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Using hyperspherical coordinates and a Born-Oppenheimer—type expansion, the potential curves of H™ that
converge to the n = 1 and n = 2 thresholds of hydrogen are obtained. From the computed potential curves, the
properties of bound states, Feshbach resonances, and shape resonances are conveniently studied.

I. INTRODUCTION

The existence of resonances in electron-hy-
drogen scattering was first indicated from the
three-state close-coupling calculation by Burke
and Schey' in 1962. Since then, many theoretical
methods? have been employed to obtain the posi-
tions and widths of these resonance states. The
results of these calculations are in harmony with
existing experimental data.

Most of these methods are based either upon
close-coupling expansion® of the total two-electron
wave function in terms of target eigenfunctions
or upon the Feshbach projection operator which
separates the elastic scattering channel from the
total scattering eigenfunctions.* The actual cal-
culations used in these methods are essentially
variational in nature, and very often only a few
quantities can be extracted from a large calcula-
tion. The dynamic correlation between the two
electrons which determines the computed values
is not studied.

Recently, we used hyperspherical coordinates
to study the electron-hydrogen system,®”” with
the spirit of solving the two-electron Schrddinger
equation directly. The method is designed such
that some meaningful intermediate results can
be studied. Interesting results have thus been
obtained. In particular, we have been able to
trace the origin of the difference in the autoion-
ization rates of the doubly excited states of heli-
um.’ Quantitatively, this approach also gives a
fairly good result for the bound-state energy of
H~ and the 1S° elastic electron-hydrogen scatter-
ing phase shifts.® In a recent communication,”
the author has shown that the ' P° Feshbach and
shape resonances of H™ can be predicted accurate-
ly using this approach. In the present paper we
describe the calculational methods used and give
a detailed analysis of the other resonances in H™
lying below the n =2 threshold of the hydrogen
atom.

In hyperspherical coordinate system, the posi-
tion of the two electrons with respect to the nu-
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cleus is treated as a point in six-dimensional
space { R, a, 6,, ¢, 6,, ¢, }, with R =(#2+7%)"? and
a =arctan(r,/7,), where », and 7, are the distances
of the two electrons from the nucleus and (6,, ¢,)
and (6,, ¢,) are the usual spherical angles. In
this coordinate system, R measures the size and
Q={a, 6, ¢,,6,, ¢,} denotes the orientation of the
whole system and of their relative positions.?
Since the angular coordinates are confined to finite
ranges, the kinetic energy (velocity) associated
with angular motion is larger (faster) than that
associated with radial motion.® This is particular-
ly true at small R, because the kinetic energy
associated with angular motion is scaled as 1/R?
and that associated with radial motion is d*/dR2.
The fast angular motion produces an effective
potential for the radial motion. Thus we treat
this problem in a manner analogous to diatomic
molecular problems by expanding the total wave
function as (R, Q) =2, F ,(R)®,(R; Q),'° where
®,(R; Q) is similar to the electronic wave function
at a fixed internuclear distance R and F/(R) is
similar to the vibrational wave function in the
diatomic case. In the first approximation, the
couplings between radial and angular motions are
neglected.

The properties of angular wave functions
¢ ,(R; Q) and their associated potentials U ,(R)
have been studied in I for He.® The qualitative
behavior of ®,(R;Q) in H™ is not much different
from that in He, but the shape of U,(R) is very
different because the interaction in the asymp-
totic region (at large R) is different. Section II
presents the numerical method used in this cal-
culation and its comparison with other methods
used in previous calculations. The resulting po-
tential curves and computed eigenvalues for the
resonances are presented in Sec. III for 35° and
L3p? states. From these curves several mis-
conceptions about H™ are pointed out; they re-
sulted from numerical artifacts by using very
simple and limited trial wave functions in the
variational calculations. In particular, we con-
clude that except the ground state there is no
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other possible bound state of H™ associated with
the n =1 limit of H. Also, there is no other pos-
sible shape resonance associated with the n=2
threshold of H except the !P° shape resonance
discussed in Ref. 7. This last conclusion differs
from the recent results of Herrick,'" where a
3P° shape resonance is reported. Finally, the
potential curve associated with the nonautoionizing
2P23P¢ state is computed. This state is only
barely bound, its position is obtained by applying
effective range theory.

II. NUMERICAL METHODS

For each total orbital and spin angular momen-
tum L,S and parity m, the two-electron wave func-
tion Y(R, ) is expanded as

U(R,Q)=(1/RY?)Y_ F,(R)®,(R; Q). (1)
U
Substituting (1) into the Schriddinger equation in
hyperspherical coordinates, a system of coupled
differential equations

d2
<ﬁ_uu(m+zE>Fu(R * 2 Wy RIF,. <R>=0()
2

is obtained. (Atomic units are used throughout
this paper unless otherwise indicated.) In Eq.
(2), the diagonal coupling term W, ,(R) (which
is often neglected in the molecular calculation)
and a factor 3.75/R? resulting from elimination
of the d/dR term in (2) are included in the def-
inition of the potential U,(R) in each channel,
i.e.,, Uy(R)=V,(R)-W, ,(R)+3.75/R?, where
V,(R) is obtained by solving
[(A* =RC)/R*]®,(R; Q) =V, (R)®,(R; Q) (3)
at each R. Explicit expression and detailed dis-
cussions of the coupling term W, ,,, the gen-
eralized angular momentum operator A and the
total Coulomb interaction —C/R are given in L.
Equation (3) is an eigenvalue partial differential
equation which has been solved using three dif-
ferent methods. In the following, we give a brief
description of, and some comments on, each

‘I)p(R;Q)z

[1112]

method.

1. Diagonalization. This method is used in I
and has been used by other workers in related
problems. Essentially, one uses the eigenfunc-
tions of the A% operator as basis functions to
evaluate the matrix elements of C. The eigen-
values of (3) at each R are obtained by diagonal-
izing the resulting matrix of (3). This method
is efficient at small R, where reasonable ac-
curacy can be achieved by using a limited number
of basis functions. However, at modest and large
R, where the a-dependent part of the angular
function @ ,(R; ) approaches hydrogenic behavior,
the diagonalization method is very inefficient,
because a large number of basis functions® (whose
a-dependent part is proportional to Jacobi poly-
nomials) are needed. The slow convergence is
also encountered in the variational calculations
of the helium ground-state energy done recently
be other workers.'? This method serves the pur-
pose of I because only qualitative features of
®,(R;Q) at small R are studied. In Ref. 6, this
numerical difficulty is somewhat avoided in 'S
because of symmetry.*?

2. Numerical integration. The partial differen-
tial equation (3) is reduced to a system of coupled
equations in @ at each R by expanding ®,(R; Q)
as

Eg“ 2/(R; @)y, 12LM(771;'2), (4)

and by integrating over spherical angles 7,
=(6;, ¢;). In Eq. (4), the expansion into partial
angular momentum (/,, [,) can be truncated to
only a few pairs for the low-lying excited states
studied here,'* each pair coupled to total angular
momentum L described by Y, , LM( ,7,). This
method was used by Macek'® to calculate the po-
tential curves for helium. The eigenvalues are
obtained by imposing appropriate boundary con-
ditions at @ =0° and 45° for each L,S and 7. This
method is accurate, but the eigenfunction ¢ ,(R; Q)
cannot be studied easily.

3. Finite-differvence method. This method is
used in the present calculation as well as in Ref.
7. Here, ®,(R;Q) is expanded as

1 A _ o~
N Z [gfxlllz)(R; a)‘ylllzLu(rxrz)*' (= 1)t L+sg£lllz)(R; %”_a)‘ylzl LuT7,)). (5)

In (5), the proper symmetry for each L, S, 7 is written down explicitly for each (/,/,), and the summation
in (5), unlike in (4), is over pairs of /,/, only, i.e. [1,l,] is not different from [/,/,]. By substituting
(5) into (3), we obtain a system of coupled equations as in method (2), except that the structure is dif-

ferent. Explicitly, we get
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a2 L+l L +1)
da? cos’a sin®a

+R Z [C'l‘z-’ilz’ (a)g&tixéJ(R; a)+ (= 1)11'+x§ —L+sC,1,

Li{73)

where

cllxz.lilé(a) = < ‘yllszM(f'U 722)' Cl (yxiléLu(;u ;.2)>
For I, #!,, the number of coupled equations
in (6) is half of that in method (2). These coupled
equations are most conveniently solved using finite
differences. If a second-difference method is
used, an ordinary differential equation is reduced
to a symmetric tridiagonal matrix. Very accurate
eigenvalues can be obtained if the mesh size is
sufficiently small and extrapolation to zero mesh
size is used.!® In Eq. (6), if only one [!,/,] com-
ponent with /, #[, is retained, the resulting ma-
trix is not tridiagonal but has skew-diagonal terms
originating from gf,’l'z)(R; 37 —a). The matrix
form of the general coupled equations (6) can be
separated into blocks, each diagonal block having
the structure described above for each [{,l,].
The off-diagonal block between [,l,] and [1;l;]
has nonzero matrix elements along the diagonal
and skew-diagonal only. When [, =/,, all of the
skew-diagonal matrix elements mentioned above
also vanish. In the present calculations, two dif-
ferent mesh sizes are used at each R. Choosing
45-60 points within 0 <a <90°, the adopted eigen-
values V, at each R are obtained by extrapolation
using a quadratic expansion in &, E,=V, +bh?
where E, is the computed eigenvalue from matrix
diagonalization when the mesh size is 2. This
method is very easy to program and is efficient
provided a suitable diagonalization subroutine is
available for a sparse matrix. In the present
calculation, we use a general diagonalization sub-
routine for symmetric matrices, as no more
suitable programs are available. Therefore the
present calculation is limited to include only two
sets of [1,/,]. This is adequate for the cases
studied below.

III. RESULTS AND DISCUSSIONS

A. Elastic scattering channels

The lowest 1'3S¢ and ! '3P° potential curves of H™
that converge to the ground state of H at large R
are shown in Fig. 1. Each corresponds to an ef-
fective potential seen in the elastic e-H scattering
at that particular L,S and n. Only the 'S¢ curve
shows an attractive well at small R; this potential
well is strong enough to support a bound state,

+R2V“(R)>gfj1‘z)(R; @)

(a)gH'2(R; 31 —-a)] =0, (6)

,
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corresponding to the ground state of H™. Results
of the computed ground-state energy and elastic
phase shifts were previously reported in good
agreement with other calculations. From the com-
puted 'S° curve, we conclude that only one bound
state can be supported, arguing either from the
value of the WKB phase integral near the ioniza-
tion limit!'® or from Levinson theorem!” applied to
the phase shifts computed from this curve.® The
smooth 1S¢ curve also rules out any possible shape
resonances near the n =1 threshold. The so-called
1s2s'S state of H™ reported by Rudkjgbing and co-
workers!® can in all likelihood therefore be attri-
buted to numerical artifacts arising from the rough
variational wave functions used. Our conclusion is
in agreement with the majority of other, more
sophisticated calculations and with experiments.'?
Similarly, the potential curves for 35¢ and !*3P°
states shown in Fig. 1 also exclude any possibility
of bound states or resonances near the n=1 thresh-
old of H. Again, the so-called 152s 3S° and
1s2p13pP° states computed by Rudkjgbing and co-
workers'® are probably due to numerical artifacts.
It must be pointed out that our methods do not as-
sume the existence of any bound states or reso-
nances prior to the calculation, in contrast with
variational calculations where unphysical results
may emerge from calculations if unphysical con-
straints are imposed on the trial wave functions.
Furthermore, the existence of resonances, how-
ever narrow, should be evident from the computed
potential curves. An example of this is the P°

Uu(R) (Ry)

L 1

4
R (bohr

FIG. 1. Potential curves of H~ that converge to the
ground state of the hydrogen atom.
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shape resonance above the n =2 limit of H reported
in Ref. 7. This is in contrast to the close-cou-
pling-type calculation where a narrow resonance
may escape notice if the phase shifts are not com-
puted at closely spaced energy points.

It is interesting to note that the shape of the 'S¢
and 3S¢ curves shown in Fig. 1 are very similar to
the familiar 2Z; and ?Z curves of H,". Actually,
the origin of the shapes of potential curves in these
two cases is identical. In H,*, the repulsive >,
curve results from the antisymmetric character
of the electronic wave function, with a node midway
between the nuclei. In the 3S state, the repulsive
behavior of the potential curve comes from the
antisymmetry requirement of ¢,(R; ), with a
node at o =45° for every R.

The elastic phase shifts computed from the 35¢
and !'3P° curves are not as accurate as those de-
termined from other variational calculations. For
these systems, the electron-electron correiation
effects are not very important since the electrons
do not penetrate effectively near the nucleus to-
gether and thus do not interact strongly. In such
systems, calculations starting with a single-par-
ticle model are often more accurate. We can im-
prove the computed elastic phase shifts by includ-
ing the coupling terms W, . with higher curves.®

B. Doubly excited channels

The two curves of !'35¢ and the three curves of
13p° gstates of H™ that converge to the 7 =2 limit
of H at large R are shown in Fig, 2. The proper-
ties implied by the 'P° curves and the crossing
between the curves designated by “+” and “-” are
reported in Ref. 7.

It is noted that the 'S¢ and ®P° curves are more
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FIG. 2. Potential curves of H™ that converge to the
n =2 level of the hydrogen atom.

attractive than the corresponding 35¢ and 'P°
curves, At large R, the asymptotic potentials are
determined by the dipole interactions owing to
hydrogenic 2s and 2p degeneracy, and the asymp-
totic potentials are spin independent. The u =2
curve of 35° and the “-” curve of !P° at large R
are attractive because of dipole interactions. At
small R, the depths of the attractive potential wells
are manifestations of electron-electron correla-
tion. As pointed out in I, the “+” curves of 1*3P°
have characteristics similar to the attractive 'S
curves; this feature is seen in Fig. 2 by noting the
attractive potential wells at small R. However,
as explained in Ref. 7, the “+” and “-"" curves of
3P° do not cross and the “~" curve in this case
is completely repulsive, similar to the pd curves
of 1'3P°, An obvious conclusion from these 3P°
curves is that there is no shape resonance asso-
ciated with 3P° near the n =2 threshold of H, a
result in contradiction to the recent conclusion of
Herrick,!' where a shape resonance is reported.
This is an indication of the inadequacy of the
group-theoretical approach to such systems. Our
conclusion in this regard agrees with the results
of close-coupling calculations.

The eigenvalues and radial wave functions for
each asymptotic attractive potential curve U, (R)
of Fig. 2 are obtained by solving

<d—‘£5 —Uu(R)+2E>Fu(R)=O. Q)
The lowest eigenvalue for each curve is shown by
a horizontal line in Fig. 2, and the eigenfunctions
are plotted in Fig. 3. Note that the lowest 'S¢ and
3p° states, to be called 2s2!S° and 2s2p 3P°, re-
spectively, are localized at a much smaller R,
The radius of the lowest 35¢ and P° states are
localized at approximately the same radius, thus
justifying the designation (2s3p-2p3s)'P? for this
state. Other higher eigenvalues are shown in
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FIG. 3. Radial wave functions of the lowest Feshbach
resonance states of Fig. 2.
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TABLE I. Energy levels of H™. All energies are
given in eV with respect to the ground state of the hy-
drogen atom. Energies given in the first two columns
do not include shifts due to the interaction with the
continuum, while the values in the last two columns
have the shifts included. Correction for the finite mass
of the nucleus is employed in the conversion from ryd-
bergs to electron volts, with 1 Ry=13.5984 eV.

This work 0G? 3ccc® BT®
s E, 9.560 9.554 9.555 9.555
E, 10.175 10.173 10.173
E; 10.197
5 E, 10.145 10.144 10.145
E, 10.196 10.1977
p E, 10.173 10.173
E, 10.198 10.198
3 E, 9.719 9.722 9.735 9.738
E, 10.189 10.193
E; 10.198

20’Malley and Geltman, Ref. 4.

> Three-state close-coupling calculations with 20
correlation terms (Ref. 2).

¢Projection operator method of Bhatia and Temkin,
Ref. 25.

Table I, together with results from other calcula-
tions. Our results for 'S¢ are too high compared
with others. This is because d? partial waves are
not included in this calculation.'®

The asymptotic attractive potentials of Fig. 2
can be represented by —a?/R? from the n =2 thresh-
old of H. If the potential is of this form for all
R, then the one-dimensional Schrodinger equation
has analytical solutions,? its successive eigen-
values given by the recursion relation

En+1 = En e-ZW/a ’ (8)

where o =(a? - 1)}*2, For the attractive potentials
of Fig. 2, the approximation —a?/R? is valid only
for R>R,, with R,~20. The higher eigenvalues of
H~ should also be related by Eq. (8) for suffi-
ciently large n. The condition for (8) to be valid
is 3| E,|R2<1,2° corresponding to | E,|<1073 Ry.
Therefore the states which lie less than 1073 Ry
below the n =2 limit are related by Eq. (8) if they
belong to the same series. By comparing with the
computed eigenvalues of Table I, we notice that
Eq. (8) can be applied for all n=1 of 35¢ and 'P°
states, and for all =2 of 'S¢ and °P° states. Tem-
kin and Walker?° used Eq. (8) to find the higher
eigenvalues of H™, with E, taken from the lowes?
computed eigenvalues of O’Malley and Geltman*
for each L,S and 7. Thus the higher eigenvalues
for 'S¢ and °P° they obtained from Eq. (8) disagree
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FIG. 4. Potential curves of 3P ¢ states that converge
to the n =2 level of hydrogen atom.

with the values computed by O’Malley and Gelt-
man.*

C. Ground channels of !3P¢

The lowest potential curves of ! *3P¢ states which
converge to the n=2 limit of H are shown in Fig.
4, Only (4,1,)=(1,1), (2, 2) are included in the cal-
culation. Both curves behave asymptotically as
2/R? as the result of the centrifugal potential of
the outer electron. At small R, the 'P¢curve is
completely repulsive but the 3P¢ curve forms a
shallow potential well. The behavior of the poten-
tial curves in Fig. 4 is very similar to the 'S¢ and
36¢ curves of Fig. 1. In fact, the origin is the
same. For the 3P¢ curve, the angular wave func-
tion ¢, (R; Q) has an antinode at o =45°, similar to
the 'S curves, whereas for the 'P¢ curve, its
®,(R;Q) has a node at @ =45°, analogous to the
3g¢ curves.

The shape of the P¢ curve is very similar to
the “+” 1P curve shown in Fig. 2; both have a
shallow potential well at small R and a repulsive
2/R? potential at large R. It was shown in Ref, 7
that the “+” curve is strong enough to support only
a shape resonance. It is interesting to see if the
3P¢ curve can have a bound state. The possible
eigenvalues of such a potential cannot be obtained

3.0 T T T T
Best .
T
Lo6f .
[p]

&
Ro.al- .
I
a
1 I | 1
0 2 4 6 8 I
E (10 3Ry)

FIG. 5. Phase shifts computed from the *P¢ curve of
Fig. 4.
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accurately by the usual numerical integration
methods. We have tried using a finite-difference
method?! without success, because the state, if
bound, is very diffuse and near threshold. We use
an alternative method here. In Fig. 5 we show the
computed phase shifts from this curve. This plot
is very different from Fig. 2(a) of Ref. 7, even
though the two potentials are very similar. The

phase shifts of Fig. 5 can be extrapolated to a value
near 7 at threshold. According to Levinson’s theo-
rem, this implies that the 3P¢ potential can support
a bound state. The position of this bound state can

be easily obtained by using effective range theory?2?
The value thus obtained is —7.5X107* Ry, which is

to be compared with the Hylleraas-type variational
result —=7.0X107* Ry of Drake?® and of Bhatia.*
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