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Variational wave functions for a screenefl Coulomb potential
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Using solutions to a Hulthen-like en'ective potential as variational trail functions we have calculated the

energy levels of the nonzero angular momentum states of the static screened Coulomb potential. Our one-

parameter results for the 2p, 3p, 3d, 4p, 4d, and 4f levels are in excellent agreement with earlier, more

elaborate calculations. %'e have also calculated spontaneous emission transition probabilities between several

pairs of states and find that our results compare favorably with previous calculations. %e conclude that

Hulthen-like trial functions provide better variational energies and wave functions with fewer parameters than

hydrogenic or Slater-type functions for screened Coulomb and similar potentials.

I. INTRODUCTION

The static screened Coulomb potential is a simple
potential w'hich has had great utility in a variety
of fields such as solid-state, nuclear, and plasma
physics. Several variational calculations' ' have
been performed and tables of the energies as a
function of the screening parameter have been com-
piled. One such study, that of Lam and Varshni, '
showed that if one uses as trial functions eigen-
vectors of the Hulthln potential rather than those
of the simple Coulomb potential, excellent results
for the energies of the s states of the screened
Coulomb potential can be obtained with simple
variational wave functions containing only one
parameter. The method was limited to s states
because the Schrodinger equation with a Hulthen
potential can be solved analytically only for states
with zero angular momentum.

We present in this paper an extension of this
method by using an *'effective Hulthen" potential
for nonzero angular momentum which can be solved
analytically. The resulting solutions when used Bs
trial wave functions provide simple, one-parameter
wave functions yielding energies for the 2p, 3p,
3d, etc. , states of the screened Coulomb potential
of accuracy comparable to that of more elaborate
s tud les.

II. METHOD

The screened Coulomb potential is given in
atomic units by

V„(r)= -e '"/r .

Since it is a central potential, the Schrbdinger
equation can be separated into radial and angular
parts in the usual way. The radial equation is
given by

—r' — +, R(r) =EIt(r).I d, d e '" I(I+ I)
2H A dh' r 2x

If we write X(r) = (I/r)R(r), this may be written as

x( )= x(
d' e '" I(I+ I)

The Hulthen potential is defined as

v„(r) = —se-'"/(I —e-'") .

It is easily seen that for small 5 this potential
closely approximates the screened Coulomb po-
tential of Eq. (I). Moreover, as pointed out by
Lam and Varshni, ' V„(r) is a better approxima-
tion to V„(r) for all r than is the ordinary Coulomb
potential; thus we would expect Hulthen variational
wave functions to give lower (and consequently
better) energies for the screened Coulomb problem
than the same number of Coulomb- (hydrogenic)
type variational wave functions. This has been
shown to bethe case for the 1s to 4s states by Lam
and Varshni. ' Unfortunately, the radial Schro-
dinger equation for the Hulthen potential can be
solved analytically only for 3 = 0 states. Thus pre-
vious variational solutions for the nonzero angular
momentum states have used hydrogenic functions
or Slater-type orbitals for trial functions with
three or more variational parameters necessary
to obtain accurate energies. "

We have extended the I.am and Varshni approach
by approximating the screened Coulomb effective
potential,

V, '(r) = -e-'"/r+ f(I+ I)/2r',

by what we will call the Hulthen effective potential

5e " I(I+ I)

For small 5x this effective potential approximates
the screened Coulomb effective potential rather
well, and in particular it gives the necessary re-
pulsive core due to angular momentum. More im-
portantly, the radial equation with (4) replaced
by (5) can be solved analytically. The method of
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TABLE I. Comparison of the screened Coulomb 2p, 3p, and 3d energy levels for several
values of screening. All energies are in rydbergs.

Screening 2P
P resent Numerical ~

3P
Present Numerical ' 34

Present Numerical '

0.001
0.010
0.020
0.025
0.050
0.100
0.200

-0.2480
-0.2305
-0.2119
-0.2030
—0 1615
—0.09307
—0.00819

-0.2480
-0.2305
-0.2119
—0.2030
-0.1615
—0.09307
—0.00820

-0.1091
-0.09231
-0.07570
-0.06816
-0.03711
-0.00317

O 1O91b
—0.09231
—0.07570
—0.06816
—0.03712
—0.00318

—0.1091
-0.09212
—0.07503
—0.06715
—0.03383

-0.1091"
-O.09212
-0.07503
-0.06715
—0.03383

'Rogers et aE. (Ref. 4).
Roussel and O' Connell (Ref. 6).

solution is the same as described by Lam and

Varshni for s states, so we will only sketch the
procedure here. We begin with the equation

1 d' 5e '" l(l+ 1) 5

then yields

y'(1 -y), —(I+ 2a)y' + —yP - l(l+ I)& = 0.2

dy

where the primes indicate that the energy E' and
wave function X'(r} are not the solutions to the
exact probeim, Eq. (2), but of the pseudoprobiem
given by Eq. (6). If we write

g2g2

we find that Q is the solution to the following equa-
tion:

1 d(f) dP 5e

If we now assume Q(y) to be of the form

and substitute it into Eq. (I), we find upon equating
coefficients of like powers of y that 0 =l+ 1 and that
the C, 's satisfy the recursion relation

(i+ l+ 1)(i+ l)+ (i+ l+ 1)(1+2a) —2/5
(i+ l+ 1)(i+ I+ 2) —l(l+ I)

Truncation of the series (8) after a finite number
of terms (i.e., C„„=0)determines the quantity

a» and hence the pseudoenergy E~ from

(M+ l+ 1}(M+I)+(Af + l+ 1)(l+ 2a„) —2/5 = 0

A change of variables,

This will also provide the pseudo-wave-functions

y~, (~). For example, with l=1, M=O gives "2P"
state; M=1 a "3p" state and so on. Setting l=0

TABLE II. Comparison of the screened Coulomb 4p, 4d, and 4f energy levels for several
values of screening. All energies are in rydbergs.

Screening 4P
P resent Numerical ' 4d

P resent Nume rical ' Qf
Present Numerical '

0.001
0.005
0.010
0.020
0.025

—0.060 52
—0.05305
—0.044 63
—0.030 47
—0.005 20

-O.O6O 52 b

—0.053 05
-0.044 63
-0.030 47
—0.005 20

-0.060 52
-0.053 00
-0.044 46
-0.029 88
-0.003 16

—0.060 52
-0.053 01
—0.044 45
-O.029 88
—0.003 16

-0.060 52
—0.052 94
—0.044 20
—0.028 98

-0.060 52
—0.05294
-0.044 20
—0.028 98

Rogers et aE. (Ref. 4).
Roussel and O' Connell (Ref. 6).
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will of course recover the usual Hulthen solutions.
The functions

(r) em// „PC (1 &- r)ix lax

i=a
(10)

are not solutions to any real potential, but to the
extent that the Hulthen effective potential V'„" ap-
proximates V'„", they will approximate the
screened Coulomb It(r)'s. This suggests that we
use functions of the form of (10) with 6 replaced
by p, , a variational parameter, as trial functions
in the variational solution of the screened Coulomb
problem. We have done this for the 2p, 3p, 3d, 4p,
4d, and 4f states and present our results in Sec.
III.

X'(r)'dr= 1,
0

then the variational energy is given by

1 d2
x'( )(-—2 dr2

e '" I(l+ I)
+ 2, If'(r) dr .r 2r2

(1/ 2xx-1& xx rxx -xxr)2/1

Minimizing this with respect to the variational
parameter p. gives our best estimates of the ener-
gies of the screened Coulomb problem.

As a concrete example, let us consider the 2p
case. For this case the trial radial function is

III. RESU LTS

If we assume that the radial trial functions y'(r}
are normalized; that is,

(I -4p')(I —//') '" „/„„„/. ,„/„,

(12)

Using this in equation (11) we find

g, = [(I —/")(I -4/ '}»4/ ']

x[//, 'i(1 p')+ (1 —2//) ln(1 —2//} —4(1 —//) ln(1 —//) —4(1+ p) ln(1+ //)+ (1+ 2p) In(1+2/j)

+ ln(1+ 6 —2//) —4 ln(1+ 6 —//) + 6 ln(l+ 6) —4 ln(1+ 6+ //) + ln(1+ 6+ 2 i/)] .

3d 4p 4d 4f

0.001
0.010
0.020
0.025
0.050
0.100
0.200

0.0023
0.0239
0.0470
0.0582
0.1120
0.2108
0.3967

0.0023
0.0233
0.0450
0.0552
0.1027
0.1849

0.0023
0.0235
0.0455
0.0561
0.1059

0.0023
0.0226
0.0427
0.0518
0.0926

0.0019 0.0023
0.0228 0.0230
0.0432 0.0440
0.0526 0.0539
0.0966

Minimization of this expression with respect to
]L(. will give an upper bound to the screened Cou-
lomb 2p energy for given value of the screening
parameter 5. Note, however, that during this
minimization we must require that

~
//,

~

(—, in
order that our wave function (12) go to zero for
large r. There are similar conditions on the pa, -
rameter p, for higher states.

Expression for the energies of other states can
be obtained, but we will not give them here. For
states other than those with one-term trial func-
tions (2p, 3d, 4f, etc. ) the energy is more easily
calculated by computer using binomial expansions
and analytic formulas for the required integral
types. We present in Tables I and II results for

TABLE III. Best values of the variational parameter
p, for the states of Tables I and II for several values of
the screening parameter 6.

the 2p, 3p, 3d, 4p, 4d, and 4f states for several
values of the screening parameter. Also given in
the tables are the corresponding results of Rogers
et al. ' obtained from numerical integration of the
differential equation. Roussel and O' Connell'
obtained results virtually identical to those of
Rogers et al. , so we have not included their re-
sults in the table. As can be seen, our one pa-
rameter results are very close to those of Rogers
et al.

In Table III we list values of the variational pa-
rameter p, corresponding to the energies of Tables
I and II. Since for given screening parameter 5

the optimum values for the parameters p, vary
from state to state, higher-level variational wave
functions will not, without some modification, be
orthogonal to lower states of the same symmetry
(e.g. , our 3p is not quite orthogonal to our 2p).
The energies of the higher states in Tables I and

II and the p, values in Table III are for not-quite-
orthogonal wave functions. (There is, of course,
exact orthogonality between states of different
angular momentum, due to the angular part of
the wave functions. ) Because of the excellent
agreement with Rogers et al. 4 we did not expect
that this nonorthogonality would seriously degrade
our eigenvalues. To test this belief we repeated
calculations of the energies of the 3P and 4d levels
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TABLE IV. Comparison of spontaneous emission transition probabilities A;; for several
pairs of states.

Screening 2p~ ls
Present RO ~

3P~ls
Present R,O

3d-2P
Present RO '

0.001
0.010
0.025
0.050
0.100
0.200

6.26
6.25
6.17
5.93
5.07
2.20

6.27
6.26
6.18
5.93
5.06
2.16

1.67
1.65
1.57
1.31
0.502

1.68
1.66
1.57
1.32
0.526

0.646
0.637
0.600
0.483

0.648
0.639
0.601
0.482

' Roussel and O' Connell (Ref. 6).

explicitly orthogonalizing the trial functions to the
previously determined 2p and 3d levels before
minimizing the variational energy. Our eigenval-
ues changed by less than 0.1% throughout the range

The largest difference in each case occurred
for 5 near the critical screening for which the en-
ergy of the state in question becomes zero.

We have also calculated the spontaneous emission
transition p robabil ity'

for several pairs of states. These are presented
in Table IV along with the corresponding values
obtained by Roussel and O' Connell. ' The required
ls Hulthen-like wave function was taken from the
paper of I.am and Varshni. ' &s with the energies
presented earlier, the 3p wave function used is not
orthogonal to our best 2p wave function. For
small 5 the agreement with Roussel and O' Connell
is quite good. Near the critical screening for the
higher state the agreement is less satisfactory.
It appears that a linear combination of Hulthen-

like functions is necessary to provide accurate
matrix elements near the critical screening.

IV. SUMMARY AND CONCLUSIONS

Using the solutions to a Hulthen-like effective
potential as one-parameter trial functions in a
variational calculation of the screened Coulomb
potential, we have calculated energy levels of the
2p, 3p, 3d, 4p, 4d, and 4f states which are in
excellent agreement with the more elaborate ca,l-
culations of Rogers etal. ' and Roussel and O'Con-
nell. ' Transition probabilities are also in good
agreement with those given by the latter authors,
leading us to believe that our simple wave func-
tions can profitably be used to calculate other
properties of screened Coulomb or similar short-
range potentials when it is inconvenient or infeasi-
ble to use more involved variational or numerical
wave functions. If greater accuracy is needed it
appears that a linear combination of Hulthen-like
trial functions would be more suitable than a simi-
lar combination of hydrogenic or plater-type func-
tions.
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