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A nonperturbative analysis is given for an n-level atom or molecule dressed by a Stark field and in single-

photon or multiphoton (near) resonant interaction with coherent optical field modes, which may be intense.
All the field amplitudes and phases may have nonadiabatic time variation. New formulas for probability
amplitudes of states with finite lifetimes are given for atom-field levels swept or optical Stark shifted through
resonance or into close approach. One of these includes the Landau-Zener formula as a special case. Power
broadening is contained in these formi. las. They are useful for both weak- and strong-field interaction.
Further, it is shown that many familiar single-photon coherent transient phenomena have their analogs in the
intense-field and the multiphoton domains. Two new effects, pulse-shape dependence in final transition probability
and population inversion due to the nonadiabatic passage of an asymmetric pulse, are demonstrated with
numerical results for the process Na(3s)+ 2hco~Na(5s). Finally, double resonance (single-photon and/or
multiphoton) is analyzed, with discussion of adiabatic following and a derivation of a formula for level

crossing. Generalization of an earlier procedure for solving the adiabatic eigenvalue problem of the whole
atom-field system is given.

I. INTRODUCTION

Kroll and Watson' (KW) and Lau' (hereafter re-
ferred to as I) have analyzed atom-atom scattering
in intense laser fields. Although some analytic and
numerical results specific for an isolated atom ir-
radiated by a Gaussian laser pulse were published
in I, the general theoretical development and con-
ditions in KW and I were addressed solely to atom-
ic scattering in optical field modes of constant am-
plitude and phases.

We consider here (in Sec. II) the general theory
of an isolated atom (or molecule) interacting with
one or more coherent optical field modes whose
amplitudes and phases may be time dependent. In
addition, a dc Stark field, pulsed or not, may be
present. A new transition probability formula in-
volving time-dependent coupling and level crossing
with dampings is derived (Sec. IIIA). This would
also be useful in atom-atom scattering theory, and
it includes the Landau-Zener formula as a special
case. Since finite lifetimes are important in the
observable transient responses of an atom (al-
though less so in atom-atom scattering), a new

formula, more general than the one given in I, is
derived here (Sec. III B) for states with nonzero
dampings and with energy levels in close ap-
proach. They are useful for analyzing experiments
where atomic energy levels are swept or optical
Stark shifted through a single-photon or multipho-
ton resonance or into close approach. These
formulas are valid in the nonadiabatic regime,
which includes the adiabatic limit.

In Sec. IV, the theory is applied to show two new
effects: pulse-shape dependence in final transition
probability and the possibility of imperfect popula-

tion inversion after nonadiabatic passage of an

asymmetric pulse, with numerical results for the
process Na(3s)+ 2k' -Na(5s). As an illustrative
extension of the theory to the handling of more
complex situation, double resonance, useful for
atom-atom scattering as well, is treated in Sec.
V. A summary is given in Sec. VI.

Coherent transient phenomena are usually ana-
lyzed using the phenomenological Bloch equations. '
Recently, there has been considerable interest in
extending its description to two-photon processes. '
We also discuss here (in Sec. III) a Bloch equation
for perturbed atomic states. As opposed to earlier
works, it treats single-photon or multiphoton
(near) resonance on an equal basis from the start
and is applicable to fields of much higher intensity.

As in KW and I, our general analysis does not
make any perturbative assumption. The real atom
is approximated by its n bound states, where n
«2. This is generally more useful, as well as es-
sential, for high intensity. On the other hand, the
n levels must be low lying or the field must be not
too intense, so that multiphoton ionization is of
secondary importance. However, it often happens
that resonant bound states play a decisive role in
multiphoton ionization results'; then the analysis
given here may contribute as part of the whole
analysis. The atom-field interaction in our treat-
ment can occur as higher multipoles as well as
electric dipoles. The rotating-wave approximation
(RWA) is not made. For two levels in multiphoton
near resonance or when other nonresonant levels
contribute significantly to the shifts and effective
coupling, as in the case of an intense field, the
so-called antiresonant terms generally cannot be
neglected a Priori.
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Among the analyses' on interaction with intense
fields, Swain and others7 have used the method of
continued fractions to study the importance (for
intense fields) of the antiresonant terms. A con-
sequence of not making the RWA is that the cal-
culated energy shift includes the Bloch-Siegert
shift as well as the usual optical Stark shift. We
are concerned here mainly with resonant co-
herent effects on the atomic system. However,
coupled with the Maxwell's equations, the present
treatment is useful in the analysis of effects on the
field in a (near-) resonant gaseous medium, al-
though this is not considered in this paper.

II. GENERAL THEORY

We consider here a stationary atom interacting
with m optical field modes

m

E(r, t) = g e„(t)e, sin[(d„t+ 8), (t)]

whose amplitudes &„(t) and phases 8„(t) may have
near-adiabatic time dependence. The time de-
pendence in the phase 8„(t) is due to frequency
chirping. A Stark field E,(t), which may be
pulsed, may also be present. Where some formal
similarity exists with I, we shall be brief.

We can treat the atom dressed by the Stark field
by defining the adiabatic atomic Hamiltonian h(t)
to be the sum of the usual Hamiltonian of the bare
atom and the interaction Hamiltonian h, (t),' where
the parametric time dependence is through E,(t)
The solution of the adiabatic eigenvalue problem
h(t)()), (t) = w, (t)y, (t) at each parameter t is identi-
cal to the corresponding well-known eigensolution
with constant static field. ' A quantity &„(t), (d„

+d8„/dt, or E,(t) is said to have near adiabatic-
time dependence if F, the time rate of fractional
change of the quantity, satisfies the following con-
ditions:

I' «(d q, F «As', (2 1)

where 4~ is the smallest frequency difference
of those bare atomic levels likely to be excited by
the interactions. Physically this means that the
variation of these quantities in time ur

' and (a(d) '
is very small. However, their time variation in
the coarse-grained time [in units larger than &o

'
and (hw) '] can be large —described as nonadia
batic. The criteria. (2.1) enable us to neglect tran-
sitions between bare atomic states owing to the
time variation of the physical quantities e, (t),
8„(t), and/or Eo(t) alone (i.e., without absorption
or emission of any photons}.

The total Hamiltonian H of the atom-field sys-
tem' is H = h(t)+ h, + h', where h„and h' are the
well-known free-field and charge-field interaction

Hamiltonians. " The interesting parallel between
the adiabatic atomic Hamiltonian and the adiabatic
molecular Hamiltonian in KW and I should be
noted. Our analysis starts with the Schrodinger
equation

ih —= [h(t)+h'(t)]4,c%
(2.2)

i —„b)„)(a)
= W)„,) (n)b)„,)(n)

m

+ QQ G, (a, P)[b).„ i)(P)+b).„.i)(P)],

(2.3)

where (v„}denotes a set of m integers and b)„„)(a)
is the probability amplitude" that the atom-field
is in atomic state ()), with v„& 0 (&0}photons
absorbed (emitted) from the Xth mode. In the sub-
script set (v„x 1}of the last term above, all com-
ponent indices are the same as those in the set
(v, }of the first and second terms except the yth,
for which one has v + 1 instead. The unperturbed
atom-field levels are defined by

wt„t(n)-=„—Q „,e et e„(t)),
1$~

and for electric dipole" interaction Hamiltonian
h'(t):—h" E(0, t),

G, (n, p) -=(0, h" e„tt)e)e, (t)/25,

is the interaction. Figure 1 illustrates the unper-
turbed energy-level scheme for the case of two
modes. For both the unperturbed levels and the
shifted levels calc.ulated below, two (near-) reso-
nant levels of the atom [ see Fig. 1(a)] correspond
to two (near-) degenerate levels of the atom-field
system [see Fig. 1(b)]. Nevertheless, in the rest
of the paper, (near-) degenerate levels of the
atom field system will-still be called (near) reso-
nant. No ambiguity results. If y are chosen real,
G(n, P) above is real.

In obtaining Eq. (2.3), we have made use of the
near-adiabatic conditions (2.1) to approximate

where

ht(t) -=ee")' "h'e )")'

We treat the field classically by replacing all of
the field operators in h'(t) by their classical
values. " Substituting the following expansion
into Eq. (2.2),

n

e= Q Q et , (ttt t,t„e et—«I, .( .t ~ e„-) )),
8 =1 (v)t}

we obtain
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FIG. 1. Illustration for unperturbed energy-level
scheme (a) for the atom only and (b) for a noninter-
acting atom-field system of two modes. Other levels
are not drawn.

(4t)„d(t)s/dt) =0 (=0 if n =P) if a Pulsed Stark field
is present. Also, we have separately equated the
slowly time-varying "coefficients" of e '"~ ~' for
different g vt, )d), to zero. " We note that for the
bare atom G(n, n) =0 by parity of ())„while for
the atom dressed by a Stark field, G(n, n) 40 in
general and may be included.

In the near-adiabatic regime, the stationary
states of the atom-field system may be approxi-
mated by the adiabatic states defined by

t
b (t )t=et„„~(e)eep(- ' E(l )de , (4.4'4)'

FIG. 2. Relationship between the adiabatic eigen-
value E and the shifted levels W' of the perturbed states
(a) for two-level crossing and (b) for three-level cross-
ing. In both diagrams, the gap between any E with the
corresponding W' at the sides is exaggerated relative
to the center.

cm, yielding an accuracy of at least five signifi-
cant figures for the shifts. The calculated effective
coupling is much more accurate than the shifts.

For convenience of analysis, we define the
perturbed states as follows: For example, when
two atom-field levels "1"and "2" (e.g., in the
notation of I, po and p, v for one mode, or p, p, o
and p, t).,T fo, r two modes) are near resonant, the
final two-component equations in Eq. (2.4b) used
to obtain the adiabatic eigensolutions (E„,4'„=a )
and (E„4,=a') are'

and in the adiabatic limit (at fixed parameter t)

d—a(„)(n)=0 .
dt

a, W,'

a2

G a,
W' a

aj
—= H

a2
(2.5)

Using these expressions in Eq. (2.3) gives

Ea(„)(n) = W(„)(n)a(„)(n)

+ g G„(n, P)[a(„,)(P)+a(„„)(P)j .
rs8

(2.4b)

The solution of this adiabatic eigenequation has
been given before. ' We make here some useful
remarks to indicate the power of the method.
First, the cutoff value v=M is usually small
(& 5). For example, for a dipole matrix element
between two states -3 a.u. and a field intensity of
10"W/cm', l)f =2 gives the energy-level shifts
due to single-photon virtual process accurate to
at least four significant figures. Second, the con-
vergence of the iteration is rapid, from two itera-
tions for 10' W/cm' to five iterations for 10"W/

eee

The perturbed states C, and 4, are defined as the
basis states of Eq. (2.5). They are orthonormal
linear combination of 4'„and 4, . W',- is therefore
the shifted energy associated with 4,, while G is
the effective coupling between the two perturbed
states. Whether we use (E„,a") or (E„a') to cal-
culate them, both W',. and G are uniquely given if
all other atomic levels are far off-resonant. How-

ever, at strong fields a small numerical difference
in W,' —W,' and G owing to a close-lying but off-
resonant third level can result. " If significant,
such difference can be eliminated by including the
third or more atom-field levels as near resonant,
as will be illustrated in Sec. V. In the limit of
vanishing fields, W,'(o'), for example, approaches
the unperturbed W, (o) and 4 „approaches the un-
perturbed atom-field state. See Fig. 1(b) and Fig.
2(a) for illustration of relationship of W, W', and
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E for the particular configuration of two-level
crossings. We label E by the convention E,.- W,.

as G„(n, P}-0. Far from resonance, E, = W,'.
When a given atom fie-ld adiabatic state is off-

resonant by the amount 6 from any other populated
state such that 6» I', the change in magnitude of
the probability amplitude in such a state may be
neglected. (See Sec. IIIA for more discussion. )
When it is (near) resonant (i.e., d, & I' or 6 & I')
with another populated state, significant transi-
tions occur, and we must calculate their prob-
ability amplitudes. Thus we expand a general state
C (t) in the two perturbed states, 4(t) = b, (t)C,
+ b, (t)C„and obtain with the above Hamiltonian
H

. db, . db2

dt
(2.6)

b, =0, b, =1, at t=t, . (2.7)

III. ANALYTIC FORMULAS FOR PROBABILITY
AMPLITUDES

Single-photon coherent transitions in an atom
interacting with a weak radiation field are often
discussed in terms of the Bloch equation. Re-
cently it was generalized to two-photon processes. '
From Eq. (2.6), we can obtain" a Bloch equation
dp/dt = 0 & p, where 0 = (2G, 0, W,' —W,') is the
torque vector or effective field and p =-(b, b,*
+ b, b,*,ib, b; —ib, b,*, (b, )' — )b, [') is the Bloch
vector. The phenomenological decay times T,
and T,' can also be inserted. ' This Bloch equation
for the perturbed states describes both single-
photon and multiphoton (of any order) processes
in intense fields and is obtained without use of the
RWA. Because of its formal similarity with the
usual phenomenological Bloch equation, many of
the known analytic results'7' can be used directly
with the above definition of Q. By implication,
the rich coherent transient phenomena" have their
counterparts in the strong-field andlor the multi-
photon domains.

The optical Bloch equation is often a convenient
and useful tool for analysis. However, we find it
convenient for the analysis below to use the orig-
inal Eq. (2.6) with two phenomenological damping
terms,

i ' =(W,' —iI', )b, +Gb, ,
. db,

dt

i ' =(W,' —iI;)b, +Gb, .. db2

dt

(3.1)

where (C „dC, ldt) =0 and (C„d4,/dt) =0 have been
used. The initial-value conditions most often used
are

When I', = I'„ the above equations describe decay
behavior in the same manner as does the phenom-
enological Bloch equation with TI:T2 Otherwise,
they describe different decay behaviors. If the
"language" of the Bloch vector p is desired, it can
be obtained from the solutions given below. For
this and other reasons, we shall write out both
b, and b, and their phases.

A. Nonadiabatic transitions in two-level crossings

6' = —a7',

G=P+y7',

(3.2)

(3.3)

where o. , P, and y are constant and v. = t- t„ t, being
the time at which the single-photon or multiphoton
resonance occurs [see Fig. 2(a)]. Condition (3.2)
may correspond to the physical situation in which
the levels are swept through resonance either by
chirping the field frequency or by dc or optical
Stark shifting the a.tomic levels. Condition (3.3)
may correspond to amplitude variation of the opti-
cal field. Eliminating b, from Eq. (3.1) and intro-
ducing the relation (with 7, —= to —t,).

dG

7'

+ dw' —s W,'+ W,' +g
'0

(3.4)

into the resulting differential equation for b, (r},

In the familiar phenomena adiabatic following"
and adiabatic inversion, "both the interaction and
the energy off-resonance (the components of the
"torque vector" in the language of Bloch equations)
are restricted to negligible change in the coarse-
grained time scale. This can be approximated by
taking proper choices in some experiments. " But
more usual situations are such that the interaction
and/or the energy off-resonance do change in time
by a finite amount. " Therefore analysis taking in-
to account transitions due to nonadiabaticity
is both useful in giving an estimate of such tran-
sitions and is necessary in many circumstances.
It can be shown"'" that transitions stemming from
nonadiabaticity are most probable when 6' —= W,

'

W y is smallest —for example, when the two reso-
nant levels cross in adiabatic inversion. The
formulas given below for nonadiabatic situations
with I', o0, F, o0, dn'/dtc0, and/or dG/dt&0 are
new. They are also useful for weak fields with 6'
and G given by standard perturbation theories.

Consider first the case where I', and I', are
constant, and where
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we obtain

(rAT/P)'&'1, (3 6)

where dT is the time interval over which the solu-
tion of transition probability reaches its asymp-
totic values. An estimate of this is given by
(a' ~'AT)'» 1. Then condition (3.6) implies

(I/a)(r/P)' « I . (3.7)

Condition (3.6) means that over the entire time
interval of transition, G(T) varies by a, small frac-
tion. Thus we shall keep yT/P terms but will drop
its higher-power terms. Making a change of vari-
able,

T+ "+ i — —+r —r ~'"e ""4yp 1
~2 ~ p

2 1

d U
dT2, +{G ——.sa ——,g

+ [—'aT+ —' i(g+r, —r,)]') U=o . (3.5)

We need to find the solution of U(T; a) for positive
a only, since with G being real, U(T; —a) = U (T;a),
as can be shown from Eq. (3.5) above. On the
other hand, y in Eq. (3.3) may be positive or nega-
tive. We shall consider only cases for which the
following condition is satisfied:

A(T)
-=——,'(I', + I', )(T —T,) —— (W,'+ W,') dT'+i8, ,

7 0

and where 00 is a constant phase. The above solu-
tion describes both the transient behavior of in-
terest as well as the positive-time asymptotic be-
havior. The latter is given as follows: At T such
that

R(T)» 1

and T + 4yP/a' & 0, which implies

(3.14)

(3.15)

are satisfied, the above solution becomes

b, (T) = [G(TO)G(T)/a]' [ (2w)' /r(1+ n)] [R(T')R(TO)]'

then

b.(T) = [G(T.)G(T)/a] '"e "-'R (T.)

( iz) eA ( 4) - fp

b, (T)=[G(T )/G(T)]' 'e ' 'R'(T )

x[(z »-Pa "e "'D . 4( iz)-

+i(1+n)D „,(-iz)]exp[A(T) f, +--, iv],
(3.13)

where

f, =py (T,-) + ,' R'(T—,) sin24p(T, ),

and defining

n= q+ip, p = a '[ -P' 4(rP/a)' —l(r/P)'], —

2yp(y/P + r, —r, )q=— 2 7

(3.8)

(3.9)

x exp[ ——,
'

vp+ A(T) f, f+ i8]-, -
b (T}= [G(T.)/G(T)]' "[R(T.)/R(T)]' e"' "

x{e xp[- zPf+i8+ ~i zi+q-z]

—z"yP(2/a)" r '(I+ n)R"

xexp[-vp/2 -f+i 8]j, (3.16)
we obtain from Eqs. (3.5) and (3.6) the Weber
equation

d U, + (n+ —, ——,z )U=O,
dz2 (3.10)

R'(T,)» 1 (3.11)

with known solutions called parabolic cylinder
functions, D„(+z) and D „,(siz}.'~ With the
definitions of (p(T), -w& 4p(T) c v,

z -=R( }e'T~' i'(3, T& 0,
z =R(T)e'" "—', T & 0,

z(,( (
4 ((

*
( /(( ~ r, r, )*

the solution satisfying the initial values Eq. (2.7)
is given as follows:

If in the asymptotic region of negative T

where I'(1+ n) is the I' function and

f —=p(p+ —,
' R' stn24p,

8=—plnR+q((p+ —', w)+ —,'R cos2(p.

For the reason given following Eq. (3.5), the
solution for the case a & 0 is obtained from Eqs.
(3.13) and (3.16) by taking the complex conjugate
of the entire expression, except for A(T), and by
substituting

~

a
~

for a there. In the limit y= 0
(i.e., constant coupling" G),

q = 0, G (T) = G (To) = P = (ap)' ", (3.17)

then Eq. (3.13}and Eq. (3.16) give exact results
derivable without Eqs. (3.6) and (3.7}. In particu-
lar, the asymptotic probabilities are

Ib, (T)l

= (1 —e 2'~ ) exp[ —(I' + I', )(T —T ) —2f —2f ],
and T, +4yP/a'& 0, which implies

iq (T,) i& —.
' v, (3.12)

(3.18)

~
b, (T)

~

' = exp[ —2' —(I', + I', ) (T —T,) —2f, + 2f] .
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d'U &, zb b' a iI', zr, '
U 0

T —0,
d'U, zb' b" a ZI', zI',
d7 2 2 4 b' b' b'+ G'+ —+ —T+ —— '+ ' U=O

r & 0, (3.21)

These equations show that it is necessary only to
find U(r; a, b, b') for a, b, and b' & 0, since with
G real U(7; —a, —b, —b') = U*(7'; a, b, b') With the
def initions

FIG. 3. Two levels in close approach.

Aside from decays,
~
b, (v) ~' in all of the above

formulas is the probability that the system will
not follow the curve E,E,E, in Fig. 2(a), and it is
therefore a convenient estimate of nonadiabaticity.
In application, at the initial time Tp the condition

z:—T ——+ — ' b' 'e «T~0a ir zr
b b b y

(3.22)

/1/2e- j&/4 T) 0
a ir zr

+ bI bl bf

the above equations are put into the Weber form, '4

V(&0) =o (3.19)
d U z

+ n+~ —= UO T~O
dz' ' 4

(3.23)
is often satisfied; thus f, =0 in Eqs. (3.13), (3.16),
and (3.18). Similarly, if we are interested in large
T such that

dU, gz',
dz 4

+ n'+ p ——' U=O T)0

where
y(r)=0, r&0, (3.20)

n —=ip, n' = ip' —1, p —= G'/b—, p' G'/b' =—. (3.24)
then f=0. The well-known Landau-Zener formu-
la,"characterized by the single parameter p, is
a special case of Eq. (3.18) when Eqs. (19) and
(20) and I', = F, =0 are satisfied.

B. Two-level close approach

Provided that

-w& ip(r) ~ ii,

R,' -=b(
~

&
~
+ a/b)'+ (r, —r, )'/b» 1,

—R (7)e
—i g + i 3 w /4

(3.2S)

Consider two levels shifted into close approach
(as shown in Fig. 3), either by tuning the laser
frequency or by Stark shifting the levels, while
the laser field amplitudes are approximately con-
stant. " We have given a formula in I which is a
special case of the one derived here. We let

a —bT, T —0,W' —W,' =

a+ b'T, T) 0,

where a is the minimum level separation and b
and b' are the well-defined slopes. Such a repre-
sentation has the disadvantage of a discontinuity
in the slope of W,' —8", , but rigorous results
can be obtained without further assumptions and
they are valid even when a is zero. The effective
coupling is considered constant. Then eliminating
b, from Eq. (3.1) and substituting expression (3.4)
with g =0 into the resulting equation for b„we ob-
tain

are satisfied near T = Tp the solution for T ~ 0
satisfying the initial conditions (2.7) is

U(z ) =ND „,( —iz ),
where

N-=p't'exp[ ,' vp+ f, +—i—e,],
f, =- y(7, )p+ —,'R, sin2y(r, ),

(3.26)

and where 8p is a constant phase. For T )0, the
solution is

U(z, ) =LD & ~(-iz, )+MD+( z), -
where the constant coefficients L and M, deter-
mined by demanding continuity of b, and of its
slope at T=O, are

L/N= [n'e' ' 'D, D, —(b/b')' '(n+1)e "t~D+,]D '

M/N= [eir l~gb t-~ &2D D (iit+ 1)e i&/4D D1 4

+ (b/b')' '(n+1)e" D,D, ]D '
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where

a —= a —iI', + il, ,

D= e"—~ ab' '~'D D +n'e' ' D D —(n'+1)e"~'D D3 5 3 6 4 5

D, =-D „,(ae""/b'") D, =D „,(ae""/b'")
Ds= D-& ~(ae ~ ' /b" ~ }

D, =D „, ,(ae "'"/b'' ')

D, =—D„,(ae"' '/b" ') D, =—D„, ,(ae'" '/b" ')

(3.27)

Thus for T~O

b, (r) =p' 'e '~ 'D „,( —iz )e~"'' o,
b, (r) =e '~~4[z D „,(-iz )+ i(n+1)D „2(-iz )]

x exp[A(7)+f, + ','iz]—,

and for T& O

b (v)=p' e '~ [(L/N)D „. ,(-iz, )

+(M/N)D„. ( z, )]e "-' o,
b' ~/2

/ M M
b, (r) = — e '~~' —z, D~( z. )+—n-'D„, ,(- z. )

h —= — —,—— [a' —(I', —I',)'] + p' ln
1 1 1

y—p ln (3.31)

Substitution of this into Eq. (3.28) and especially
Eq. (3.30) and neglecting terms proportional to
L/N leads to simple expressions for b„b„and
their magnitudes, such as that of b,

~

with I',
= F, =O given in I.

To conclude, we note that all of the formulas in
this section are exact, so that the power-broad-
ening effect is included. "

IV. PULSE SHAPING AND POPULATION INVERSION

where r = [a'+(I', —I',)']'~', the coefficients in

the above expressions simplify. The leading terms
is contained in M/N and not in L/N:

iM i2 (zb)' ~'
,
)

exp[ ——,'wp'+-.' wp+q+ih],
N aF(zp'

where

g
-=——,

' a(1/b —1/b')(I', —I', )+ (p —p')p,

a =re'P

where

x exp[ A(r)+f, ——,
' iz], (3.28)

When the asymptotic conditions for 7 & 0,

g(T) = [ (r+ a/b')'+ (I' —F )'/b" ] ' 'b" ' » 1

and ~9'~ &-,'z,

A(r) = —,'(I', + I', )(r —r, ) —— (W,'+ W,') dr'+i6, .
2

Consider a practically monochromatic laser
pulse passing through an atom in the ground state
and shifting a near-resonant excited state into
single-photon or multiphonon resonance at some
critical intensity I', first on the rising slope of
the pulse, and then on the descending slope (see
Figs. 4 and 5}. If the lifetime of the excited state
is short compared with the temporal width of the
pulse, then each crossing point should be con-
sidered separately. On the other hand, if the

z, =R(v.)e '~ "~', -w&-y'( )~Tw, (3.29)

are satisfied, then the following asymptotic results
are obtained:

(2&h~ /2

W])
~ W 2

W]'

W2'

x e p[xA( )+fr, f —i8], - Tl ME

tr)
Z

rn

x exp[A(7')+f o+f +i 8+ —,
' iw], (3.30)

IJJ

I'
CL

where

f = p'y'+ 4R'sin2y', 0—=p'lnR+ 4R'cos2y' .

For the special case r/b ' '» 1 and r/b" -» 1,

T I M E

FIG. 4. Unperturbed near-resonant atom-field levels
W( and W2 optical Stark shifted through reso»aces at
the critical intensity I' of an asymmetric pulse.
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FIG. 5. Energy-level diagram of sodium showing all
states included in the numerical calculation of the pro-
cess Na(3s) +2hu Na(5s). The two-photon energy off-
resonance is exaggerated. The radiative lifetime of the
5s level is 84.5 nsec.
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FIG. 6. Transition probability per pulse in the pro-
cess Na(3s) +2hco Na(5s) at several wavelengths for
a few Gaussian pulses of the same temporal width v= 1
nsec but with different peak intensities.

f, —= T, (1 —T,)+ (1 —T,)T„ for T, 4 T, (4.1a)

or

f, = 2T(1 —T), 'for T~= T2 —= T, (4.1b)

where T,. is the transition probability associated
with the ith resonance point. Since the transition
probability formulas (3.18) for T, depends on o.„.
which in turn depends on the pulse slope at the
resonance point,

(4.2a)

lifetime of the excited state is long compared
with the temporal width of the pulse, then the
two resonance points have to be considered to-
gether. In cases treated in this section, the two
resonance points are separated, so that asymptotic
validity conditions (3.11) and (3.14) are satisfied
for each resonance point. Depending on a, these
conditions are usually easy to satisfy. We also
assume that interference effect between the two
resonance points can b~ removed by some aver-
aging (e.g. , over many similar pulses). Then the
final transition probability in the excited state per
pulse, after the pulse has passed, is

or

dt dI (4.2b)

—(a.u. ) = 3.758 06 x 10-"—('pji'/cm'),
dI 33 dI
dt dt

(4.3)

since P = 5/(dl/df)z. (in a.u. ) can then be substituted
directly into the appropriate formula. We have
also shown that f, depends on pulse parameters of
the pulse as well as the photon wavelength. In par-

depending which one is better defined. " It is irn-
mediately clear that for temporally symmetric
pulse (T, = T,), the maximum value of f, for any
such pulse is —,', and population inversion of the
excited state with respect to the ground state is
not possible. However, for asymmetric pulses
(T, & T,), this may be possible. To maximize f„
it is desirable to have T, » T, or T, «T» that is,
a fast-rising and slow-descending pulse, or vice
versa, although the former case occurs more often.

In paper I, we have published numerical values"
for critical intensity I' and the pulse-independent
factor 5 for the process Na(3s)+25~-Na(5s) (see
Fig. 5). From these values, T, for any pulse shape
and parameters can be calculated. To use the
values of 6 and I' published in paper I, the fol-
lowing conversion relation is useful:
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TABLE I. Transition. probability per pulse f, for
Na(3s) +28~ Na(5s) due to an asy~~etxic pulse of in-
tensity I(I ) = (I~/2 e )(//0}4e 2'~~. The peak intensity I
is in W/cm2. The temporal width 0 is in nsec.

I~ 6x10 lx10" 6x10 lx10 6x10

0.1
0.2
0.4
0.6
0.8
1.0
2.0
4.0
6.0
8.0

0.279
0.446
0.582
0.586
0.539
0.477
0.227
0.050
0.011
0.003

0.258
0.425
0.585
0.620
0.597
0.552
0.318
0.100
0.031
0.01

0.219
0.378
0.574
0.666
0.700
0.701
0.567
0.324
0.184
0.105

0.211
0.369
0.570
0.671
0.715
0.725
0.619
0.387
0.241
0.150

0.195
0.347
0.556
0.678
0.745
0.779
0.754
0.581
0.443
0 ~ 338

ticular, it was shown that f, is sensitive to the
temporal width r of a Gaussian pulse I(t) =I,e '
withI, =6&&10' W/cm'. We now illustrate in Fig. 6
the smaller sensitivity of f, to I, with the same r
(= 1 nsec) over a range of wavelengths.

To demonstrate (i) pulse-shape dependece of f
and (ii} population inversion with an asymmetric
pulse, we consider again the above two-photon
process in sodium with pulse (as shown in Fig. 4)
I,(f) =l,(t/a}'e "~'8(t), where 8(t) is the unit step
function. The result in I shows that for photon
wavelength X= 6023.96 A, f, =-,' for the above Gaus-
sian pulse, with Io = 6 && 10' W/cm' and v = 1 nsec.
Now for the above asymmetric pulse with the same
pulse energy and peak intensity [hence I, = 2 'e'(6
x 10') W/cm' and a=4'w ' ~'/3e' nsec], f,= 0.69;
hence shape dependence in the transition probabil-
ity is demonstrated. Table I gives the values of

f, for different values of peak intensity I -=2'e 'I,
and o of the above asymmetric pulse. It demon-
strates the nonadiabatic population inversion (f,
& —,'}with respect to the ground state, and shows
that in general f, is more sensitive to a than I .

For both symmetric and asymmetric pulses,
population inversion in the excited states with
respect to some intermediate states is of course
possible. Furthermore, the above mechanism can
be used as an efficient pumping mechanism to
maintain laser action between two intermediate
levels; for example, the transitions in sodium

4p to 4s at A. = 2.21 p.m and 4p to 3d at X —9.10 p, m

by the above process. Certainly it should not be
assumed that a large transition probability to an
excited state can always be found with realistic
pulses. Its feasibility depends on the atomic sys-
tem and the field parameters. For the process
Li(2s)+65&v-Li(3s}, whose I' and 6 values are
published in I, the temporal width of the Gaussian
pulse has to be unrealistically large in order to

V. DOUBLE RESONANCE

Double resonance is a familiar spectroscopic
technique. " %e shall adopt the name here to
denote the configuration in which any three atomic
levels are in single-photon or rnultiphoton reso-
nances owing to interaction with single or many
field modes [see Fig. 1(b)]. It is useful as a
means of populating a third level inaccessible to
single-photon transitions, or an off-resonant third
level by choosing the right combination of field
frequencies. The analysis is useful in both atom-
field interactions, and in atom-atom scattering in
laser fields.

A. Adiabatic eigensolution

Suppose in an atom interacting with two field
modes three levels W...,(a), W„,„,(r), and W, ,+(rl)
are (near) resonant, as in Fig. 1(b). We express
a„(v,n), defined in Eq. (2.4), as

a„(v,n) = d„(v,n)a, (p, a)+ s„(v,n)a„(p, r)

+t„(v,n)a, (6,q) . (5.1)

This implies immediately

&,,(p, &) =s.,(1,&) =4, (5,n) =1

d. (u, r) =&, (&,n) =s,,(p, a) =s6, (6,7})

=&,,(p, &)=f.,(i,&)=o .

Since a, (p, o), a„,(p, ,v), and a,,(5,q) are indepen-
dent of each other, we may substitute d„(v,n)
x a, (p, cr) in place of a„,(v, n) tn Eq. (3.13}in 1,
which is equivalent to Eq. (2.4b) here "We. ob-
tain

D„d„,= G„,(d„,+ d„,„) . (5.2)

Similar equations are obtained for s and t.
Defining T, for v, & p, by d„—= T d y and T„'

for v, & p, by d„=—T„' d „and starting from

T„,, =O and T„'„=0, we can generate all T„, and
T„' by the by-now-familiar recurrence relations
for Eq. (5.2), except at v, = p, , and v2 = 5, . At v2

= p„ the (p, ,7')th row of the T„(or T„' ) matrix is
set identically equal to zero to satisfy d, ,(p, 7) =0,
while the other rows are obtained directly by in-

achieve f, =-,'.
The discussion above examines the field param-

eters for a given atomic system. Another way of
looking at these effects is to say that the transition
probability is significantly sensitive to the coupling
between the states as well as the energy off-reso-
nance between the atomic levels. Both of these
dependences can be used for discriminant exclta-
tions in different isotopes of an atom or molecule
by choosing the appropriate field parameters.
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E —W,'...(o)

—G3,

E —W~, ~ (&)

—G32

-G,3

—G23

E —W', , ()))

-..„,(.)-

verting the (t,th set of Eq. (5.2) without the (p, ,r)th-
component equation. A similar procedure is per-
formed at v, = 6, . Then with d, (p, o) = 1, the p, th
set of Eq. (5.2) without the (p)o}th-component equa-
tion is solved to obtain the unknowns d, (v, o & p, o).
The s and t are obtained in similar ways. Note
that for v2& p„(t„and 52 (& p„p2, and 62), the
same T„, (T' ) is valid for s and f„2 as well as
d„. When (t, =62=—p. , both the (p(r)th and the

(6,)})th rows of the same T„(or T') are set equal
to zero in order to satisfy d„(p,,r)=0=d (6))}).

Finally, substituting Eq. (5.1) into the three
singular-component equations in Eq. (2.4b), with

v, v~n= p, p, o., p, , p,,v' and 5,6,q, we obtain

tion procedure using any one of the expressions for
the roots.

8. Adiabatic following and nonadiabatic transitions

We now consider the special case of double reso-
nance where the three shifted levels cross each
other at nearly the same time, as shown in Fig.
2(b). It is clear that when the field amplitudes
and sweep frequencies H„change very slowly in
the coarse-grained time, the atom-field system
will adiabatically follow the adiabatic curve E,E„
so that in spite of the near-resonant level 8", the
system can still have final probability of unity in
the 8", state. The atomic level "3"can be an ex-
cited state with the atomic state "2" as a lower
intermediate state. The resonances can be multi-
photon and adiabatic inversion can result.

When the nonadiabatic situation is involved, we
have to solve

. db,' = 8','b, + G,2b, + G,sbs,
x a„,(r) = 0, (5.3)

(it, t, (n)

where W' and G are, respectively, the shifted
levels and the effective couplings,

. db,j = G,~b, + W~b2+ G»b3 rdt

. db3 I'= Gisbi+ G.3b. + ~sb3dt

(5.4)

+ g G, (o, P)f d.,(p, —1P)+ d.,(p, + IP)]

+ P G, ((t, p)[ d„ ,(p,p) + d„„(p(p)] , b, =1, b2=0, b3=0, (5.5)

obtained in a manner similar to Eq. (2.6). The
quantities W', a,nd G, , are defined in Eq. (5.3).
The formal solution for Eq. (5.4), satisfying
boundary conditions in the remote past (f = f,),

G„=- g G, (o, p)[s, (p, —1p)+ s, (p(+ lp)]

+ Q G, (o, p)[s.. .(p,p)+ s, „(p,p)] .

The expressions for W'„„,(r) and W', ,(), ()I) can be
obtained from W,', (o) by replacing p,p, «with
p, p,,7's and 5y52'Qtp respectively. The expression
for G» is obtainable from G„by replacing s by t,
while that of G» ls found by replacing p,p2os with

pj p27t. Hermltlclty 1Dlplles G ~ . = G ~ . The 9
and d's contain linear and nonlinear powers of
both field amplitudes, so that contributions from
both modes are contained in each sum.

The resulting cubic characteristic equation of
Eq. (5.3) is of the form

which has well-known solutions. " Since here p,
q, and x are real, and since we expect in general
three distinct real roots, the so-called trigono-
metric solution expressed in terms of a single
variable (the angle) is very convenient in an itera-

t- ir)(t) te- iK ()t ) dfI (G b + G b )e(E)(t )'
(5.6a)

e- tK2(t) dt's G b + G b etK2(t')
to

(5.6b)

where

*e- jK3(t) dt's G b + G b eiK3(t')
to

(5.6c)

sc,.(~) -=J' dt w, .

We now consider the special case where the G's
are small and constant (in the resonance region),
so that b„b„and b, on the right-hand sides of
Eqs. (5.6b) and (5.6c) are given as first approxima-
tions by previous solutions, Eq. (3.13) with Eq.
(3.17), for levels 1 and 2 and for levels 1 and 3,
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separately. Let b,' and b,' denote such solutions.
Then the solutions for b, and b, are

spective level due to the presence of the third
level. To obtain asymptotic probability formulas,
we define the level crossing by

W,'—W,' = —o.„r—= —a, )(t —t~}

The second term on the right-hand side of each
equation represents the contribution to the re-

and obtain b, (t) and b, (t) in the asymptotic region
I
o!» I'~'r and

I a» I'"v» 1 by the method of steepest
descent. With the definitions P, , =—

I
iG';, /o. „I,

qo =
I o„ I, ft, , =

I

n', ,~'v I, and with 8, being a con-
stant phase, we obtain

2v m

x exp[ —iK, (r) + f 8,], (5.8a)

and hence

I b, (v) I' = 1 —e "~»+ v(G22, /q»)e '~a~

+ (interference term), (5.8b}

where the upper (lower) signs are for the case
n» and n»& 0 (& 0). The corresponding expres-
sion for b, (r) is obtainable from the expression
for b, (v) above with the subscript labels 2 (8)
changed to 8 (2). The above formulas apply only
when

I
b, (v) I

'+
I b, (v) I

' «1, i.e., small p„, p»,
and G2»/q». For small p» and p», the inter-
ference term is negligible compared with the
other two terms. Similar formulas can also be
derived by the above method using the results of
Sec. III for the case o„&0, n, y

~ 0, and for non-
zero I', and I', .

VI. CONCLUSION

We have extended a previous computational pro-
cedure' which, once set up, can be used to cal-
culate accurate energy-level shifts and/or effec-
tive coupling for any atom or molecule interacting
with laser fields. This procedure is particularly
useful for intense fields or whenever the level
shift is not negligible compared with the smallest
off-resonance energy between unperturbed levels.

The exact analytic formulas for probability ampli-
tudes derived here are useful for describing inter-
action with weak fields as well as with strong
fields. The theory can be conveniently applied to
many nonlinear as well as linear processes.
Furthermore, we have shown that equations iden-
tical in form to the usual optical Bloch equation
can be used to describe single-photon and multi-
photon coherent transient phenomena in intense
laser fields, and hence by implication we have shown
the existence of such phenomena corresponding to
those of single-photon process in weak field. The
demonstrated effects of pulse-parameter and
pulse-shape dependences in the final transition
probability and of nonadiabatic population inver-
sion have potential applications in laser isotope
separation and in maintaining laser actions via
efficient optical pumping.
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