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Multiple scattering in the Compton effect. II. Analytic and numerical treatment of energy
profiles
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Energy profiles are calculated for photons scattered twice from stationary electrons in a cylindrical sample of
infinite radius. Both double-Compton (inelastic) and one-Rayleigh (elastic), one-Compton events are treated.

Klein-Nishina, Thomson, and isotropic differential cross sections are employed. It is found that at the energies

typically used in y-ray experiments, the different cross sections result in significantly different energy profiles
and angular distributions, while at x-ray energies the form of the cross section is (as expected) considerably

less important. Sample thickness and choice of primary scattering angle are found to have major effects on the

shapes of the double-scattered profiles.

I. INTRODUCTION

Determination of the electron momentum dis-
tribution in matter by analysis of the spectrum
of Compton-scattered radiation (the Compton pro-
file) has become an increasingly important tool
in chemistry and physics. ' The analysis rests
upon the fundamental equation
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where E, and 8, are the energies (in electron-
rest-mass units) of the incident and scattered
photons, respectively, 0 is the angle of scattering,
and p, is the projection of the initial electron mo-
mentum (in atomic units) onto the scattering vector.

The validity of Eq. (i) is crucially dependent
upon the assumption that each scattered photon
interacts with only a single electron. Recently, it
has become clear' ' that the electron momentum
distribution inferred from a Compton profile may
be significantly in error if the contribution of mul-
tiply-scattered photons to the observed spectrum is
neglec ted.

In' Payer I of this series we posed two questions
which must be answered if multiple scattering is
to be accounted for. For a simplified model of a
Compton experiment we were able to answer the
first question, namely, to what extent are multi-
ply-scattered photons being observed, by calcu-
lating analytically the angular distributions of
single- and double-scattered photons. Here we
present at least a partial solution to the second
problem: how do multiply-scattered yhotons affect
the observed energy spectrum'?

Unfortunately, a completely analytic answer to
this latter question does not appear possible, even
within the model of Paper I. We do find, however,
that the model of a cylindrical sample of very large

radius (equivalent to an infinite-slab geometry)
yields an expression for the energy profile which
can be evaluated by a single numerical integration.
We are thus able to obtain results using standard,
accurate techniques for numerical integration rath-
er than more elaborate and cumbersome multi-
dimensional Monte Carlo procedures. ""The
Monte Carlo approach is, however, far easier to
apply to models more general than the present one,
and in' Paper III w'e use Monte Carlo calculations
to investigate the effects of some of the approxi-
mations and assumptions made here.

Several previous investigators have undertaken
analytic calculations of double-scattered energy
spectra using various models and assumptions.
Dumond' considered a spherical scatterer in which
the first scattering is required to occur from a
stationary electron at the center of the sphere.
Williams et al. 4 extended this model to include
both nonstationary electrons and elastic-inelastic
double scattering events. By restricting the angle
of observation to the value 90', Kirkpatrick" was
able to allow for first scatterings from noncentral
electrons in a spherical sample and further to con-
sider cylindrical samples, but only with central
first scatterings. McIntire" has carried out a
detailed analytic-numerical treatment of double
scattering from all electrons in a cylindrical sam-
ple for the special case in which the scattered
radiation is observed at 180' to the incident radi-
ation, so that the entire scattering process occurs
in a plane.

II. ENERGY PROFILES OF SINGLE-SCATTERED

RADIATION

In an idealized model of a Compton scattering
experiment, a monochromatic beam of photons of
energy E, is scattered by stationary electrons, and

only those photons singly scattered through the
angle 8 are observed. According to Eq. (i), under
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such conditions the energy spectrum of scattered
radiation will be a 5 function centered at E,.

In a real experiment, of course, no 5 function is
observed, since all the variables, and in particular
the electronic momenta, assume a range of values,
leading to a range of observed energies.

As an example, we calculate the energy spectrum
of initially monochromatic radiation singly scat-
tered by stationary electrons into a range of obser-
vation angles, H~. We assume the experimental
geometry of Paper I: photons incident at x'ight

angles to a cylinder face of infinite radius and of
optical thickness pt =a&. We recall that BP,"/Bx,
where x =cos8, is the angular distribution of the
scattered photons, assuming no absorption, con-
stant attenuation coefficient p, , and a classical
(Thomson) differential scattering law. For sta-
tionary electrons, E, is given by

Eo
Eg( )x1 (1 )

~

Then [BP,"(&u, x)/Bx]dx is the probability of single
scattering with cosH between x and x+ dx, and

[Bp,"(&u,x(E))/Bx] (ax/BE)dE is the probability of
single scattering within a given energy range.

Thus the function {ap,"/Bx) (Bx/BE) is the desired
energy profile of scattered radiation, and we may
write it using Eq. (2), with E,= E, in the f-orm

as m varies over bvo ordexs of magnitude. Inclu-
sion of the effects of realistic momentum distribu-
tions, finite range of observation angles, instru-
mental resolution, etc. , will tend to reduce the
variation considerably, probably to the point where
it is unobservable except perhaps by experiments
specifically designed to detect it.

III. ENERGY PROFILES OF DOUBLE-

SCATTERED RADIATION

A. Simple analytic example: Spherical-shell model

A nonmonochromatic scattered energy spectrum
may be observed not only because the variables in

Eq. (1) assume a range of values but also because
of multiple scattering. We shall consider only the
experimentally more important case of back-scat-
tered radiation (90'~8~ ~180'), but the methods
employed here are also applicable to forward scat-
tering.

Consider a photon scattered first into a direction
k, defined by (H„y, ) and then into a direction
%, (8» y, ) with respect to%,. After the second
scattering, the photon is observed in the laboratory
frame to be traveling in a direction (8~, rp~). If
both scatterings are Compton, then the observed
energy of the photon is obtained by two applica-
tions of Eq. (2):

BPP((u, E) 1 BPP
BE E Bx

1+E,(1 —cosH, —cos8, )
' (4a)

where the analytic form of the angular distribution
is given (for Thomson scattering) by'3

-~/& A ~1BP~:( ) ~(~/, ~)' =-', (x'+1) ' x 0, x=o
-& ~x& 0.

Since BP,"/Bx is a function of sample thickness,
it is clear that the energy profile BPp/BE will also
vary with sample thickness. We can thus antici-
pate that the energy profile of double-scattered
radiation will depend upon sample thickness as
well. This variation has been observed by Williams
and Halonen'~ in their Monte Cax lo studies of
douhle-scattered radiation, and it leads to funda-
mental diff icultiess in applying straightforward
extrapolation procedures to the problem of multi-
ple scattering.

The variation of the single-scattered profile with
sample thickness, even if all other expeÃ'mental
parameIers are held fix«, has not previously
been noted. It is not an artifact of our model, but
a f da e tal featu e of a Co pto -scatte '

g ex-
periment. This variation of the Compton profile
with sample thickness is, however, extremely
+mall. Even in our idealized model, the height
at the peak of the profile changes by less than 1'Po

Eo
1+E,(1 —cos8, )

'

while for a {It,C) event

E0

1+E,(l-cosH, )
'

(4b)

(4c)

As discussed in Paper I, there are Inany sets of
angles (H„y, ) and (H„y, ) through which a photon
may double scatter and emerge with final direc-
tion (8~, y~) in the laboratory frame. The above
equations (4) thus imply that a range of energies
will be observed for double-scattered photons at
any fixed angle Hp,

We define the energy profile I«, c& (E„k~) of
double-Compton-scattered radiation as the proba-
bility density that a photon Compton scatters ex-
actly twice and then exits in a direction k~ = (8~, y~)
with final energy E2. Conservation of pxobability

Of course, both scatterings need not be Compton.
In general, we may describe an n-tuple scattering
event by an ordered n-tuple (i „i».. . ,i„), where

i~ =C for a Compton event and i& =R for a Hayleigh
event. Equation (4a) thus describes a (C, C) event.
For a (C,R) event



MULTIPLE SCATTERING IN THE CON&TON EFFECT. II. . .

(or photons) implies tha't

@max BP2
dQ~ dE~ I(cc) (E~, k~) = ~ dQ~,

g eQ~

The following identification of the c profile fol-
lows directly from Eqs. (6) and (10):

where the upper and lower limits on E, are obtained
in Appendix A. Equation (6) represents the total
probability of observing double-Compton-scattered
photons within dQ~ of k~. In general, the energy
profile will depend upon many more variables than
those explicitly displayed in ~. (6), e.g. , attenu-
ation coefficient, sample geometry, and initial
photon energy, but for brevity we retain the no-
tation of Eq. (6).

A particularly simple and instructive case of
double scattering is that of scattering first from
a single electron and then from a spherical shell
of electrons centered on the first. The angular
distribution for such a system is

eP, "~ '
der do

BQ dQ dQ

Assuming Thomson scattering, we find as in Paper
I

dy, dx, 16 (x', +1) (cos'8, +1).
.P 0 6m ' 16m

{6b}
The integral of Eq. (6b) is evaluated explicitly
in Ref. 13, but here we seek not the angular dis-
tribution, but the energy profile. %e therefore
make a change of variables from (x„y,) to (y, e),
where y =x„and e =cos8, +cos6}2. Note that for
double-Compton scattering

30
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Given an e profile for some k&, the energy profile
for any incident energy E0 is easily obtained via
Eqs. (4) and (9). Thus only a single e profile is
required for each k~. If E, is employed as the
variable, a separate calculation of I&~ c,(E„k~) is
necessary for ea,ch value of E,. Thus use of the
e profile reduces the amount of computation con-
siderably. This observation holds only if the inte-
grand in Eq. (6) or Eq. (11) is independent of Eo,
which condition holds for Thomson scattering.

Since (see Appendix A) the e profile K&c ci (e, k~)
is independent of (p~, we ma, y integrate over y& to
obtain Kcc(e, x~), where as usual x~=cos8~. When

8~ =180', Kcc(s, -1) is a 6 function at e =0. As the
observation a.ngle 8~ decreases toward 90; +c
(e, x~) flattens out and widens. This behavior is
illustrated for several values of 8~ in Fig. 1{a),
and is in good agreement with the trends noted by
previous workers. ~'" In Fig. 1(b) we show the e
profiles of once-elastic-, once-inelastic- scattered
photons observed at the same 8~. These Kc„(or
K„c) profiles are also calculated analytically in
Appendix A. Note that these mixed profiles tend
to be flatter and far less sensitive '.o choice of

1+E,(2 —e.)
'

As shown in Appendix A, the above change of
variables yields an integral of the form

(6)
I.O- i ep = I5IPo

ep = II2.0'

The forms of the polynomials P(y) and Q(y) are
given and the integral (6} is calculated explicitly
in Appendix A.

Applying the chain xule, we have

86
I&c,c)(Ei kg) =K(c,e {e kt)

1= —,K(c ci (e, k~}, (9)
2

where E&~ c,(e, k~) is the probability density for e,
i.e., the "e profile. " Conservation again yields an
equation similar to Eq. (6):

' dQp=dQ~ Jt de Kicci(e, k~).
P ~ min

ep = 9I.4
l
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FIG. 1. ~ profiles for double-scattered photons in the
spherical-shell model. fa) Twice-Compton-scattered
photons; (b) Once- Compton-, once-Hayleigh-scattered
photons.
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observation angle than the pure double-Compton
profiles.

B. In611ife-radius-cylinder model

Thomson cross section; elastic and inelastic scattering

We now apply the method developed in Sec. III
A to derive r profiles for the sample geometry of
Payer I, i.e., a cylinder of infinite radius. We

again begin with the angular distributj. on of double-
scattered radiation'.

gdpgd~j
QP

dec "
dL,', pe "'2e "'3.

0 0

Three distinct cases of double scattering now ex-
ist: (C, Q, two successive Compton scatterings;
(C, R), a Compton scattering followed by a Ray-
leigh scattering; (R, C), a Rayleigh scattering
followed by a Compton scattering.

In each case we change variables to (e, y), where
& is the sum of the cosines of the Compton scatter-
ing angles and for (C, C) scattering y =x„while
for the mixed scatterings y is the cosine of the
Rayleigh scattering angle. The e profiles +c
(e, x»), Kca(e, x»), and Kac (e,x») are obtained by an
1,ntegrat1on over g:

3f„(&)

K~,~,(e, x») = ~y +(y), (13)
&g(&)

where J; =C or R. For generality we leave the
exact form of the cross sections (de jdQ;)», and
hence of E(y), unspecified for the Inoment.

This approach is quite general and may be ex-
tended to any order of scattering n, but with rap-
idly increasing difficulty as n increases. Unfor-
tunately, the integration of Eq. (13) is, in general,
not susceptible to analytic txeatment as was Eq.
(11). Numerical integration is therefore required
This introduces greater flexibility into the calcula-
tion, however, since numerical procedures can
accomodate a large variety of integrands. Thus,
as we shall see, variation of p, with energy of the
scattered photon, as well as differential scattering
laws more general than the Thomson cress section,
may be taken into account. Explicit expressions
for the three cases of Eq. (13) are derive, d in
Appendix B.

Tile 1111xed pl'of1les Kcs(e, x») aIld Ksc (6 ~x») aI'e
of interest because, unlike Kcc(e, x»), these dou-
ble-scattered profiles do not approach the single-
scattered profile in shape as 8~ approaches 180 .'
Thus it will not be possible to eliminate the need
for information about these profiles by going to

very high scattering angles, as it may be for
Kcc(e, x»). A rather surprising result emerges
from our calculation. The profiles Ksc(e, x») and

Kca(e, x») are not equ»valent for this geometry.
For a spherical scatterer, the two profiles are
equivalent, even for nonstationary electrons. '

In order to understand why (8, C) and (C,A)
scattering are inequivalent in this model as well
as to gain further insight into the shapes of the
various profiles, we examine in detail a further
simplification of our already simplified model. We
consider a very thin sample (v =0.001) and an ob-
servation angle 8~ with an isotropic scattering
cross section for both Compton and Rayleigh scat-
tering. Vfe shall deal only with double-scattering
sequences in a single plane, i.e., q, =0 in Eq.
(AV) (y» has already been taken to be 0.) Under
such conditions Eq. (AV) implies that if the first
scattering angle is 8, » 180'-6)&, then the second
angle 8, may be either 8» —8, or 360'- (8»+8,).
If 0, & 180'-8&, then the possibilities for 8, are
8&+ 8,. The probability of scattering in such a
thin sample is much less than j. and varies little
over the sample. Triple scattering will be essen-
tially negligible.

%e make the approximation that all photons
which scatter have their fj.rst scattering at the
center of the sample, z =0.0005. The distance
from this first scattering to the sample boundary
is just (see Appendix A of Paper I)

le =0.0005(i cos8„i

and the probability of scattering a second time
before escaping is

The quantity I', gives, within this crude model. ,
the profile of double-scattered radiation, where
the appropriate value of & will be determined by
whether the sequence of scatterings is (C, C),
(It, C), or (C, R). We note that P, & reaches a
maximum value of 1 when 8, =90 . That is, a
photon scattered first through 90 must double
scatter because of the finite-radius geometry. We
therefore expect peaks in our double-scattered
energy profiles corresponding to events for which

8, =90'. For (C, ff) scattering, e=cos8, and we
expect a peak at & =0. For (C, C) scattering
& = cos6I, +cos6), and we expect peaks at & = cos6)2
= cos(8» —90') and at cos(2VO' —8»). For (R, C)
scattering, & =cos&2, and the peaks should fall
at the same e values as the (C, C) peaks. With
8~=167, these peaks should lie at cos'77 and
cos103' or at &=+0.225, while at 6~ =100'„ the
values a.re e =+ 0.984.

The normalized profiles shown in Figs. 2-5
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illustrate this behavior. The locations of the
peaks agree with the above analysis far better
than might have been anticipated, though, of
course, the simple analysis becomes increas~~l

5.0

inadequate as (d increases, since the probability
of scattering is no longer constant throughout
the sample, and because triple scattering be-
comes significant.

We now consider the inequivalence of the (C, A)
and (A, C) profiles in a bit more detail. it is
clear that for e sufficiently close to zero, we
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FIG. 2. Normalized e profiles for double-Compton

J
scattering. Profiles are normalized so that

&min +g E', xp )d& = 1. (a) (u =0.001; (b) (u = 0.1; (c)
co = 5.0. Profiles change very little for cu & 5.0.

FIG. 3. Normalized e profiles for mixed double
scattering with ~ = 0.001. (a) Compton-Rayleigh; (b)
Rayleigh-Compton.
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that since & =cose, and P, & depends only upon
cos8, [via Eq. (14)] ICc„(s,xI, ) must be symmetric
about & =0. Also, since our scattering cross
sections are identical, for Compton or Rayleigh
scattering if we neglect coherent scattering, the
angular distributions (8P2/8Q, )~ ~, must be the
same for all (J„J,), since the integrand in Eq.
(12) is the same for all (J„J,). Equation (10)
appl. ied to the three types of double scattering
then implies that there must be some critical
values of tel, &c, beyond which the inequality
(15) is reversed, since the integrals over the
entire & profile must be equal. If we examine
the double-scattering events shown in Fig. 6, we
see that the probability of (C, ft) scattering with

& = cos10' is

I, 5-

I I
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2I," =1.015x10 '.
Hy symmetry, (C, 8) scattering at 170' has the
same probability. For (R, C) scattering with
&=cos10 we have
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FIG. 4. Normalized ~ profiles for mixed double scat-
tering with ~ = 0.1. tIa) Compton-Bayleigh; Q) Bayleigh-
Compton.

~'" +P'"' =1 044x10-'

and at & =cos170', the probability is

I' +I"3 =1 044X10 '.

6= cos l0'

&cs(s, ~p)+fisc(~, xp), s -0, (15)
l57'

"}I0

since such scatterings correspond to a Compton-
scattering angle near 90', and hence to the peaks
in the (C, R) profile as discussed above. We note

P2 = 0.5076 x f0

(R,C) 6 = cos l0' (R„C) 6 = cos lO'
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FIG. 5. Normalized E profiles for mixed double scat-
tering from thick samples (~ =5.0). (a) Compton-Bay-
leigh; {b) Bayleigh-Compton.

FIG. 6. Planar double scattering events with 0&
= 167',

l sl =oos10'= 0.9848.
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A similar analysis applied to any other set of
angles reveals that (a) the (R, C) profile is sym-
metric about & = 0 in this approximation, and (b)
for (e~ &ac we have

K„c(e,xp) &Kcs(e, x~),

i.e., there are two and only two points where the
(C, R) and (R, C) profiles cross. Also, the value
of &~ may be expected to increase with increasing
~, as the region around 90 where a second scat-
tering becomes highly probable widens with in-
creasing cu.

The true situation is, of course, considerably
more complex than the simple case discussed
here, since the actual cross sections are not
isotropic and since the overwhelming majority
of scattering events will be nonplanar. The some-
what surprising oscillations in the (R, C) profiles
seen in Fig. 3 presumably result from these fac-
tors. The figur es show that in all eas es asym-
metries about E = 0 are enhanced with increasing

Finally, the drastic changes in the shapes
of the double-scattered profile as we vary the
sample thickness do not bode well for simple
extrapolation procedures.

We note that many of the more striking features
noted above, such as oscillations, sharp peaks,
and asymmetries in the double-scattered profiles
are exaggerated by our model. In actual experi-
ments such effects should be less noticeable be-
cause (a) photons will be observed over a range
of scattering angles, so the actual observed pro-
file E«will be an integral of the form

1 2

I

K~ ~ ( e ) = J d xp K~ g ( &, x~ );

(b) photoelectric absorption will compete with the
scattering processes; and (c) a finite-radius cyl-
inder will eliminate the certainty of a second
scattering at 90', thus making maxima resulting
from 90' initial scatterings l.ess sharp.

We recall, however, as noted in Paper I (and
as will be shown numerically in Paper III), that
actual samples with high attenuation coefficients
are often "effectively infinite" in radius. The
effects of photoelectric absorption on the energy
profiles will be examined later in this paper, when
we consider the variation of p. with energy.

Finally, we note that as &, decreases, Kcc(e, x~)
becomes relatively flat, and the interval {E,.„,c,„) increases in width. Ksc(e, x~) always ex-
tends from e =-1 to e =1, but the oseil. lations
become less intense and the profile in general
flattens, except around

~
e~ = 1. On the other hand,

the single-scattered profile (for moving electrons)
narrows as 8~ decreases. One rough method of
correcting for multiple scattering in experiments

might be to measure Compton profiles at rela-
tively small angles and treat double-scattered
(and possibly all multiply-scattered) radiation
as a flat background, especially if the probability
of elastic scattering is low, since then Kcs (and

K„c) would be small. If desired, one could then
remeasure the profile at a higher angle to obtain
better resolution and use the low-angle data to-
gether with the theoretical angular dependence
of double scattering' to make the correction.

r' E~ ' E, Eo —sin (16)

reduces to the

Thorns

on expr es sion for elastic
scattering, for which E, = E,:

do'

dQ ~
= ~ (1+cos'6).

Thus any differences between (R, C) or (C, R)
Klein-Nishina profiles and the corresponding
Thomson profiles will. be smaller then differences
between the (C, C) profiles calculated with the
two different scattering laws.

In addition to differences in the normalized &

profiles Kcc(e, x~) for the various cross sections,
we must also consider the question of the absolute
e profiles Kcc(e, x~). Since

r
'ma BP,

deKcc(e «n) =
~ min

(18)

while for Kcc(e, «~) the integral gives unity, the
differences between absolute & profiles may easily
be obtained from the normalized profiles and the
a,ngular distributions sP, /sx~ which are given in

Table I. This problem has already been treated
analytically in Paper I for the isotropic differ-
ential cross section

(444);, 4

As a check on our numerical integration proce-
dure, both the analytic results of Paper I and the
numerical results obtained by integrating the
absolute & profiles are given for the isotropic
and Thomson cases.

2. Other differential cross sections

In Appendix B, we derive expressions for the
e profiles for general differential cross section
do/dQ with the only restriction being that dc/dQ
be symmetric about y =0." In this section we
shall compare Kcc(e, x~) for isotropic and Klein-
Nishina cross sections with the corresponding
& profiles calculated using the Thomson cross
section. We treat only double-Compton scattering
since the Klein-Nishina differential cross section
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TABLE I. Angular distribution 8P&/&x& for double Compton scattering.

0.001
6' = 100'

1.0 5.0
Op =167'

0.0{jl 1,0 5.0

Isotropic
Isotropic
Thomson
Thomson.
Klein- Nishina
Kle in-Nishina
Kl e in- Nishina

(E,=0.0174 MeV) '"
(E,=0.0595 MeV) b d

(Eo= 0.159 Mev)

0.204 xl0 '
0.195 x10 '
0.1686 x10 '
0.1689 x10 '
0.1711x10-5
0.1700 x10
0.1636 x10 5

0.3620x10 ~

0.3623 x10 '
0.3405 x10 '
0.3405 x10 '
0.3373 x10 ~

{j.3294 x10 &

0.3135x10 &

0.3822 x 10 &

0.3824 x10 '
0 3615xl0
0.3618 x10 '
0.3576 x10 '
0.3485»0-'
0.3297 x10 '

0.195 x10 '
0.193»0 '
0.1293 x10
0.1280 xl0 5

0.1322 xl0 '
0.1299 x10
0.1181x10 5

0.1244
0.1244
0.1144
0.1144
0.1142
0.1122
0.1058

0.1704
0.1704
0.1643
0.1643
0.1639
0.1611
0.1519

' Calculated analytically as in Paper I (Ref. 6).
Obtained by numerical integration of &c~(&,x&).
Mo Rex rays.

Am p rays.
Te p rays.

In Fig. 7, we compare normalized c profiles
calculated from the Thomson cross section with
those from the Klein-Nishina cross section at in-
cident energies corresponding to the standard
x-ray and y-ray sources. Use of the Klein-
Nishina formula appears to make little difference
for x-rays and, somewhat surprisingly, the high-
angle y-ray profile is quite similar in shape to
that given by the Thomson cross section. At
smaller angles the differences become more
marked. Table I suggests that the absolute pro-
files will differ somewhat more than the normal-
ized profiles of Fig. 7.

In Paper I it was concluded that differences be-
tween normalized angular distributions calculated
using different differential cross sections decrease
with increasing cu. This does not appear to be the
case for energy profiles. The difference between
the Thomson and the Klein-¹ishina profiles for
either Mo K+ or Am radiation does decrease with
sample thickness. However, the opposite behavior
is observed in comparing the Thomson and iso-
tropic profiles, while the difference between
Thomson and Te y-ray e profiles appears to al-
most independent of ~.

Eo = O.OI74 MeV

Eo = O. I59 MeV

50-

2.5-

-I.2 -I.O -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 I.O I.2

2.6- THOMSON

K-N E = O.OI74 Me Vo

multiply the values of (sP2/sQ~)cc and Ifcc(c,x~)
by fc

Since, however, the p; and hence the f; vary
with energy, the above ayyroach may be a rather
crude approximation. Profiles K c(e,x~) for water
were therefore calculated in the following manner,
which takes into account the variation of p with

3. Variation of attenuation coefficient with photon energy
2.5- K N Eo OI59 MeV

In Appendix B we define f, as the probability that
a photon-electron interaction is of the ith type,
where i =C for Compton scattering, 8 for Rayleigh
scattering, and v for photoelectric absorption. %e
have

fj =p(lp,
where p, = p~ + pz + p~. Photoelectric absorption
is thus accounted for in the f& factors.

One method of treating this photoelectric absorp-
tion in (C, C) scattering, for example, is simply
to assume constant values-for the p, &'s and then to

2.5.

2.2-

2.0-

I.9-

l.8 1 I

-0.25 -0.20 -O. I5 -0.IO
I 'I I 1

-005 0 005 OIO OI5 020 025

FIG. 7. Normalized e profiles for double-Compton
scattering with cu =1.0. (a) ~&=100; g) 0&=167 .
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2.5-
CONSTANT p

———— VARIABLE p Te

2.4-

Q) 2.3

'~ 2.2-

2.I-

FIG. 8. Effect of vari-
able attenuation coeffi-
cients on normalized E

profiles for double-Comp-
ton scattering from water
with cu =1.0 and gp =167'.

2.0-

l.9 I I

-0.25 -0.20 -O. I5
I I I

-0 IO -0 05 0
I I I I

0.05 0.IO O. I5 0.20 0.25

energy: Tabulated values" of the ILI, , were graphed
and values of p and p, were compiled from the
tabulations or, if necessary, from the graphs for
energies ranging from 0.005 to 0.160 MeV in
0.005-MeV increments. The numerical integra-
tion (see Appendix B) to give Ifcc(e, x~) was then
carried out using a program which linearly inter-
polated to obtain the values of p and p,, at energies
between those for which p. and p,, were stored.

As Fig. 8 shows, for either Mo Ka or Te radia-
tion, the normalized profile, i.e. , the shape of
the double-Compton-scattered spectrum, is
changed very little by the inclusion of variable
attenuation coefficients. Angular distributions and
hence absolute (C, C) profiles appear to be affected
somewhat more than normalized profiles. It ap-
pears that neglect of the variation of ILI. with energy
may introduce errors of about 10%%up in (8 P,/SQ~)
for x-ray photons and about 4% for y rays. In

Table II we compare some e profiles and angular
distributions calculated with and without allowance
for the variation of p. . Note that since p decreases
with energy in the region of interest, the absolute
profile calculated by allowing p. to vary will always
lie below the absolute profile obtained under the
simpler assumption that p is constant at the value
corresponding to the incident radiation. The dif-
ference is roughly twice as large for x rays as for
y rays. Note also that the asymmetry of the e pro-
file is enhanced by the variation of p, , again much
more so for the lower-energy photons.

IV. SUMMARY AND CONCLUSIONS

Defining a variable e as the sum of the sum of
the cosines of the Compton-scattering angles, we
have derived a method for calculating c profiles
for any primary scattering angle greater than 90'

TABLE II. Absolute & profiles and angular distributions for double-Compton scattering from
water with ~=1.0, ep =167'.

ED=0.0174 MeV (Mo Ku)
10 xf c2 Kcc(,zp) 1P2 xKCC(, xp )

Fixed p Variable p

ED=0.159 MeV (Te)
fc cc(E zp ~ Kcc( ~zp j

Fixed p Var iable p

—0.200
—0.140
—0 ~ 100
—0.039

0.000
0.039
0.100
0.14P
0.200

0.4844
0.5234
0.5548
0.5872
0.5934
0.5872
0.5548
0.5232
0.4840

0.4303
0.4705
0.5010
0.5323
0 ~ 5386
0.5335
0.5039
0.4743
0.4349

0.2195
0.2371
0,2513
0.2660
0.2688
0.2660
0.2513
0,2370
0.2193

0.2084
0.2273
0.2417
0.2565
0.2594
0.2568
0.2425
0.2280
0.2089

0.2425 0.2190 0.1099 0.1058

Calculated by numerical integration of the absolute E profile.
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for three possible sequences of double scattering
from stationary electrons in a cylinder of infinite
radius. Double-scattered energy profiles can
easily be obtained from these e profiles. The scat-
tering sequences treated are two Compton scat-
terings (C, C), a Compton followed by a Rayleigh
scattering (C,R), and finally Hayleigh-Compton
(R, C) scattering. The latter two cases have been
found to be quite different for the sample geometry
used here, though the difference is not experi-
mentally observable.

For (C, C) scattering, the e profiles were first
calculated using the Thomson differential cross
section and a constant attenuation coefficient.
Variation of either the primary scattering angle
8~ or the sample thickness resulted in sizable
changes in both the shapes and magnitudes of the
prof iles.

The use of cross sections other than the Thom-
son was also studied. At the low energies used in

Compton x-ray experiments, differences resulting
from use of the Klein-Nishina expression are
small, as expected, but for high-energy Te y-ray
photons these differences become significant.

Calculations which allowed for photoelectric
absorption and the variation of attenuation coef-
ficient with energy of the scattered photon showed
that the latter effect is considerably greater for
0.017-MeV x rays than for 0.159-MeV y rays.
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do 1
= —(cos28, + 1)

dQ, „n~
X

1 if —1 ~ cos8 ~ cos8C

Z if cos8, ~cos8,. ~0, (A3)

ns = 2x[—,'(Z+ 1)+ (x,'/3+x, )(1 —Z)], (A4)

where x, =cos8, .
For the cross sections considered here, the

integrand in (Al) is symmetric about y, = x, and
thus

Qp „0 l~ dQi r dQ2 g

From Paper I, we have

cos&, =sin&~sin&, cos(y~ —y, )+cos&~cos8, .

(A5)

(A6}

Since the problem also possesses symmetry
about the polar (cylinder) axis, aP, /aQ, is in-
dependent of cp~, which for convenience we set
equal to zero in (A6) to obtain

cos8, = sin8 sln8p cosp + cos8p cos8 . (A7)

A change of variable, from (x„y,) to (y, e) is
made for the three cases of (C, C), (C, R), and

(R, C) scattering.
Case I: (C, C) scattering. For this case we let

&=cos8, +cos8, and y=x, . Then

(A8)

The Jacobian for this transformation is

where Z is the atomic number of the scatterer,
8, =Z't'/E(keV), and ns is the normalization con-
stant:

APPENDIX A: DOUBLE SCATTERING IN THE SPHERICAL-

SHELL MODEL

We derive here e profiles for radiation scat-
tered first by a single electron and then again
by a spherical shell of electrons centered on the
first. We begin with a somewhat more general
form of Eq. (6a):

8p, ~" "'
der dg

dy, dx
Qp 4 "-1 dQi r dQ2

(A1)

(
do 3 (cos'8; + 1),

dQs c 16m
(A2)

while for elastic scattering (including coherent
scattering at smal. l angles),

where I and J may be either C or A depending
upon whether the scattering is elastic or inelastic.
Only Thomson scattering is considered here, so
that

a(x„y,) ay, —1 a cosy,
a(y, e) ac (1 —cos'y, )'" a»

The region of integration in Eq. (A5) is
((x„y,): -1~x,~l; O~y~w). Figure 9 is the
image of that region in the (y, e) plane when cos&~ =

—0.9. Note that for a given E, y may range from
some lower value y, to some upper value y„, both
of which are functions of E. For a given x~, the
upper and lower limits on a are obtained by let-
ting q, vary from 0 to m. Thus the boundary in
Fig. 9 corresponds to points in the (x„y,) plane
with p, =0 or m, or with x, = + 1. Note that for
boundary points with y, =0 or m, cos'y, = 1 and
the Jacobian, Eq. (A9), becomes infinite. This
Jacobian expressed in terms of E, y, and x~ ex-
plicitly is

a(x„y) 1

a(y, &) IQ(y)l'" '
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gu(0 2)

(der/dQ, ),(dc/dQ, ),(c,c& ) p y
[q( )]&g2

&J'& P(y)
„t.&

[Q(y)]'"

FIG. 9. Region of integration in the (y, e) plane when
co88& =- 0.9.

(chic&( 1 n) 16&& rt y
[ ( )]y/p

where the C„are the coefficients of y" in P(y),
Eq. (A12).

%'e define the auxiliary functions

(A13)

4

E(c c&(& & k&) = 2 16 g C&P+(a&b~ c)~ (A14)
&6~

x"
H„(z„z„a,b, c) =- dx „

where P(x) =ax +bx+ c is a quadratic in x. These
functions are evaluated explicitly in Appendix C
for a specific class of quadratics p(x).

The results of Appendix C show that

Q(y) = —2(1+xp)y'+ 2&(1+x~)y+ 1 —e' —x~

(A10)

is a quadratic in y whose coefficients depend upon
& and x&. Since y„and y, are on the boundary of
Fig. 9, they correspond to points for which (1—
cos')I)&,)'~' = 0, i.e., the roots of Q(y):

y„(e) =-,'(a+ [&'+2(l —x~- &')/(1+x~)]'~'],
(All)

y&(&) =-'9 —[&'+2(I-x', —~')/(1+x, )]'").
Making the transformation of variables from

(A5), we obtain

(dc/d~l, )g (do /d~ l, )g

sg, J, „„& [g(y}]'~'

Assuming Thomson scattering, we let

»=(::,).(::.).
Identifying y with x, and using Eq. (A7} yields

P(y) = (3/16F} [y —26y + (f + 2)y + 2@'y+ 1+8 ].
(A12)

P(y) is thus a polynomial in y whose coefficients
depend only on q. The upper and lower limits

and & occur when the two roots of Q(y),
y„(c) and y, (&), coincide. Thus, setting the terms
in Eq. (All) equal we have & =- c =[2(1
+ x~)]'".

As in Eq. (11), we identify the z profile

where

B„(a,b, c) =H„(y„y„,-ac,bc, co), (A15)

Then

Y —6X~
0-+)"*))—~')'") '

The Jacobian for this transformation is

6 (xg, )Icy)

e(y &) sy [R(y)]'" '

where, like Q(y), R(y) is a quadratic in y whose
coefficients depend upon & and x~:

R(y) =-y +2fxpy+ 1 —6 —xp,

The roots of R(y) are

y (&) =~x +(1-x')'~'(I —&')'~'

y, (a) = ex~ —(1 —x~)' ~'(1 —e')' ~'.

Proceeding as in the (C, C) case, we have

(A17)

(A18)

where the cross sections (dc/dA, )z are given by

and y, and y„are the roots [Eq. (All)] and ac,
bc, and cc the coefficients (A10) of the polynomial
Q(y). Note that both the coefficients C„and the
arguments of the H„are functions of a.

Case II: (C,B) scattering. For this case, let

xx with -1~&~1,
y=x, with y, (&)~y~y„(a).
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Eqs. (A2) and (A3). Noting that the Compton cross section is independent of y, we again identify the
& profile:

d(r t
y(((k) (d(r/dQ2)R

K&c R)(&, k~)=2 J] dx
[ (

)2]" . (A19)

Utilizing the analogs of Eqs. (A13) and (A15), we obtain

H2(aR, b R, cR)+Ho(aa, bR, cR), if y„(e)—y,3, 1
IC, ,(c,k)=y (c'y() —xI Z(H, (y„(c),y„ck, c, l+H, (y„(c),y„ck„,, )]16

+H, (y„y)(e), aa, b R, cR)+Ho(y„y)(e), aR, b R, cR), if y, (y„(e).

(A20)

Case III: (R, C) scattering. For this case, let

& =x, with -1~&~1,

y =x, with y)(e) ~y ~y„(e).

Then

and the Jacobian is

s(x„V,)
])(y, ~) ])~ [R(y)]'" '

with R(y) as in Eq. (A17) and y„(e) and y)(e) the
roots of R(y).

Proceeding in a by now familiar manner, we
have

])Q, , dQ, „„,[R(y)]'"
C

which is equivalent to Eq. (A18). Thus

d(r y~" ' (d(r/dQ, )„
K(R, C)(&y k)) =2

dQ
dy R 3'

(A21)

(A22)

which on substitution of the cross sections is seen
to be identical to Eq. (A19), so that in this case

K(R, c)(fy kP) =K(c, R)(ty k~).

l,'. is the distance between the ith and (i+1)th scat-
terings; l, is the distance between ith scattering
and the cylinder boundary along the direction of
motion of the scattered photon; fr is the proba-
bility that the (i+ 1)th scattering will be of type I;
(d(r/dQ)r is the Jth type of differential scattering
cross section (normalized to 1) for the ith scatter-
ing, a function of case,. (but not of p,.), E,. „and

We recall that p. , is a function of E,-, the photon
energy after the ith scattering, which itself de-
pends upon E, , and the ith scattering angle, via
Eq. (1). Since

fr;=&r,
»

the f» are also functions of the E,.
5

The angular distribution of double-scattered
photons for the above model is defined analogously
to Eq. (Dl) of Ref. 13:

ao go
"()'Ofo&0 o

p 0

X d (I() l dXl

i' I[ ie "~"f (AD
2 2'dA2 ~

APPENDIX B: DOUBLE SCATTERING IN THE
INFINITE-CYLINDER MODEL

We treat here a slightly more general model of
scattering from an infinite-radius cylinder than
employed in Paper I. In order to allow for inclu-
sion of processes other than Compton scattering,
cross sections other than Thomson, and the varia-
tion of attenuation coefficient with energy, we
adopt a modified notation: p. , is the attenuation
coefficient between the ith and (i+ 1)th scatterings;

where lo = t for cylindrical samples. Interchanging
the order of integration and recalling the symme-
try about y, =0, we have

=2f dy, dx f,

x L(t, k„kq, iro, ))„p,,), (Bl)

where the geometry-dependent terms have been
grouped together as
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The relations of Paper I give

I (t) kx) kp) &o) &i) &2) =
((I"i P 2&i/ &p)

e -(00-ll2/xp)t ] e-(l40-it[ /3cp)t ~-r«~, «o
&o- &2/xp &o- &i/xi

(lt O if@ /xp)t e (@0 lt'2 /xp ) t e (lt y /xy lt 2 /ft"p) t
+ if 0 ~ x, ~ 1.(82)

&o —ti2/"P tio —ti) /xg

Whenever the denominator of some term in Eq.
(82) is zero, the function assumes the form 0/0.
Straightforward application of l'Hopital's rule then
shows that the function L is uniformly continuous.
It should be noted, however, that I. is not smooth
at xy Oo

The angular distribution (Bl) is similar in form
to those of Appendix A; the new features are the
exponential attenuation terms in the function
f.(t, k„kp, po, p, „p2) and the energy-dependent
terms [e.g., f, , ti, , and in some cases (dk/dQ;)].
The same changes of variable as in Appendix A
will yield the & profiles. However, because of the
energy-dependent terms in the integrand of the
transformed integral, the y integration must, in
general, be performed numerically.

With the above remarks and reference to the re-
sults of Appendix A, the expressions for the e
profiles are now easily derived.

Case I: (C, C) scattering.

After some algebra, Eq. (83) takes the form

SgP

x L(t) ki, kp) &o) ~i) t"2)

Case II: (C, A) scattering. In this case we have

+(c,R)(e) kp)

d„ fi(«/df12)Rf (t) ki~ kp) &o) &i) &2)

[R(y)l'"

with

-1«e &1

(do/dA, )c(der/dQ2) c

x f,(t, k„kp, tp„ ti„ ti2), (83)

and

y„(e) =exp+ (1 —x2p)~2(1 —~2)'+

y, (e) = exp —(1 —x2p)~2(1 —e2)~'.

with

-[2(1+xp)]'t2 ~ e ~ [2(1+xp)]'t2 (84a)

y„(e) = ~+ [e2+ 2(1 —xp —&')/(1+ x,)]'") (84b)

y)(e) = e —[&2+ 2(1 —xp- e')/(lxp)]'t2. (84c)

Q(y) is given by Eq. (A10) and from Eq. (A7), the
cosine of the second scattering angle is

x, = (1 —y')' ~2(1 —xp)' ~' cos(t) + yxp.

Since y„and y, are the roots of Q(y), the inte-
grand diverges at the limits of integration and for
the actual numerical quadrature we therefore
change variable to

2(-a~)'~2 dy

[e(»]'"
-2 . , 3a~+ b~

R(y) is given by Eq. (A17), and since we have
made the transformation Y =x„ the function
I.(t, k„kp, g„p„p2) defined in Eqs. (Bl) and (82)
is independent of p and may be taken outside the
integral. We make a change of variable analogous
to Eq. (85),

2 (-aR)'t2 dy
R

& [R( y)]l/2

2a~&'+b~

and finally obta). n

do'
&(c R)(~ p} . (»~2 -fo d„ C

dv+f (t)ki)

"pleo~~&i~

&2) dzRfi
-1 8

(BS)
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Case III: (R, C) scattering Now

K,s c)(e, k, )

='(::)
(aa/an, )„L(t,k„kp, p~, p(b i),,)

[R(y)]'"

or, with the change of variable of Eq. (87)

+(s.c)(e k) )

�

jr d(7

(- )'"f' an, ,
l
«sf( an L(t, k„ky, P., I „I,)

I R

(89)

x
[p (x)] (2 J+() /2

(m —2J)a [p (x)]"
(2m —2J —1)b x

2(m —24)a [p(x)]"/"' '

(m —1}c x
(m 2J)a [p(x)] (2z+()/2

Thus for m =4, J =0, we have

x4
bb, (c, , bc)= f dc,

(x', g 7b x'
= —[p(x)] ' —— a»

4a Sa [p (x}]'"
3c
4a [p(x)] ' '

(810}

Since all the e profiles are independent of p~, we
may define

K~, (e, x,) = 2 zK(/ ~ ) (e, kp) .

The function L in the integrands of Eqs. (86)
and (89) is not smooth at y =0. These points cor-
respond to the values z, =zo(0) and z„(0) in Eqs.
(85) and (87), respectively. In the actual calcula-
tions, each point in the e profile for x~ =cos6~
was evaluated using a 48-point Gauss-Legendre
quadrature from -1 to zo, another 48-point quadra-
ture from zo to 1, and then summing the two por-
tions. These e profiles were integrated over all
allowed c using n 20-point Gauss-Legendre grids
to yield the value of the angular distribution at x~.
The value of n required to obtain good agreement
with the analytical Thomson angular distributions
of Paper I varied from 1 for ~ & 0.5 to 10 for
0.001 ~ (d & 0.05.

so that

K, (x, a, b, c}= —[p(x)] ' ' ——K,(x, a, b, c)

3C——K, (x, a, b, c).

Reference 17 also gives

K, (x, a, b, c),
56' 3bc
16a' 4a'

~ (c, ,bc) =
(b

—
b .) (b (*)('*

Sb' c+,— K,(x, a, b, c),8a2 2a

K, (x,a, b,c) = —[p(x)] ' — Ko(x, a, b, c).

APPENDIX C: FUNCTIONS X„,H„, AND H„

Consider a polynomial

p (x) = ax' + bx + c .

We wish to evaluate integrals of the form

g2 xn

[ p(x)
for n =0, 1, 2, 3, 4.

Define

Xnt
X (*, , b, c)-td* ( ( )),*.

Reference 17 gives the indefinite integral

For the polynomials Q (x) and R(x) of Appendixes
A and 8 it can be shown that (i) a &0; (ii) b'& 4ac;
(iii) ~2ax+b~& (b2 —4ac}'/'. Then from Ref. 18,

-1 . , 2ax +6")
The definite integrals H„are now defined as

2 x"

)p (X) i/2

=K„(z„a,b, c) —K„(z„a,b, c).

1,st r, &r, be the two roots of p(x); r, and r, are
real by virtue of condition (ii) above. The functions
II„(r„r„a,b, c) then simplify to the f(mctfons

H„(a, b, c):
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H, (a, b, c) = n/(-a)~'

H, (a,b, c) = (-b/2a) Ho(a, b, c),

H, (a,b,c)=, H, (a,b, c),
3b' —4ac

8a'

H, (a, b, c) =—,—,H, (a,b, c),
56' 3bc
16a' 4a'

3554 30''c 12c'
H (a,b,c) =

128 32a' + 32a' H (a,b, c).
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