution for Am y rays (0.059 MeV).

QZ-

Q. l-

Q~
Q

(.QI—

6Q 90 (20

Gp (degrees)

1

)5Q )8Q

C. Polarization-dependent Thomson cross section

The Thomson cross section for polarized pho-
tons is"

dg—=x sin 0
dQ

where 6 is the angle between the initial polariza-
tion vector E, and the final direction k, of the pho-
ton. In Paper I, we showed that the single-scat-
tered angular distribution was identical whether
Eq. (15) or its average over initial polarizations

Q.g-
U 0

0 og

cs

3
Bw' 05I.

QL
Q 3Q )ZQ

FIG. 3. Normalized angular distributions with co= 1.0,
~f =&0, Eo=0.0159 MeV (Te y rays). Solid line is
analytic Thomson result; eirel. es are Monte Carlo Klein-
Nishina calculations. (a) Single scattering; (b) double
scattering.

—=—(1+cos 8)
lo' +0 2

dQ 2
(16)

is employed. We were not able to calculate the
double- scattered angular distribution analytically
using Eq. (15), but a Monte Carlo calculation of
this quantity is quite straightforward.

The prograxn previously described is augmented

by assigning each photon a random initial polariza-
tion uniformly distributed in the x-y plane. Equa-
tion (15) is used to generate the probability dis-
tribution of scattering directions. The new polar-
ization &&is coplanar with &, and k„and ortho-
gonal to k, . According to Eq. (15), a photon is
most likely to scatter in a direction perpendicular
to &0.

In Fig. 4 we see that unlike the single-scattered
angular distribution, (sP, /Sx) is significantly af-
fected by the use of Eq. (15) in place of Eq. (16);
the inclusion of polarization results in a sizable
enhancement of scattering near 0' and 180 at the
expense of scattering near 90 . Photons which
scatter first with 8, =v/2 must have new polariza-
tion k, in the x-y plane. Owing to the infinite-ra-
dius geometry, these photons must scatter a sec-
ond time, and this scattering is most likely to oc-
cur in a direction perpendicular to e„ i.e. , in the
z direction. This accounts for the observed in-
crease in (sP,/Bx~) for ~x, ~

-1.
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TABLE II. Thomson and Kelin-Nishina scattering probabilities for infinite-radius cylinder.

0.001

0.01

0.05

0.10

0.50

1.00

2.00

5.00

Type

Single
Double
Triple

Single
Double
Triple

Single
Double
Triple

Single
Double
Triple

Single
Double
Triple

Single
Double
Triple

Single
Double
Triple

Single
Double
Triple

Thomson '

0.9964x10 3

0.311 x10 '
-10 7

0.9725x 10 2

0.219 x10 3

0.622 x10 5

0.4479 x 10
0.3633xlp 2

0.358 x10 3

0.8186x1p '
0.1106x10 '
0.183 x 10-2

0.2347
0.8734 x 10
0.388 x 10

0.2715
0.1382
0 847 x ]p-1

0.2369
0.1437
0.106

0.1738
0.0996
0.0741

Klein-Nishina
MoK~ x rays

0.9966x10 3

0.291 x10 ~

10 7

0.9731x 10-2

0.213 x10 3

0.595 x10 ~

0.4479x 10
p.3584x1p-2
0.361 x10 3

0.8198x10
0.1098x 10-'
0.183 x1P

0.2344
0.8775x 10
0.389 x10

0.2710 (0.2696)
0.1379(0.1393)
0.842 x10

0.2318
0.1447
0.107

0.1656
0.0986
0.0739

Klein-Nishina
Am y rays

0.9963x10 3

0.316 xlp
-10 7

0.9724x10 2

0.220 x 10 ~

0.646 x10 5

0.4472x 10
0.3632x10 2

0.373 x10 3

0.8188x 10
0.1105x10
Q.186 x]p 2

0.2343
0.879 x10
0.389 x10

0.2681
0.1410
0.844 x 10

0.2255
0.1484
0.109

0.1531
0.1010
0,0743

Klein-Nishina
Te p rays

0.9990x 10-'
0.281 x10 5

-10 7

0.9736x 10-2

0.209 x10
0.607 x 10 5

0.448 5x 10
0.3510x1p-2

0.363 x10 3

0.8218x 10-1
0.1079x 10
0.182 x10 2

0.2350
0.8830x 10
0.385 x 10

0.2665(0.2666) b

0.1423(0.1436) b

0.846 x10

0.2162
0.1513
0.111

0.1327
0.0962
0.0745

Single and double scattering values are analytic (Ref. 1); triple scattering values calcu-
lated by Monte Carlo program under the assumptions of Paper I.

Results of two different Monte Carlo runs (25000 photons each) are given as an illustra-
tion of the statistical uncertainties.

As the above argument suggests, the effect of
using the polarized cross section, Eq. (15), is
found to be somewhat smaller, though still sig-
nificant for finite radius cylinders. For the in-
finite-radius cylinder of Fig. 4 with ~=1.0 the
average fractional difference between the polarized
and unpolarized (SP2/Sx~) is about 0.15. For the
same sample thickness, but with Rf = 1.0, R,
=0.5, this difference decreases to about 0.13.
An infinite-radius cylinder with u = 0.001 gives an
average fractional difference of 0.25, a,gain sup-
porting the conclusion of Paper I that differences
in cross section are most influential at small
thickness.

D. Higher-order scattering

The analytic yrocedures of Paper I were incap-
able of treating scattering of order three and high-
er. With the forcing techniques discussed in Sec.
IIB, the Monte Carlo approach is easily adapted
to the study of higher-order scattering. In Table
III we present Monte Carlo calculations of the

total probabilities of n scattering under the as-
sumptions of Paper I. Included for comparison
are the corresponding analytic results for n= 1
and 2. As n increases, the P"„(&u ) decreases
with n.

We also find from Table III that for a given ~,
the ratio P",(&u)/P„"(u) appears to be a constant
independent of n, as long as n is greater than some
minimum value n(&u). For relatively thin samples
n(u&) is 1, and it increases with ~. The limiting
ratio of the (n+ 1)th- to nth-order scattering is a
decreasing function of ~. These observations may
be rationalized as follows. After a certain number
of scatterings, n(ur), a typical photon finds itself
"in the middle" of the sample. Clearly n(&u) will
increase with &u. At this point, the ratio P„"„(ur)/

(P&u) or, equivalently, the ratio of the probability
of escape to the probability of further scattering
depends only upon the distance to the sample faces,
i.e. , upon ~, and not upon the past history of the
photon. The chance of another scattering and
hence the ratio of n+ 1 to n scattering will obvious-
ly increase with co. The above argument should
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0 0 also be applicable to finite samples, though the
ratio should depend upon R& (but not R,) as well
as upon ~. These results suggest that for most
samples, determination of the probabilities of ret
atively low orders of scattering may suffice for
an accurate estimate of hi gher-order scattering
probabilities.

In the infinite-cylinder model higher-order scat-
tering is non-negligible even for co = 0.1. However,
it was shown in Payer I that this model gives an

upper limit for higher-order scattering. For fi-
nite samples, triple and higher-order scattering
will be considerably reduced by the escape of
photons through the sides of the cylinder. Also,
photoelectric absorption will decrea, se the value
of P„(w) by a factor of roughly f c. For a light
molecule like water, fc varies from about 0.1-0.2
at x-ray energies to 0.88-0.98 for y rays.

ort

0
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E. Finite geometry

One of the assumptions made in deriving the re-
sults of Papers I and II was that

B= (Rq R,)(t » 1.— (17)
FIG. 4. Normalized angular distributions for double

scattering with m=1.0, Rf =10 . Solid line is analytic re-
sult for unpolarized Thomson cross section. Circles are
Monte Carlo calculations using polarized Thorn. son cross
section.

In this section we investigate multiple scattering
when this condition does not hold, and we obtain
estimates of the values of co, pR„and pR& for
which the results of Papers I and II are applicable.

TABLE III. Monte Carlo calculation of total probability of nth-order scattering frown an infinite-radius cylinder.

Optic al
thickness ~

0.1
0.5

1.0
2.0
3.0
4.0
5.0

10.0

Optic al
thickness ~

0.8200 x 10
0.2352
0.2718
0.2389
0.2002
0.i. 823
0.1771
0.1724

P5"(cu)

0.8186 x10
0.2342
0.2715
0.2369
0.2012
0.1823
0.1738
0.1677

0.1097 x10
0.8694 x10
0.1383
0.1422
0.1233
0.1094
0.1004
0.9125 x10

PP(cu) '

0.1106x10 ~

0.8734 x10 ~

0.1382
0.1437
0.1228
0.1077
0.9962 x10 i

0 ~ 9243 x10

P3 (cu)

0.1829 x10
0.3880 x10 ~

0.8465 x10 '

0.1057
0.9448 x10 '

0.8129 x10
0.7413 x 10
0.6757 x10

0.3120 x10 3

0.1769 x10
0.5137 x10 i

0.8112 x10
0.7656 x10
0.6575 x10 i

0.6034 x10 ~

0.5093 x10 i

0.1
0.5
1.0
2.0
3.0
4.0
5.0

10.0

0.5194 x10
0.8014 x10
0.3245 x 10
0.6321 x10
0.6414 x10
0.5742 x10
0.5091 x10
0.4035 x 10

0.1021 x10
0.3696 x 10
0.2012 x 10
0.4975 x 10
0.5441 x10
0.4853 x 10
0.4266 x 10
0.3492 x10

0.164 x 10
0.1672 x 10
0.1269 x10
0.3923 x10
0.4643 x10 i

0.4395 x 10
0.3801 x10
0.2804 x10

0 ~ 28 x10
0.7728 x10
0.7926 x 10
0.3120 x10
0.4016 x10
0.3952 x10
0.3372 x10
0.2410 x10

0.5 x10
0.3451 x 10
0.4839 x10
0.2465 x10
0.3471 x10
0 3552 x10
0.3006 x10
0.2130 x10 ~

0.1 x10
0.1648 x 10
0.3025 x10
0.1884 x10
0.2998 xiO
0.3231 x10 i

0.2805 x10
0.1854 x10

'Second column is analytic result (Ref. 1).
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For simplicity, we set p, =fc= 1 here; thus &o = f
and only Compton events are considered.

The Monte Carlo program was used to calculate
angular distributions and total probabilities of
once- and twice-scattered radiation for a wide
range of t, R„and R&. We find that, as predicted
in Paper I, the analytic infinite-cylinder total
probability of single scattering P", (&u) is a lower
bound to the corresponding probability P,(&u) for
finite samples. This behavior is seen in Fig. 5.
We also find that for thin samples (&u s 0.5)P, (&u)

is quite close to P", (&u), for essentially all R~ and

R~, since nearly all photons escape through the
sample faces. For thicker samples, the possibil-
ity of escape through the sides becomes impor-
tant, and P,(~) begins to depend strongly upon the
radii of both the sample and the beam. As Fig. 5

shows, a small sample radius results in a. P, (~)
curve which rises monotonically to an asymptotic
limit whose value depends upon R~. For thicker
samples, P, (&o) rises to a maximum, then declines
to its asymptotic value. Generally, the probability
of single scattering is almost independent of beam
radius for R, &0.5R&, but then increases sharply
with R~ for larger beam radii. We attribute this
somewhat unexpected behavior to the increase in
the probability of escape through the cylinder
sides as R, approaches R&.

If R&~ 5.0, the P,(~) curve is nearly indistin-
guishable from P", (&u). Even when Rz- f = 5.0, so
that 8 in Eq. (17) is only 0.98, P,(&u) differs by
less than 1Vo from the infinite-cylinder value. "
We thus conclude (a) that Eq. (15) provides a suffi-
cient but not necessary condition for the applica-
bility of the results of Paper I, and (b) that a path
length of 5.0 or more is "effectively infinite. "
Physically, the validity of our analytic results
depends upon the assumption that photons escape
predominantly through the faces of the cylinder

rather than through the sides. A less stringent
but more meaningful parameter than 8 of Eq. (17)
may then be

8'= (R~ —',R )/—t, (18)

where 3Ry is the average distance of photons in
the beam from the sample axis. We find that in
general a value of 8' greater than or equal than
3.0 is sufficient to assure that P, (&o) will differ
from P", (Id) by no more than 2%.

Higher-order scattering in finite cylinders is
somewhat more difficult to characterize than sin-
gle scattering, because for n&1 it is no longer
true that P"„(&u) provides a lower bound for the
finite-cylinder n-scattering probability P„(&u). We
do find, however, that &' of Eq. (18) remains a
useful parameter for characterizing the approach
to infinite-cylinder behavior and that higher-order
scattering from samples with R& ~ 5.0 differs little
from the infinite-cylinder limits for total proba-
bilities and angular distributions. Figure 6 illus-
trates the change in the double-scattered angular
distribution as we increase the radius of a finite
sample until with pR&= 5, we approach the infinite-
radius limit.

Although P"„(&u) is not in general a lower bound
for P„(&u), our Monte Carlo results indicate that
for each multiplicity of scattering n —5 there ex-
ists a critical sample thickness ~„, which depends
upon R, and Rz, such that

P"„((u)—P„((u) if (u —&u„,

i.e. , P„(&o) is a lower bound for sufficiently thick
samples and all n' —n. This critical thickness
v„ is an increasing function of n. We note, how-
ever, that for n sufficiently large, P„(&u) must be
less than P„"(&u) regardless of sample thickness,
because essentially all of the photons will have
escaped the finite-radius sample after n —1 scat-

0.7
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04-
P, (u)

0.3-

0.2

~ pR)

0

/RAN

0 jlR)

Kl pR)
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pRb = 05 FIG. 5. Total probab&Ixty of
single scattering for sanM
finite-radius cylinders. Solid
line is analytic infinite-cylind-
er value.
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Unlike the continuous e profiles Kcc(e, x~) of
Payer II, the Monte Carlo data presented here
are discrete in nature. That is, our Monte Carlo
results are the values of integrals of the form

0.6- ~cc(e )
~6m+I

dz~Ec c(e, xp) .
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We define a normalized quantity ZK«(e ) such
that
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by dividing each AKcc(» ) by the total scattering
probability for the range (x~, x~ ).

A typical computing t1me on the Brandels PDP-
10 for an & profile derived from 10' double-scat-
tered yhotons is about 2. 5 min. Using an expres-
sion of the form of Eq. (11), we find that C
=5x10' h, in agreement with Eq. (11) for double
scattering (n = 2).

FIG. 6. Normalized angular distribution for double
scattering from a finite cylinder with pR@ = 0.5, ~=pt = 1.0. 8. e profiles for flmte cyhnders

tex'1ng 8.
Differences between double- scattex ed angular

distributions calculated using the polarization-de-
pendent Thomson cross section [Eq. (15)] and the
polarization-averaged cross section [Eq. (16)] are
smaller in finite- than in infinite-radius cylinders.
However, for the Klein-Nishina cross section and
Te 3 radiation, the average difference (about 9%)
between the double- scattered angular distributions
and the corresponding values obtained using Eq.
(16) appears to be independent of sample radius.

IV. ENERGY PROFILES

A. Gefleral consldeMtlons

In Paper II a variaMe & was defined as the sum
of the cosines of the Comyton scattering angles.
It was shown that energy yrofiles could immedi-
ately be derived fx'om & profiles, since the energy
of a photon which has undergone n scatterings, j
of them Comyton, is

In Fig. 7 we show the noxmalized e profiles for
double scattering from an infinite- and a finite-
xadius cylinder for the angulax interval 165 —0~
—169' calculated with our Monte Carlo program.
The Thomson cross section averaged over photon
polarizations has been employed. Note that the
sharp features found for the infinite-radius cyl-
inder in Paper II have disappeared as a result of
the integration in Eq. (20). The two normalized
profiles are remarkably similar, the average
fractional difference being about 0.06. Of course,
the absolute profiles diffex considerably more,
since the total probability (sum over e) for the
infinite cylinder is 0.1143, while for the finite
cylindex' the value is 0.0999.

In Fig. 8 we again obsexve a striking similarity
between the double-scattex'ed profiles calculated

0
O g g (3 g O O
C1 C3

0

(19)

In th18 8ection, ~ p1-ofiles axe yl.e8ented fox two
cases not treated in Payer II: for double scatter-
ing from finite cylinders using the Thomson cross
section first averaged over polarizations [Eq.
(16)] then for polarized radiation, Eq. (15).
Double- scattered profiles for polarization-aver-
aged Thomson and Klein-Nishina scattering fx om
finite-radius cylindex's were calculated and com-
pared in Payer II.

h5-

C3

t.o-

0 t

-0.25 -0.20
I I I I j

-O.i5 -O.fo -0.05 0 0.05 O.io O.l5 0.20 Og5

FIG. 7. Normalized e profiles for double scattering
from a finite cylinder with @AD = 0.5, a=at =1.0. Polari-
zation-averaged Thomson cross section. , Rf = 10~

Onfinite cylinder), 10~ photons; O, Rf =1.0, 105 photons.
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FIG. 8. Same as Fig. 8, but with polarization-depen-
dent Thomson cross section and 105 photons in each pro-
file.

its" for very small sample thickness is confirmed
by our results. The flattening of the angular dis-
tx'1butlon which we obsex've with 1nc1'easing ox'dex'

of scattering has also been noted in an earlier
work by Felsteiner et aS.'

Our energy pxofiles are considerably moxe re-
fined in terms of statistical accuracy than those
presented by Felsteiner et al. s for stationary elec-
trons in water. This refinement is made possible
by the forcing routines described earlier. Our re-
sults also agree qualitatively with the energy pro-
files for aluminum calculated by Halonen et ul. '

VI. SUMMARY AND CONCLUSIONS

from finite and infinite cylinders, this time with
the polarization- dependent Thomson cross section.
The average fractional difference 5[Eq. (12}]is
0.07. We do note, however, a significant differ-
ence between the polarized and polarization-aver-
aged calculations, with a 5 value of 0.14. Thus
the value of R& appears to affect the shapes of the
E profiles far less than the form of the cross sec-
tion.

Since the shajes of the double-scattered pro-
files appear to be relatively independent of sample
radius, differences between finite- and infinite-
sample profiles will arise primarily from differ-
ences in the magnitudes of the double scattering
probabilities. Therefore, the criteria established
in Sec. III for the validity of the infinite-cylindex
total probabilities and angular distributions will
be applicable to energy profiles as well.

V. COMPARISON KITH OTHER WORK

Since our Monte Carlo calculations have been
aimed primarily at a qualitative understanding of
the behavior of multiple scattering in situations
not at present susceptible to analytic calculation,
no detailed compaxison with Monte Carlo calcu-
lations of other workers will be undertaken.

The variation of total multiple scattering with
sample thickness in finite cylinders agrees well
with that observed by Felsteiner and Pattison. '
Their finding that multiple scattering from samples
with large attenuation coefficients (e.g. , Al or Cu
irradiated by Mo Ka x rays) reaches "infinite lim-

We have found that total probabilities, angular
d1str1but1ons, and energy profiles of mult1ple-
scattered radiation can be significantly diffexent
for finite-radius cylindex's than for the infinite-
radius cylinder model used in Papers I and II.
Depending upon the order of scattering, the quan-
tity in question, and the sample and beam dimen-
sions, it has been found that a sample can be con-
sidered "effectively infinite" even when p R&- 2.0.
%'hen p.R&- 5.0 the sample is almost always ef-
fectively infinite.

The use of either the Klein-Nishina cross sec-
tion averaged over polarizations or the polariza-
tion-dependent Thomson cross section may re-
sult in significant departures from the multiple
scattering behavior calculated with the polax'iza-
tion averaged Thomson cross section. However,
the qualitative conclusions from our earlier ana-
lytic work are still found to be valid. In addition,
the effect of employing the Klein-Nishina cross
section for x-ray scattering is relatively small.
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