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Numerical investigations of dynamical systems allow one to give estimates of the rate of divergence of nearby
trajectories, by means of a quantity which is usually assumed to be related to the Kolmogorov (or metric)
entropy. In this paper it is shown first, on the basis of mathematical results of Oseledec and Piesin, how such
a relation can be made precise. Then, as an example, a numerical study of the Kolmogorov entropy for the
Henon-Heiles model is reported.

I. INTRODUCTION

In recent years many attempts have been made
in order to investigate the so-called stochasticity
properties of dynamical systems, in particular
Hamiltonian systems, by numerical computations.
However, stochasticity is generally defined and
tested in a rather qualitative may, and the connec-
tion between the empirical parameters introduced
to describe it and rigorous theoretical concepts
is fa,r from being clear.

Qne of the most powerful empirical tools has
always been the study of the divergence of nearby
trajectories in phase space, Such a method allows
one to define a quantitative parameter (the "en-
tropylike quantity"), which is supposed to be
strictly related to the Kolmogorov (or metric)
entropy for associated f lorn. ' 4

The aim of the present paper is to analyze this
entropylike quantity, deriving its precise connec-
tion with the metric entropy, and to explain cer-
tain properties observed in the numerical compu-
tations. This connection turns out to be particu-
larly simple for the case of Hamiltonian systems
with two degrees of freedom. As an example, for
one of them, the well-known Henon-Heiles mod-
el, ' ' we compute the entropylike quantity and test
its properties; moreover, we are able to draw a,

tentative curve for the entropy itself as a function
of energy.

In Sec. II me collect first the necessary mathe-
matical tools, i.e., the results of Oseledec' and
the fundamental results of Piesin. '" [We are
very grateful to Dr. A. B. Katok (Moscow) for the
communication of the latter results. ] We then re-
call the definition of the entropylike quantity and
explain its empirically observed properties. The

numerical example for the Henon-Heiles model is
treated in Sec. III.

This paper has been written, as far as possible,
in a self -contained way; however, a certain famil-
iarity mith ergodic theory and in particular with
entropy is necessary (see, for example, Hefs. 11
and 12). The elementary notions on differentiable
manifolds used here can be found, for example,
in Ref. 13.

II. THEORETKAL ANALYSIS OF THE NUMERKAL
COMPUTATIONS

A. Mathematical preliminaries: Lyapunov characteristic
numbers and entropy

Let us give first the main definitions and fix the
notation.

Let M be a differentiable, n-dimensional, com-
pact, connected Riemannian manifold of class C'.
If x&M, the tangent space to M at x and the norm
induced in it by the Riemannian metric on M will
be denoted by E„and ~[

.
~[, respectively. Let X

be a vector field of class C' defined on M and tT'j
the flow induced by X, i.e. , for any t let T'x=x(t),
where (x(t)) is an integral curve of the vector field
X such that x(0) =x. The tangent mapping of E,
onto E~~„ induced by the diffeomorphism T' mill
be denoted by dT„'. It will also be assumed that the
flow (T'j preserves a normalized measure p which
is equivalent to the Lebesgue measure on M and
whose density in local coordinates is of class C',
i.e., that the flow tT']admits an inte. gral invar-
iant of order n and class C'.

The following theorems A and 8, mhich partially
summarize theorems 2 and 4 of Ref. 8, are the
basis for all further considerations of the present
paper.
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Theorem A. There exists a measurable set
p(M, ) = 1, such that for every xeM, the

following properties hold:
(a) For every vector e&E„, ee0, the limit

lim {I/f ) InlldT„'(e)(~ = X(x, e)

exists and is finite. M being compact, such a.
limit is independent of the Riemannian metric
chosen on M.

(b) There exists a, basis (e„.. . , e„) of E„such
that

n n

Q 1(x, e, ) = inf Q A. (x, e,),
n8= 1 0=1

where

II =((e„.. . , e„): (e„.. . , e„) is a basis of E„}.
As e varies in E„, X(x, e) takes only the values

(X(x, e,.}}.
The number X(x, e) is called the Lyapunov char-

acteristic number of the vector eE-E„, and the
numbers X(x, e, ), which depend only on the flow
(T'} and the point x, are called the Lyapunov
characteristic numbers of the flow (T'}at x. We
will use the notation X(x, e,.) = X,(x), 1- i ~ n, and
suppose 1,(x) ~ X,(x) & ~ ~ & X„(x}. Then the func-
tions X„.. . , A.„are defined on M and can be shown
to be measurable with respect to the Lebesgue
measure on M.

We will also denote X„(x) by l(. (x). This is the
quantity of main interest for the present paper,
since it will be shown below to correspond to the
entropylike quantity.

Given x&M„ the numbers (X,(x}}...„are not all
necessarily distinct. Denote by (v~(x)}. .., („& the
distinct values taken by the numbers (1;(x)}, ; „,
and by k,.(x) the multiplicity of v„.(x}. Also, let
v, &v,. if j&j.

Theorem B. For every x{=M, there exist linear
subspaces H„.. . , H, of E„, with s=s(x), such
that (a) E,=H, S HAH, (8 denotes, as usual, di-
rect sum); (b) dimH, . =k,.(x), 1»j ~ s; (c) if et 0,
ec.H, , then

»m {»II l»nlldT'(e) II=-,(x)
t~a ~

{1)if ei(0, eeH, eS. . H~bute AH, . H, „then

X(x, e) = v,.(x), 1 ~ j ~ s.
From this theorem it immediately follows that

if one chooses in E„avector e "at random" then
one may expect to find A(x, e) = v, (x)—:A (x). In-
deed, the vectors e, such that X(x, e) & v, (x), con-
stitute a subspace of E„which has positive codi-
mension and thus vanishing Lebesgue measure.

We recall now the fundamental theorem of Piesin

connecting Lyapunov characteristic numbers with
metric entropy:

Theorem C. Under the conditions given above,
one has

a (i').= f p x;(x) di(*)
N -)I; {x}&O

where h„((T'}) is the entropy of the flow (T(}with
respect to the invariant measure p, .

The following remark is an immediate conse-
quence of the very definition of the Lyapunov
characteristic numbers: Suppose the vector field
X does not have singular points, i.e., for every
xcM it is X(x)e 0. Then for any xcM, one has
X(x,X(x))=0. As a consequence, at least one of
the Lyapunov characteristic numbers of the flow
(T'} vanishes for every xcM„so that one has

(x) =-0 for xcM, .
From the above remark and Piesin's theorem

one thus gets the inequality

(x) d p, (x) & h,,((T '})

~ (n —1)f1,„(x)d p, (x) .

Let us now consider the particular case of a
Hamiltonian flow of N degrees of freedom. We
assume we are given a function H(q, p) of class C'
defined on an open subset U of R', with N ~ 1 and

q = (qli ~ - ~ i qN}i p = (p)i ~ ~ ~ i ps}i
grad H(q, p) v 0 for (q, p)cU. The Hamiltonian
flow (T'} on U is thus defined by the Hamilton
equations of motion with Hamiltonian H.

The energy surfaces Qs = ({q,p) cU:H(q, p) = E}
are not necessarily compact. We will suppose
that there exi. '.s an interval of energies E such
that Qs contains a (2H -1)-dimensional submani-
fold Fs which is compact, connected, and (T'}
invariant.

Denote by (Tz'} the restriction of the flow (T'}
to I'E. It is well known that the Lebesgue mea-
sure on R induces on I E an invariant measure
i(~ (strictly positive and of class C' in local co-
ordinates) which can be supposed to be normalized
by uz(I' s) = 1. Under such conditions inequality (1)
becomes

(q, p) dv, (q, p)
I@

~ Iz, ((Tsi})~ 2(N-I) X (q, p}di).z(q, p).
r

Such an inequality will be the basis for the discus-
sion of the connections between the entropylike
quantity and entropy. A more stringent inequality,
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which holds under rather particular assumptions
and will be of interest in Sec. III B, is deduced in
Sec. IIl3.

In closing this subsection, we may remark that
the results of Qseledec and Piesin recalled here
for a flow (T'} are easily formulated also in the
cRse of R dlffeomorphlsm T.

B. Entfopylike quantity

Here, we give the description of the quantities
k„(r, x, d) and k(r, x, d) which were defined in Hef.
4 and also in the cited works by Chirikov and co-
workers. ' '

%6 make reference here to the case of a Hamil-
tonian flow LTa'} on I's, but the cases of a flow or
a diffeomorphism on a smooth manifold would be
treated in a similar way.

Given v &0, consider the diffeomorphism T' of
I"~ onto itself. Fix a point x&I'z and another point
y(-. I'~ very close to x, not on the same trajectory.
Denote by d the segment relaying x to y and by
jd j its length.

is the Euclidean norm. Denote by y, the unique
point of the half-line issuing from x, and contain-
ing T'y such that ll y, -x, ii =

I d I. Then one can
iterate such a procedure and define x, = T'x, = T"x,
jd, j= IIT'x, -T'y, ll; by y, we will d~~~t~ the unique

point of the half-line issuing from x.= T'x, and con-
taining T'y„such that lly, —x, ll = Id I, and so on

(see Fig. 1).
One thus gets a sequence of positive numbers

(Id; I}, i = 1, 2, . . . , and one can so define the
quantity

k„(r, x, d) = —Pin jd;j
f= 1

From the numerical computations described in
Ref. 4 it appears that for the model there con-
sidered, if Id i is not too big, one finds (i) the
limit Iim„„k„(v,x, d)=k(r, x, d) seems to exist;

(tl) k(& x d) ts independent of 7 and (111) k(T' x d)
is independent of d.

In general, all of the numerical computations
on a large class of Hamiltonian systems' ""
show that for those systems, given an energy E,
I ~ decomposes, roughly speaking, into two re-
gions which are fT~} invariant. One of those re-
gions, which is called the ordered region (or
sometimes the stable region), is characterized
by tlM prop6rty that the trRjectorles of the flow

fTa} have a behavior which seems similartoquasi-
periodic motions. The other region, which is
called the stochastic one, is instead characterized
by a very irregular behavior of the trajectories
of the flow, which seems similar to the behavior
of the Anosov flows (see Hef. 1, and particularly
Hefs. 7 and 14). Such characterizations are not
rigorous, but have nevertheless an undeniable
heuristic value. It appears moreover that (iv)
k(v, x, d)=0 if x is taken in the ordered region of
I'e; and (v) k(v, x, d) is independent of the choice
of x if x is taken in the stochastic region of I"~.
In such a case, k(r, x, d) is always positive. Prop
erty (v) allows one to speak simply of the quantity
k= k(E) instead of k(r, x, d), with x belonging to the
stochastic region of I's. The number k(E) was
considered as an entropylike quantity. In Sec. II C
such R statement will be given a precise meRnlng.

C. Identification of the entropylike quantity

We are now able to explain (i)-(iii) of Sec. II 8
and give some heuristic remarks about (iv) and (v).
This will be based on the identification of k(r, x, d)
with the I.yapunov characteristic number X(x, e),
where e = y -x.

(a) It is clear that, r being fixed and I d I suffi-
ciently small, one has Id, I/Id I=—IldT'„(e)ll /llell,
and moreover

lid T„"(e)il
Id l llell ':

ll dT'„(e)ll " lldT„'(e) II
'

where the property d T„'"= dT~ d'T„', following from
T'"= T'T', has been used. In general one has

Id; I lldT„"(e)ll
Id i iidT" '"(e)li '

As a consequence,

1 " lldT."(e)ll
nv . „ IldT„" '"(e)li

FIG. 1. Definition of the entropylike quantity.

I lid T„"'(e)ii

ll(e)ll
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and this allows, by note (a) of Theorem A, to iden-
tify k(7', x, d) =Iim„„k„(7',x, d) with the l.yapunov
characteristic number X(x, e). This identification
is made with an error which tends to zero with
Id I.

(b) Property (ii) of Sec. II 8 is then an immedi-
ate consequence of the very definition of the Lya-
punov eharaeteristic numbex's.

(c) In (a) above k(r x d) has been identified with
X(x, e). Then, by the remark following Theorem
B, one sees that if one chooses d at random, one
may expect to find k(v, x, d)=X (x).

(d) While properties (i)-(iii) of Sec. II8 are
consequences of the Oseledec theorem on the
Lyapunov characteristic numbers and of the very
definition of k(v, x, d), properties (iv) and (v) in-
stead have to be considered as empirical, and

are far from being well understood. The following
consider'ations are then, by necessity, of a heur-
istic character:

For the ordered region, the vanishing of the Lya
punov numbexs should be related to the fact that
its numerically computed trajectories are ap-
parently of quasiperiodic type; this much we can
say about (iv).

Property (v) supports instead the idea that the
stochastic region either is ergodic or contains an
ergodic component the measure of which is close
to the measure of the stochastic region itself. In
this connection we recall that an example of a
flow, preserving Lebesgue measux'e, has been
found" which is not ergodic, while all of its Lya-
punov characteristic numbers but one are non-
vanishing almost everywhere.

been made in thispaper. Indeed, defining 4:I'~- I'~
by $(q, P)=|q, —P), if one assumes that the
stochastic region SE is g invariant and that the
functions A,„„,. . . , X», are p, ~ constant almost
everywhere on S~, then one easily deduces, on S~,
the 1 elations

(in particular ~„=0). This is seen as follows:
I et x= (q, p); from H{g(x))=H(x), as is well known,
one gets the time-reversal property T~'= gT~ P

'
of the flow. Then from part (c) of Theorem 8 one
gets

lim —lnlldT, '(e)ll = —lim —in lldT„'(e)ll
itl ",„Itl

for all Ote eH&, 1 ~ j ~ s, so that one immediately
deduces X(x, e) = -X{&(x},dg(e)); the stated prop-
erty then follows.

As a consequence, inequality (3) can then be
strengthened and one gets

Pg(Ss)~(E) —h„K&E' j) —(&- l)vg(SE)&(E) (5)

This is of particular interest in the case N = 2, be-
cause it then gives the approximate equality

h.,((&.')) =- ~.(S.)~(E). (6)

This xelation will allow us to produce, for the
Henon-Heiles model, an approximate curve for
entropy as a function of energy, on the basis of
numerical estimates for }t(E) and p, ~(Ss).

For this model it was possible to cheek numeri-
cally the two additional hypotheses introduced to
obtain relation (4).

D. Connection with entropy

For the connection between entropy and the en-
tropylike quantity, the only rigorous relation that
can be given is essentially inequality (2), which
follows from Piesin's theorem (Theorem C here)
and the assumption that the vector field considered
does not have singular points.

However, use may be made of the heuristic
picture described in Secs. IIB and IIC concerning
those particular models for which stochastic and
ordered regions appear to exist. Indeed one may
then assume that X (x) vanishes in the ordered
region of I"~ and is equal to a positive constant,
k(E), in the stochastic region Ss of I's, so that
inequality (2) gives

u (S )&(E)-&„((&'))&2(Ã-I)p (S )k{E). (3)

A more stringent relation, to be used in Sec.III 8, 7,
ean, however, be given for the Hamiltonian sys-
tems such that H(q, p)=H(q, —p), a condition which
is satisfied in all models to which xeference has

III. NUMERICAL EXAMPLE: THE HENON-HEILES MODEL

A. Hoon-Heiles model.

Here, we briefly recall the definition and de-
scribe the main properties of the Henon-Heiles
model. ' This is a. dynamical system of two de-
grees of freedom characterized by the Hamilton-
ian

H(q„q„p„p,) = ,(p', +p22+q', +q', )+—q',q, ——,q'„

where q„q„pgy p2FR; a flow on R' is thus defined

by the Hamilton equations

dt " dt

2
dp'2 2

dt ' dt
—2q~q2~ =-q, +q, -q, .

It can be easily shown that the energy surfaces Q~
are such that for 0&E & —,

' they admit a unique non-
void invariant compact three-dimensional mani-
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FIG. 3. Graph of the function 1-p(E) (from Ref. 5).

fold I'E and that the vector field X„ there defined
does not have singular points.

This was the first model for which numerical
computations indicated the existence of ordered
and stochastic regions on I'~, according to the
general qualitative description mentioned in Sec.
II B.

This picture is clearly illustrated by Fig. 2,
which is reproduced from Ref. 5. Such a figure
gives a graphical presentation for the numerical
integration of the equations of motion, by a stand-
ard device which reduces the study of a three-
dimensional flow on I'~ to the study of a two-di-
mensional plane mapping, as it will be now re-
called.

Considering in I"~ the two-dimensional surface
given by q, =0, one plots the successive points at
which a particular solution intersects this surface
with Py ~ 0 If one eliminates P, with the help of
H(q, p) = E and sets q, = 0, one can use q, and p, as
coordinates on this two-dimensional surface; since
p', ~0, they are restricted to belong to the region

F& = ((q„P,): '(0.'+ q,') -4,' —E-f.

As is seen from Fig. 2, which refers to E=0.125,
it appears that for some initial conditions these
successive points are organized on various closed
curves in the plane q„p,. Other initial conditions
(in the stochastic region) give instead successive
points which are scattered around without any ap-
parent order; actually, all such points in the fig-
ure refer to a single particular solution.

Let gz denote the (two-dimensional) Lebesgue
measure on I's normalized by Pz(1's) = 1. Let
iI(E) = Pz(Ss), where Ss is the stochastic region

in 1~. Henon and Heiles gave a numerical esti-
mate for p(E) as a function of E and found for
1-$,(E) the graph of Fig. 3. In this connection
one may recall that as has been recently proven"
one has rigorously il (E) &1 for 0 & E &,' .

8. Results of numerical computations

We come now to the description of our numerical
results. The computations were performed on a
CDC 7600 computer, with a precision of 14 digits.
The integration algorithm was the so-called cen-
tral-point method, "correct up to the third order
of the time step; the time step was typically 0.004.

The aim was to compute the quantity P„(r,x, d)
described in Sec. IIB. Given a value of E, the ini-
tial point x was chosen in I"~, i.e., by arbitrarily
fixing q, and p» taking q, =0, and determining p,
by the condition H(q, p) = E The displac. ed point

y was chosen at a distance idl from x, with typi-
cally Idl=3&10 4. Typically it was &=0.2 a,nd

n up to 10'.
The properties (i) (v) of k„discuss-ed in Sec.

II B and II C were checked with good accuracy.
For the independence from 7 [property (ii) of

Sec. II 8], we remark that for any n the property

should be expected to hold, from the considerations
of Sec. IIC. For example, this property was satis-

fiedd

with an error of about 5 & 10 ' for j = 2 and
5&10 4 for j =10, for any n up to 10', in a compu-
tation with x, in the stochastic region and E =0.125.
These values correspond to percentage errors of
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about 0.1% and 1%, respectively.
Analogously, the property [see property (iii) of

Sec. IIB]

k n

-1-
10

5 ~

k„(v, x, nd) =—k„(7', x, d), n 0 0,
is expected to hold for any n. As a typical ex-
ample, for a=2.2 the error was of about 5x10 ',
and the percentage error was 0.1% for the initial
conditions given above.

The independence from the direction of the dis-
placement d is, instead, expected to hold only in
the limit n-~. Several checks have been made:
In the above conditions, changing the direction of
d we found a difference in k„which decreased from
about 20/g for n = 250 to 2% for n = 2500 and to 0.2/p

for n= 25000 or greater.
We pass now to the dependence on n and x. At

low enough energies, where according to Henon
and Heiles (see Fig. 3} the measure of the sto-
chastic region is negligible, we always found that
k„decreased with n (at least for large enough n),
as illustrated in Fig. 4, which refers to various
initial conditions at E =0.08. With large enough
n all curves seem to approach a straight line in
the log-log scale, which corresponds to a be-
havior of the type k„=—nn (n, p&0}. This very
regular behavior strongly supports the conjecture
that lim„„k„=0. In particular it seems to be a
rather general rule that in this model one has P
=—1, as can be seen by comparison with the dotted
line in Fig. 4.

This general behavior for k„does not change by
increasing the energy, provided one chooses ap-
propriately the initial point x in such a way that
it is in the ordered region. This is illustrated in
Fig. 5.

10

INITIAL CONDITIONS

p1 0
p2=0. 05

q„=O

q2 0'20
10

1 . E=O. 05
2. 0.08
3. 0.10
4. 0.14

5. 0.15

10'10 10 (n&&t)
4

FIG. 5. Behavior of k„at different energies, when the
initiaL point is taken in the ordered region.

I,et us now examine the case of a typical energy,
E =0.125, where the ordered and the stochastic
regions have comparable measures (see Fig. 3).
In Fig. 6 six curves are reported for E=0.125.
Curve 1, which has the same general feature of
Figs. 4 and 5, corresponds to an initial point x
lying in the large ordered region around the q,
axis with q, &0. Curve 2 refers to an initial point
in one of the small islands surrounding such a
region, while curve 3 corresponds to an initial
point in one of the two symmetric ordered regions
near the p, axis. For these curves, too, the limit
seems to be zero, being approached, however,
with a less regular behavior. Such a feature ap-

k n

10
k

n

10 ~S—~ -4 S

—~~0=5=%~a~a
a—a~ a

r '
~

T IAL COND IT IONS &!' ~

0.
p2= 0.02

0.14

0.015

10

10

125; q =0 p &0
1 '

110INITIAL CONDITIONS
1. q 2
2.

0.20

0.3310 E=O. OB' q1 0' p1&0

0.25

0.14

0.02
0.30

1. q ~ 0.20 p = 0.05
2

'
2

2. 0.20 0.15
o

+
0.20

-0.15-0.25
-0. 15

0.05
0.25

0.25

10 10 10 (n&t)

10 (n&&T )10 10'
FIG. 6. Behavior of k„at the intermediate energy

E = 0.125, for initiaL points taken in the ordered (curves
1-3) or stochastic (curves 4—6) regions.

FIG. 4. Behavior of k„at the fixed low energy E = 0.08.
for different initial. conditions.
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peaxs to be chaxacteristic of these components of
the ordered region, and is difficult to explain it
rigorously at the moment. We hope to return to
this problem in future. Curves 4-6 refer to initial
points x in the stochastic region and rathex clear-
ly appear to approach a limit which is independent
of x. This property has been checked for many
other initial points at the same energy.

In general, for any energy E &0 we always found
for the quantity jp = lim„„k„either zero or a posi-
tive vRlue which depeQds oQly on E. Such R posi-
tive value will be denoted, as in Sec. II 8, by?I(E).
The values found for k(E) are reported in Fig. V

by asterisks; the vanishing values found in the
ordered region have also been marked (dots). All
of the positive values between F = 0.105 Rnd 0.1666
are rather well defined with the same accuracy as
that of Fig. 6. In particular, it may be remarked
that two of them (i.e., those for E = 0.105 and
0.110) I'efel' to eIlel'gies fol' wllicil accoldl11g 'to

Henon and Heiles, the measuxe of the stochastic
region is negligible (see Fig. 3). For the two
points at E = 0.975 and 0.1, they are defined with
a much smaller accuracy~ and R vex'y cRx'efUl

86Rx'ch wRS DecessRly ln ox'dex" to find lnltlal con-
dltlons %1th DonvRD18hlng 0 Rt such encl gles. OQ6

can also note that apart from these two points the
positive values axe rathex well fitted by an expo-
nential, k(E)=3.4e~s, as shown in Fig. V (con-
tinuous line).

We come now to an estimate for the metx'ic en-
tl'opy II(E) =?I~ {{7@})as a fllIlctloll of eIlel'gy Eq
on the basis of relation (6). The entropylike quan-
tity II(E) being known from the numerical compu-
tations described above, one needs only a knowl-
edge of iIi(Ss) as a function of E. For want of a.

direct estimate, we assume it to be given ap-
proximately by the function p, (E) = iI~ {Ss) defined
in Sec. IIIA and estimated numerically by Henon
and Heiles (Fig. 3). One thus has, approximately,

I or example, if as a rough interpolation one takes
for I1(E) the function given by iI(E) =0 for E&0.11,
I1(E)=1 —1V.6(E-O.ll) for 0.11»E» —,', and for
k(Z) the exponential k(Z) = 3.4e22s, one gets the
function II(E) =0 for 0&Z&0.11, II(Z) =60e" (E

k

0. ') 5
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0,05 015 E

FIG. 7. Nonvanishing values found for k„at different
energies ln the stochastic legion (asterisks) vanishing
values found in the ordered region (dots), exponential
curve interpol. ating the nonvanishing values (continuous
line), and tentative curve for entropy as a function of
energy (dotted line).

-O.ll) for 0.11»Z» z, represented by a dotted
line in Fig. 7. One may note that very probably
one should have h(E) &0 for 0&E & —,', although this
is still unproven, to our knowledge.

IV. CONCLUDING REMARKS

%6 conclude by mentioning some open problems,
strictly related to those considered in the present
paper: (i) How can one calculate numerically the
Lyapunov characteristic numbers other than the
maximal one'? (ii) Does the stochastic region in
the Henon-Heiles model contain more than one
ergodlc co& ponents, Rs suggested to us by Dr.
M. Henon'? (iii) Does one have for the function
iI(E) in the Henon-Heiles model i1(E)&0 for 0 &

E&-,', from both a numerical and a theoretical
point of view P This lRst question ls x'elRted to the
already mentioned problem of whether one has
h(E) &0 for 0&E&-,'.

Note added in Proof. 'Theorems A and B have
also been proved by V. M. Millionscikov; see Mat.
Sbornik VB, 1V9 (1969) [Math. USSR Sbornik V, 1VI
(1969)].
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