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The problem of the first- or second-order nature of the nematic-smectic-A phase change is explored. It is
found that couplings between various order parameters, especially the first and second translational ones, are
important. General Landau theory for coupled orientational and translational order parameters is developed.
Numerical methods and results for translational ordering are presented. The effects of molecular polarity are
considered. The relative importance of different couplings is discussed, and some experiments are proposed.

I. INTRODUCTION

In the nematic liquid crystalline phase, barlike
molecules have a uniform center of mass distribu-
tion but have their long axes aligned along a spe-
cific direction in space, often indicated by a unit
vector, the "director. " In the smectic-A. phase,
the molecules coalesce into equidistant planes
perpendicular to the nematic director; the center-
of-mass density is thus periodic in the dimension
perpendicular to the planes Rnd uniform in the
other two. McMillan" was the first to point out
that the transition between these two phases could
be second order. He carried out a variational
calculation for a system with a Gaussian inter-
particle potential and found that for a certain
range of potential parameters, the parameter
charactexizing smectic order grows continuously
from zero below the nematic to smectic-A tran-
sition temperature T~„. For other potential pa-
rameters, the smectic order jumped discontinu
ously at T». McMillan concluded that the transi-
tion could be second order only when nematic order
was nearly saturated at T». Systems with a large
diffex'ence between the isotx'opic to neIQRtic tx'Rnsi-
tion temperature T» and T„~ are therefore ex-
pected to be the best candidates for a second-order
smectic to nematic transition.

The center-of-mass density is periodic in the
direction perpendicular to the smectic planes in
the srnectic-A. phase. It can, therefore, be ex-
panded in a Fourier series of wave number q,
= 2v/d, where d is the interplanar spacing. de
Gennes" has pointed out that the smectic oxdex
parameter is the first Fourier coefficient, pi,
in this series. Since p, has both an amplitude Rnd

a phase, the smectic-A order parameter is a
complex number. It, therefore, has the same
symmetxy as the superfluid or supexconducting

ox'der parameter. In fact, thexe is a strong
analogy between a smectic-A. liquid crystal and
a superconductor with the molecular director in
the formex' playing the role of the vector potential
in the latter. Traditional reasoning would then
SRy that the Qematlc to smectic-A transition
should be second order and by universality the
critical exponents for thi. s transition should be
the same as those for the superfluid ox supercon-
ducting transition. Coupling of p, to other fie1.ds
can, however, make the coefficient of

~ p, ~' in a
Landau-Ginzburg expansion of the free energy
negative and lead to a first-order transition just
as in the Rodbell-Bean effect' in magnetic transi-
tions. de Gennes has analyzed the smectic to ne-
matic transition, including couplings of p, to the
nematic order within the context of the Landau
mean-field theory and concluded that the transi-
tion is more likely to be second order the smaller

The purpose of this paper is to investigate more
thoroughly the nematic to smectic-A. transition
within mean-field theory. Our primary interest
will be to investigRte Rs genex'ally Rs possible
those factors which determine whethex the transi-
tion is first or second order. Our approach will
be on two fronts. First, we will consider the
txansition within the context of the most general
Landau mean-field theory. Second, we will solve
numerically the Euler equations for various inter-
particle potentials for systems with saturated ne-
matic ordering. Our principal conclusion is that
two factors control the nature of the transition.
The first factor is the one discussed by McMillan
and de Gennes: a second-order transition is more
likely when T~g/T gg ls smaliq and order ls satll-
x'Rted. The second factor is the tendency of the
system to order with interp1. anar spacing ~d and
oldel parameter p2. If T2 is the trRnsitioQ tem-



2308 ROBERT B. MEYER AND T. C. LUBENSKY 14

perature for —,'d ordering, the nematic to smectic-
A transition is more likely to be second order
when T,*/T„„ is small or negative. Possible pre-
scriptions for realizing this criterion are sug-
gested.

This paper is divided into eight sections of which

this is the first. Section II treats the Landau the-
ory of the nematic to smectic-A transition when

nematic order is saturated. Criteria for a first-
or second-order transition or a tricritical point
are obtained. Section III treats the complete Lan-
dau theory including all possible couplings of p1
to other positional, orientational, and mixed order
parameters. This treatment emphasizes the ne-
cessity of having a complete picture of the nematic
phase just above T» before quantitative informa-
tion about the nematic to smectic-A transition can
be obtained. Section IV treats a molecular-field
model with saturated nematic order using the
general results of Sec. II. This model is essen-
tially the one studied by Kirkwood and Monroe, '
McMillan, "' and Lee etal. ' Section V discusses
numerical methods of solving molecular-field
models with saturated nematic order. These
methods are not restricted to small order param-
eters as is the Landau theory. Two methods are
discussed: the Fourier-series truncation scheme
used by Kobayashi, ' McMillan, "and Lee et al. '
and an iteration scheme introduced here. Nurneri-
cal results from the iteration scheme are pre-
sented. Section VI considers numerical methods
involving both orientational and translational or-
der. Shortcomings of the Fourier truncation
scheme are discussed. Section VII treats polar
systems. Section VIII summarizes important
conclusions and makes some predictions based on
these conclusions.

II. LANDAU THEORY WITH SATURATED NEMATIC ORDER

In this section we will consider a model of the
nematic to s mectic -A transition which ignores
orientational ordering (i.e. , assumes orientational
order has been saturated) but includes higher
Fourier components of the density. Let r be the
position of the center of mass of molecule z. We
assume here that the molecule is symmetric, so
its center of mass is also its geometric center.
The center-of-mass density is then

p(r) = +5(r —r ) (2.1)

where the angular brackets signify an average with
respect to the equilibrium density matrix of the
system. In the smectic-A phase, p(r) can be ex-
panded in a Fourier series of period d, the inter-
planar spacing:

(p)= p. +g p. coen(q. r+4),
n)0

= p, + —Q (p„e'"oe'"'0' '+ c.c.),
n)0

(2 2)

where q, is a vector of magnitude q, = 2m!d normal
to the smectic planes and P is a phase shift which
specifies the coordinate-system origin. p„ is just
the average of the nth Fourier component of the
density:

p„= 2p, —Q cosnq, ~ r (2.2)

The smectic-A phase is thus described by an in-
f inite series of order parameters:

p„=p„e'" (2 4)

p, is the smectic-order parameter discussed by
de Gennes. The higher Fourier components in

general have a, nonzero amplitude in the smectic
state, but their phase is controlled by the phase
of p„as indicated in Eq. (2.4).

A phenomenological free-energy density F can
be constructed from the p„subject only to the
constraints that F have a high-temperature mini-
mum with all p„= 0 for n&0, that F be positive
for large p„, and that it be invariant with respect
to uniform translations of the va, riable p. The
last constraint is merely the statement that the
free energy should not depend on where we choose
the origin of our coordinate system. Hence the
only contributions of p„which are admissible in
F are those which have no phase dependence, i.e.,
combinations of the form

pn,. '
pn,.

where

k k'

n;ai= n,. a, ,

+QP1P2 —tP1 P2.2 2 2 (2.5)

A, and A, change sign at the ordering tempera. —

tures T,* and T2* of the free p, and p, fields:

A, = a, (T—T,*), A, = a, (T T,*) . —(2.6)

where a; and a,. are integers.
We will consider now a model free energy in

which only the order parameters p, and p, appear,
reserving a discussion of the effects of higher-
order p„'s for Sec. III. The most general free-
energy density to fourth order in p, and p, is

1 2 1 2 1 4 1F —2A, p, +2A, p, +4B, p, +4B,p,
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QP 3 2=—= A1 p1+B1p1 —2fp1p2+ 2Qp1 p2= 0 p

BP1
(2.7a)

The nematic to smectie-A transition is driven by
fluctuations in p, so that T,* is presumably greater
than T,* or the ordering temperature of any of the
other p„'s.

I' must be a minimum with respect to variations
in p1 and p2'.

the distribution function

f(r, II)= +6(r —r~)6(Q —II ) (3.1)

where 0 = (O', P ) specifies the orientation of
molecule a.. f(r, 0) satisfies the normalization
condition

2 P2 2 P2 P 1 P 1 P2 (2.7b)
dA f(r, 0)= p(r). (3.2)

Equation (2.7b) can be solved for p, in terms of

p, . In the neighborhood of the transition p, is
small, and we need only consider p, to lowest
order in p, :

In the smectic-A state, f(r, II) can be expanded
in terms of coen(q, r+ P) and even-order I egendre
polynomials

f(r, Q)= —'+P &" cosa(q, r+P) P, (cos8),
nm 4~

p, = (f/A, ) p', +o(p', ). (2.8) (3.3)
Note that A, is positive in the vicinity of T1 so
that the sign of p, is controlled by the sign of t.
Inserting expression (2.8) for p, into Eq. (2.5)
for the free energy, we obtain a new free energy
which is a function of p1 only:

o" =2p P—(cosnq, ~ r'&, (cos8 )). (3.4)

E= —,'A, p', + ,'(8„2—t'/A,-)p', + —,
' C', p» (2.9)

where we have added a sixth-order term to insure
stability. The nature of the nematic to smectic-
A transitions is contxolled by the sign of the co-
efficient of p, . The transition is second order,
first order, or tricritical according to whether
8', =II, 2t'/A, is po-sitive, negative, or zero. If
8', is positive (second order)

If B,= 0, there is a tricritical point with

g 1/& t g I 1/2

If B', &0, the transition is first order and occurs
at a temperature T„greater than T,*. p, is still
proportional to p', in this approximation.

As long as A, is positive (i.e. , as long as p,
orders at higher temperature than the free p, ),
B', is always less than B,. The effect of the cou-
pling of p, to p, is to increase the tendency for the
transition to be first order. %e shall see that this
feature is general. Any field o which has a cou-
pling to p1 of the form o'p', will reduce the effective
value of B, and increase the probability of a first-
order transition.

The expansion (3.4) assumes that the molecular
ordering is inversion and azimuthally symmetric.
An expansion including other Y, 's would be
needed if there were vector or biaxial ordering.
Note that

= pni

o"=2p.O', )

(3.5a)

(3.5b)

o ","...,. = 2po — (cosnq ~ r (v ~ ~ ~ v
& ),)

An alternate form of Eqs. (3.5) in terms of ir-
reducible tensors will make more convenient the
isolation of scalar invariants to appear in a free-
energy density. I.et v,. be a unit vector pointing
along the long axis of molecule ~, and form com-
binations with v, and 6,~, (vf ~ ~ ~ v, )„which are
completely symmetric in all variables and trace-
less when any two indices are contracted. The
two lowest-order combinations are

(V; V~)~ = V(vg —g 6(g

(V&VJv~vl)s= VlVJVkvl —-( I 56M+ I 46it+ i 16M

+ vulva 6It+ vyvr6ia+ vavi6l~)

+ —'(6g;6~g+ 6gg6;~+ 6)~6~)) .
(3.6)

Tensor order parameters can then be introduced

III. GENERALIZED LANDAU THEORY

Orientational as well as positional ordering of
long bar molecules can be described in terms of

=o" (n, ~ ~ ~ n, ), , (3. 1)

where n, is the familiar nematic director specify-
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O', ,'. = 2POQ, , = 2PO(P, ) (n, n, —-', 6,„.) .

f (r, 0) can now be reexpressed as

(3.8)

ing the direction of preferred ordering. In smec-
tic A' s, n is parallel to q, . Note that o',

&
is

simply related to the symmetric, traceless ne-
matic order parameter:

Bt the smectic transition. The initial free energy
should, therefore, be expressed in terms of o"
(n&0) and (5P, ), the deviation of (P, ) from its
equilibrium value (P, ), in the nematic phase. We
would like to separate as much as possible those
effects which result from orientational ordering
from those which result from smectic positional
ordering. To this end, we write

f(r, II}=—'+go, ,...coen(q, ~ r+P)C, ,..., (II),
f2fit

(3.9)

o" = p„(P, )+Go" (I&0). (3.13)

If nematic ordering is completely saturated (i.e. ,
if the molecules do not fluctuate about their equi-
librium orientation perpendicular to the smectic
planes), 5o™is zero and (P, ) = 1. We will ex-
press our initial free energy in terms of p„, (P,„),
and 5o" (n, m&0).

The nonvanishing of (P, ) in the nematic phase
affects our analysis of the free energy in two im-
portant ways. First, all coefficients in the free
energy can depend on (P, ),. Since all (P, ),'s
for m & I are determined by (P, )0 within the sim-
plest nematic mean-field theory {Meier-Saupe), "
this means, in effect, that all coefficients depend
on (P, ),. Second, the nematic equilibrium
0', ...; 's can be used to form invariant combina-
tions with the variables p„, 5o', ...,. , and

6&7", ..., {s,rn&0). Hence, any combination of
the latter variables which satisfies the phase con-
straint is an acceptable contribution to the free
energy.

At the smectic transition, driven variables are
proportional to some power of p, . That power is
equal to the power of p, appearing in the invariant
combination of the driven variable and p, that is
linear in the driven variable. For example, the
following invariant combinations, linear in driven
variables,

where

4m+ I (4m)!
4w 2'- (2m)((2m}(

(3.Io)

v, is a unit vector pointing in the direction of Q.
The Einstein convention is used on repeated sub-
scripts. The prefactor in Eq. (3.10} insures that
the normalization of Eqs. (3.3) and (3.4) is the
same.

Finally, we introduce complex order param-
eters similar to p„:

0, ffN. g Hat ekff(II4"'2e ~i""2m (3.11)

The free energy must be invariant with respect
to uniform rotations and uniform translations of
the coordinate-system origin. The only combina. -
tions of 0",. ..., which satisfy these criteria are

1
~ ~ ~ $2tn

those which have no phase dependence and which
have been fully contracted with respect to all
Cartesian indices. Examples of acceptable invar-
iant combinations are

F01(701 (P )2

o 10(( 10)g p
2

ollo01(o10)g p (P )o 11

(3.12}

o llo 11((00 (F00)g p (P )(o 11)2

Summation with respect to repeated indices is
understood, and the exact coefficients on the right-
hand side have not been calculated.

We are interested in the nematic to smectic-A
transition. This transition is driven by the order-
ing field p, . Our eventual aim must, therefore,
be to obtain an effective free energy which is a
function of p, . To obtain this free energy, we
start with a free energy expressed in terms of
all variables which are zero in the nematic phase
and nonzero in the smectic phase. %e then elimi-
nate all driven variables in favor of p„as p, was
eliminated in Sec. II. All (P, )'s are nonzero in
the nematic phase whereas all 0" 's for n&0 are
zero. The (P,„)'s can undergo additional changes

&3P, ) p,p,*= (~P, ) pl

3o 20( pg}2 3(T 2np 2

Q{T lffp + QO leap

imply that (5P, ) and 6o'" are proportional to p'„
5o'" to p„and p„ to p",. We will assume that an
expansion of the free energy to sixth power in p,
is sufficient to describe the smectic-A to nematic
transition. In this case, the coefficient of p, is
positive, and the sign of the coefficient p, deter-
mines whether the transition is first or second
order. In order to determine the coefficient of
p4i in the effective free energy, we start with a
free energy that includes all terms up to order
p', . To keep expressions as compact as possible,
we introduce a matrix notation.
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6o 11)
g~ l

)

~

go. 18

(3.15)

F = —,'(A, —a"Ca)p',

+ ,' [a, 3f'/X, -3(b'—a—'C i)X -(b-I'C a)]p', .

(3.17)

Note that the coupling to 5o' increases the nematic
to smectic-A transition temperature from 7,* to
T„*„=T,*+a Ca/a, [«. Eg. (2.6)]. Equation (3.17)
shows that the coefficient of p', is reduced in mag-
nitude by two types of terms. The first term re-
sults from coupling to the second Fourier compo-
nent of the density and was discussed in Sec. II.
Its effect is minimized by making (Tg„-T,*)/T„*z
as large as possible. The second term results
from coupling parameters involving orientational
order. Its effect is minimized by choosing sys-
tems with saturated nematic order at the smectic-
A transition, i.e. , by making T„z/T„~ as large as
possible where T„z is the isotropic to nematic
transition temperature.

IV. MOLECULAR-FIELD MODEL

+ &BiPZ tPI P2+Pi~ 50' +Pi~ 5~+Pi50' l5

(3.16)

where C ', g ', and X are infinite dimensional
coupling matrices, and g and b are infinite di-
mensional coupling vectors. C ' and y

' are posi-
tive definite; I is not a square matrix; it has two
columns for every row. If nematic order is satu-
rated, application of external fields will not en-
hance 5v or 5o'. Hence both C and y become zero
with saturated nematic ordering. The 11 compo-
nent of y is just the order-parameter susceptibil-
ity used by de Gennes in discussing this problem. '
Minimization of F with respect to driven variables
p2y 57'3 and 50' yields

temperatures far below T„„, the power-series
expansion of the free energy is inadequate. The
simplest solution to this difficulty, within the
mean-field theory, is to construct molecular
models for the free energy of the ordered state
which are functions of the ordering density, ignor-
ing short-range correlation effects. The free en-
ergy so constructed can be minimized, usually by
numerical methods, to determine the nature of the
phase change and the temperature dependence of
the order parameters. In this section, we will
develop the usual molecular-field model, studied
by Kirkwood and Monroe, ' Kobayashi, ' McMillan, "
and I.ee etaL, ' for the case of saturated orienta-
tional ordering. %e will then apply the results of
Sec. III to locate the tricritical point in terms of
model parameters.

For systems with saturated nematic ordering,
an approximation to the potential energy for
palrwlse interactions ls

'y d'r' p(r) V(r —r')p(r')g(r, r'), (4.l)

in which p(r) is the center-of-mass density intro-
duced in Sec. II, V(r —r ) is the interparticle po-
tential, and g(r, r ) is the pair correlation func-
tion. In the smectic phase, both p and g become
periodic functions. However, following the mean-
field approximation, we assume g is some fixed
function only of r —r independent of the periodic
structure of p(r). Moreover, we assume that the
period d of the smecti. c layers is known. If z is
the axis normal to the smectic layers, since p is
uniform in planes normal to z, we can immediately
integrate E in the x and y dimensions. Then the
internal energy density is

U(z —z')p(z') dz',

U(z —z')= fdxdy V(z- z', x, y)g( z- z', x, y).

Again ignoring local correlation effects, the
contribution to the entropy density by the smectic
ordering is

u3= —— dz p(z) ln p(z), (4 3)

where k is Boltzman's constant.
The free-energy density is then E= q-+S. Ex-

pressed in terms of the Fourier components of
p(z), to order p'„F is then

F =F,+ (T-T;)p',+, p', + (T T,*)p', -k ~, kT, k

The preceding analysis of the nematic-smectic-
A transition is useful only near a second-order
transition. For first-order transitions, or for

kT ~ kT' 32p' p' sp,' p'p' (4.4)
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U =
n U(z) cos(nq, z) dz .

Using Eqs. {4.4) and (2.9)) we obtain:

B'(~*)= {k~,*/gp'. )[1 T,*-/2(~,* —~.*)j. (4 5)

T„*is the unrenormalized ordering temperature
for the gath Fourier component of the density:

T„*= —( po/k) U„,
(4 5)

A is a normalization constant. M(z) is the mean
potential experienced by a molecule at z due to the
distribution of other molecules, p(z').

Solving this equation requires approximate nu-
merical methods. Qne approach is Fourier ana-
lyzing p(z), which results in an infinite set of
coupled integral equations for the order param-
eters, p„:

Hence, if T,*&—,'T,*, the transition is second order,
and if T,*&

& T,*, it is first order. The tricritical
point occurs when T, = ~ T,*. Fox" monotonically
varying U(~z —z' ~), this means that a deep narrow
potential produces a first-order transition, while
a broad flat potential leads to a second-order
transition. For example, if U is a Gaussian,

U(z zg) U
e-(s-z'&2/x2 (4.7)

Ad
cos(nq z)e """dz

0 t
0

M(z) = Q U„p„cos (nq, z),

U{z)cos(nq, z) dz.

(5 &)

Tg/Tg c 3r2(k/1)
2

and the transition is second ordex if

(4.8)

X/d & (in2/sv')"' -=—'
6

This is reasonable. For a narrow potential, the
smectie layers must be mell ordered to lower the
potential energy significantly. Therefore, a state
with small order parameters mill not be stable
because it has too small an entropy. This results
in a first-order transition. However, for a broad
potential, a state with small order parameters
lowers the potential energy enough to overcome
the accompanying decrease in entropy. Such a
state is therefore stable; i.e., a second-order
transition is possible. The consequences of this
model for determining the kind of molecule most
likely to have a second-order transition mill be
discussed in Sec. VIII.

V. NUMERICAL METHODS FOR SATURATED

NEMATK ORDERING

In this section, me mill continue to examine the
molecular-field model for the free-energy density
for the case of saturated nematic ordering. In-
stead of expanding F in a power series in the order
parameters, one can attempt to minimize it with
respect to variations of p(z). Performing the var-
iation of I' subject to the constraint

].
p(z)dz= p, (5.1)

This set of equations canbe truncated by truncating
the potential at a finite wave vector, so that U„
=0, for n&n, . This results in a elosedform for
M(z} involving only n, order parameters. Then
only n, coupled equations need be solved to de-
termine all order parameters.

Qne may be tempted to set n, = 1, to obtain the

simplest result. This mould be the analog, for
smectic ordering, of the Meier-Saupe theory of
nematic ordering. '0 For the nematie case, thai
approximation, using only the second Legendre
polynomial in the pair potential, preserves the
fundamental properties of the nematic-isotropie
phase change, although it cannot give very accu-
rate quantitative results. For the smectic case,
thistruncationsets U, =O, and therefore T,*=0.
Therefore, it can produce only second-order ne-
matic-smectic-A transitions. (We are consider-
ing nom only the ease of saturated nematic order-
ing. ) Varying U, will merely change T, . This is
clearly an unacceptable approximation. Qne must
work with n, ~ 2 to have first-order transitions.

A simpler numerical approach, not based on
Fourier analysis, is the direct solution of the
Euler equation (5.2) by an iterative method. Di-
viding the layer thickness into n equal intervals,
with p(z) approximated by the set p(z, ) at the cen-
ter of these intervals, the Euler equation be-
comes (for p, = 1 and length unit d/n)

p(z,.) = (1/A) e""~'/'r

results in the Euler equation

p(z) (p /A)e/(/(z)/k2'

(5.2)

p ~(s&(l sr

M(z(}= P p(z, }U(z, z,)- (5 4)

M(z) = dz' U(z- z')p(z') . This ean be turned into an iteration scheme.
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Starting with the mth estimate of p(z, }, we gen-
erate the (m+ 1)th estimate as follows:

M "(z,.) = Q p (z,.)U(z; —z,.),

Rm(z ) ehlm(z&)/zT'f

A = R(z),
(5.5)

p"' '(z, ) =R (z, )/A

In practice, one must terminate U(z, —z,.) at some
distance (N intervals) which can be as large as
necess ary.

This scheme was tried using n= 20 and X=40.
Using a PDP-10 computer programmed in
FORTRAN, a single iteration, including a con-
vergence test and all control processes, took
about 3 & 10 ' sec of computing time.

The conditions for convergence of this algorithm
were not examined in detail. For a Gaussian form
of U, convergence was rapid and monotonic. For
square wells, damped oscillations occurred at
low temperatures, if one started from an initial
p(z) far from the equilibrium state. For potentials
with a repulsive short-range part, undamped os-
cillation always occurred at low temperatures.
The temperature for which oscillation first ap-
peared depended on the detailed form of the po-
tential; this phenomenon was not studied syste-
matically. P robably convergence is assured for
any potential with an absolute minimum at z,.—z,.
=0.

Convergence was determined by the criterion
that the stepwise change of each p,. be less than
some limit, typically 10 ' at low temperatures
(below 0.9T,*}and 10 ' or 10 ' at high tempera, -
tures. This stepwise criterion was tested by ap-
proaching the equilibrium state from higher and
lower temperatures, i.e., from broader and nar-
rower initial states. The agreement between the
two p(z) and sets of order parameters thus ob-
tained was excellent; at worst, near the critical
temperature, where convergence was slowest,
the difference between the two sets of numbers
was less than 100 times the convergence limit,
while at low temperatures it was less than 10
times the convergence limit.

The dynamics of convergence mimicked critical
behavior, qualitatively. At low temperatures, be-
low 0.8T,*, stepwise convergence to a limit of 10 '
took 5 to 30 iterations, depending on the initial
state. Near a second-order transition, for a
change of temperature from 0.998T,* to 0.999T,*,
several hundred iterations were required for the
same convergence.

From the p(z,.} and the potential U, the first five

p„and the free energy were calculated. Free en-
ergies were measured relative to the free energy
of the disordered state (all p; = I/n) at the same
T. The potential had initially been normalized so
that U, = -n, which adjusts the temperature scale
so that kT,*=1.

The behavior of this model for various potentials
was examined. In all cases, the behavior near
the transition was that predicted by the Landau
theory. For U. & —,'U„ the transition was second
order, occurring at T=T,". For U, & —,'U, the tran-
sition was first order. In this case, near T,*, the
program could converge to either one of two dif-
ferent minima in the free energy, one for all p,.
= I/n, and one for an ordered state, depending on
the nature of the state from which iteration began.
The equilibrium transition temperature could be
located from the zero of the free energy of the
ordered state. The transition entropy could be
measured from the slope SF/ST at this point.

Some results of the numerical calculations for
continuous transitions are shown in Figs. 1-3.
For a second-order transition far from the tri-
critical point, a comparison is made between a
square-well potential of half-width 0.2d, for which
Tzz/T,*=0.15838, and a Gaussian potential of half-
width 0.2495d, which has the same value of T,*/
T,*. In Fig. 1(a), we see that near T, (= T,*), the
order parameters approach zero with the power
laws calculated from the Landau theory, for both
potentials. Note also that p, and p, for the two
potentials become identical in magnitude near T„
as might be expected since T,*/Tz is the same for
both potentials. However, p„p„and p» for the
two potentials, differ in magnitude; in fact p, is
negative for the square well.

In Fig. 2, the low-temperature behavior of the
order parameters is easily compared. For the
Gaussian potential, all order parameters rapidly
approach one, indicating that the ground state is
a 6-function density distribution. For the square-
well potential the low-temperature behavior in-
dicates that the ground state is not a. 5-function
density distribution, but is in fact a square dis-
tribution with a full width equal to the half-width
of the potential. This ground state maximizes en-
tropy without sacrificing potential energy; in this
respect, the square well is a pathological case.
In Figs. 3(a) and 3(b), we see another comparison
of the temperature dependence of the density dis-
tributions for these two potentials. At 0.98T, the
two density distributions are essentially identical.
At 0.8T„ there is a slight difference between the
two, the Gaussian potential giving a sharper distri-
bution. At lower temperatures, the square-well
potential produces a distribution which rapidly ap-
proaches the square ground-state form, while
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the distribution due to the Gaussian rapidly sharp-
ens.

One concludes that for a strongly second-order
transition, the shape of the potential and the third-
and higher-order parameters are irrelevant to
determining the behavior near T„all that matters
is T,*/T,*. In principle, the higher-order param-
eters indicate differences in the form of the poten-
tial, but they are probably always too small to
measure accurately.

As the tricritical point is approached by chang-
ing T,*/T,*, the above conclusions apply over a
progressively narrower temperature range. In

Fig. 1(b), we see a. comparison of order param-
eters for a square well of width 0.15d, for which

T,*/T,*=0.459 65, and for the equivalent Gaussian
potential. The range near T, in which the Landau
theory power laws for the order parameters are
approached is smaller than in Fig. 1(a). Also,
the magnitudes of p, and p, for the two potentials
approach one another moxe slowly. The higher-
order parameters are larger, and play a greater
role in the behavior near the transition. In Fig.
1(c), the results for the tricritical Gaussian poten-
tial are shown. The tricritical power laws for the
order parameters are obeyed. Comparing the
data for the Gaussian potential in Fig. 1(b) with

1(c), we see the tendency for the crossover from
tricritical power laws to second-order power laws
beginning to be visible. A second-order transition
closer to the tricritical point than the example in

Fig. 1(b) would have shown this crossover more
clearly. In Fig. 3(c), we see that the density dis-
tribution for the tricritical Gaussian potential
remains distinctly peaked, nonsinusoidal, even
very near T,. The contribution from higher-order
parameters remains significant.

For first-order transitions near the tricritical
point, the order parameters change very rapidly
near 7». The third- and higher-order param-
eters are surely no longer negligible in their ef-
fect on the transition, in the examples studied in
these calculations. The Landau theory gives as a
first approximation that p„ is proportional to p", ,
for small order parameters. In Fig. 4, we test
this prediction for a weakly first-order transition
pxoduced by a Gaussian potential of half -width
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tial of half-width 0.$4d). To ease comparison, the pow-
ers of Jo& have been scaled to equal the respective order
parameters at T,yg ——4.00627) .

eTF= dz dQ zQ ln4m z Q)
0

dz' dQ' U z —z', Q, Q' g'Q'

(6.1)

in which

-Uo -(z -z')'
U(z —z', 0, 0')=,'„,[P,(8„)+6] expp(zy'1/2 2 12

(6.2)

A. measures the interaction range, and 5 determines
the ratio of the orientation-independent part of the
potential to the part which varies as P, (8»}.

McMillan and Kobayashi both proceed by Fourier
analyzing the problem and discarding all but the
first translational Fourier component of the inter-
action. As discussed above, this immediately in-
validates the quantitative results McMillan obtains
for the location of the tricritical point, and for the
temperature dependence of the order parameters
in the smectic phase, because it artificially sets
T2~ = 0, eliminating the influence of p, on the tran-
sition. All that remains to make the transition
first order is the coupling of p, to the nematic
ordering.

«e eI, a/. questioned McMillan's truncation of

the interaction, and chose a safer method for ap-
proximately minimizing the free energy. They used
a variational form of f(z, Q):

f(z, D) = (1/A) exp(PU, [(a+ h cosq, z}P.,(cos 6„)
+ c6 cosq, z]], (6.3)

in which P = I/kT, 2 is a normalization constant,
and a, b, and c are variational parameters. This
form for I is similar to the form of the Euler
equation, if we interpret the expression in square
brackets as the mean potential M(z, fi). It looks
as if M(z, Q) has been truncated after its first
Fourier component. However, since this form for
f(z, 0) is now inserted in the full free-energy func-
tional, which is then minimized to find g, b, and c,
this approximation is not as bad as that of McMil-
lan. However, it is not evident just how much of
the interaction between p, and p, is preserved in
this approach. It would have been much safer
if M(z, 0) had been truncated after two Fourier
components, although even this is inadequate for
strongly first-order transitions.

To determine accurately the second-order tran-
sition temperature, or to locate the trieritical
point, for a general translational-orientational
potential u, one could, in principle, use the gener-
al Landau-theory analysis described in Sec. III.
This calculation, however, is impractical because
it first requires a calculation of the orientational
order parameters and their susceptibilities in the
nematic phase just above T». In other words, a
complete understanding of the nematic phase is
required before quantitative results for the nematic
to smectic-A transition can be obtained.

A numerical approach to this problem could be
based on the iterative scheme discussed in Sec.
V. The extension to the full ox ientational-transla-
tional problem offers no fundamental difficulties.
It would allow one to preserve properly the cou-
plings between a large number of order param-
eters. In practice, of course, multidimensional
computation schemes of this kind can use large
amounts of computer time, compared to the one-
dimensional case examined above. Therefore,
although it would be interesting to try this calcula-
tion, it may not be justified until there are some
reliable experimental data on both translational
and orientational order parameters to be analyzed.

&H. POLAR SYSTEMS

Most liquid-crystal-forming molecules are not
highly symmetric. For the nematic and smectic-A
phases, it is not a bad approximation, for under-
standing many of their properties, to consider the
molecules as cylindrical, rodlike objects. Because
the molecules rotate relatively freely about their
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long axis, we will continue to consider them cylin-
drically symmetrical. However, if one end of the
molecule is different from the other, we must pay
attention to this polar asymmetry and its effects
on the formation of smectic layers.

One can conceive of several ways for a smectic-
A phase composed of polar molecules to be organ-
ized. The over-all symmetry of this phase dictates
that it is not ferroelectric, so that there are equal
numbers of molecules oriented in opposite direc-
tions. The "unit cell" could consist of two layers,
with molecules all "up" in one layer, and all
"down" in the next. Or all layers could be identic-
al, with each containing equal numbers of "up"
and "down" molecules. In that case, the layer
thickness need not be simply the molecular length,
since the two sets of molecules need not overlap per-
fectly. For several highly polar molecules (P-cyano-
benzyl idene-P' -oc tyloxy anil inc and P-cyano'P' -oc ty-
loxybiphenzl, for instance) the layer thickness is on
the order of 1.5 times the molecular length. The exis-
tence of such extreme cases clearly demands a model
which accounts for molecular polarity. In this section,
we will develop a simple mean-field model for such
systems with saturated nematic ordering.

A. General considerations

For polar molecules, the center of mass is no
longer a significant point of reference for describ-
ing intermolecular interactions or ordering. For
now, we will choose a reference point within the
molecule arbitrarily. In terms of this point, r
in molecule a, the densities of up (+) and down

(-) molecules may be described as

p'(r)= +6(r-r' ) =p(r)+&(r),
(7.1)

The real Fourier components p„of Eq. (2.2) have
been replaced by complex numbers p„+i&„.

One can now perform a general Landau series
expansion of the free-energy density in terms of
the pn and z„. Near a second-order transition,
we expect terms quadratic in p, and &, will be
most important:

1 2 1 2P =F0+ 2A1P1+ 2Qlfl —SP1&1+ ' ' '
~ (7.2)

Then, &, = sp, /a, . Because &, is linear in p» one
could define a new order parameter which is a
linear combination of pl and $1 In other %'ords,
we could choose the reference point within the
molecule so that s = 0 and p, is maximized in the
ordered phase. This leaves p, the leading order
parameter, and simplifies further development.
&, will now only develop as p', in the ordered phase.
Note, however, that this choice of the molecular
reference point only eliminates the sp,z, term
from the series. For g&1, p„and q„are poten-
tially of equal importance.

Retaining terms in I' to order p4,

1 2 1 4 1 2 1
0 2 1Pl 4 1P1+ 2 2P2 2+2~2

-tplP2 —~Pl~2+ ~P2~2+ ' ' '
~ (7 4)

Minimizing I' with respect to p, and q„we find

t(y2 —uW 2 eA2 —I;K

Q2A2 — @~2 —$0
(7.6)

2~2@ + 2A2P —4tmV 4
0+ 2 1P1+ 4 Pl ~

A2Q2 —K

(7.6)

Once again, the coupling of p, to p, and &2 tends to
make the transition first order, by reducing the
renormalized value of B,. An estimate of the coef-
ficients involved is made below.

p'(r) = 2' + Q [p„cosn(q, r+ y) + c„~ sinn(q, ~ r + y)]
n&0

po
~ ~&n4) cnq0 r

n&0 (7.2)

p (r) = —'+ P[p„cosn(q, r+ P) —e„sinn(q, ~ r+ P)]
n&0

= —'+ Q [(p„+i~„)e'"'e'"'& "+c.c.] .
n&0

These densities are expressed as the sum of two
components, p, which is symmetric about points
of inversion symmetry in the layer structure, and

&, which is antisymmetric about these points.
Choosing the origin at a center of symmetry re-
quires that p'(r)= p (-r).

Again expressing p' and p as Fourier series,
we have

kTTS= dz (p'-lnp'+ p lnp ).
d

(7.7)

The potential-energy density involves four poten-
tials, to include all pairwise interactions between
the two density components. The potentials be-
tween molecules of similar orientation are intrin-
sically symmetric, independent of the choice of
reference point within the molecules:

(7.8)U"=U = dkUk coskz, -z, .

The potentials for molecules of opposite orienta-

B. Microscopic model

To develop the polar analog of the microscopic
model for translational ordering discussed pre-
viously, we need to generalize the expression for
the entropy and potential energy of the system.
The entropy term in the free-energy density is
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tion can be divided into two parts, V and 8', which
are symmetric and antisymmetric, in terms of

z, —z,. With z, referring to the density component
of the first superscript on U, we can Fourier anal-
yze these two potentials as follows:

U-= dy[y(y) cosy(z, —z,)+ W(y) sinn(z, -z,)];

dk V k cosk z, -z, - W k sink z, -~,

The internal energy density is then

«,«, [(p'p'+ p p )U" + p'p U'
()

lar polarity, this expression is identical to Eq.
(4.6). Since T*, —T', &0, if p, is the leading order
parameter at the transition, "turning on" the polar
interaction while keeping everything else the same
tends to reduce 8', (T,*), making the transition more
likely to be first order. Since T', and W(2q, ) start
from zero, when the polar interaction is turned on,
this is only a, second-order correction to 8,'. This
is probably a small effect compared to the inter-
action between p, and p, . One concludes that at
least in terms of mean-field theory, molecular
polarity is not evidently important. However, di-
pole-dipole interactions may have some specific
effects on the intermolecular potential which are
discussed below.

+ p p'U']. (7.10) VIII. CONCLUSIONS AND DISCUSSION

The Fourier analysis of Z gives

E= — p'„U nq, +Vnq, +&'„U nq, —Vnq,
n

+2W(nq, )&„p„). (7.11)

Since the separation of U' and U
' into V and 8'

depends on the choice of reference points on the
molecules, we can make W(q, ) =0, which is equi-
valent to making s = 0 in the Landau expansion, and
at the same time assume that V(q, ) is negative.
This means that the center of the smectic layer
is nearer to the center of mass of the molecules
than to their ends. We can now define transition
temperatures for p„(T„*)and &„(T'„):

uT„'/p, = U(nq-, )+ V(nq, );

uT„'/p, = U(nq, ) —V(nq, ).
(7.12)

s=0, t=kT/4p', , v=0, ze=W(2q, )/p, .

The renormalized value of B, at T,* is then

S'(T*)

(7.13)

kT,* T.*
4p', 2[T,* T; —[W(2q.)]-'/a'(T,*-TO)]

(7.14)

In the absence of the terms due solely to molecu-

Since U and V are both attractive and of the same
order of magnitude, then T,*&T~» so that p, is the
dominant order pa.rameter at the transition.

Adding to these terms in the free-energy density
those from the Fourier analysis of -TS, we can
evaluate the terms of the I.andau expansion above:

A„=—(T-T„*), o„= {T T'„), —a„=u-T/4p3,k k

One of the fascinations of the nematic-smectic-
A phase change is its variability from one material
to anothex', in particular the fact that it may be
first or second order. In this paper we have tried
to explore the explanation of this variability in
terms of the coupling of the dominant order pa-
rameter of the phase change to other order pa-
rameters. One of the major results of this investi-
gation is the idea that coupling between the va, rious
translational order parameters, particularly the
first and second, can be very important in deter-
mining the nature of the transition.

In Sec. II, the simplest calculation of this cou-
pling was presented, and for the case of saturated
nematic ordering, a criterion for first or second
order, or tricritical, transitions was found. In
Sec. III the general theory of coupling between dif-
ferent translational and orientational order param-
eters was developed, with the conclusion that a
number of different couplings contribute to the de-
termination of the first- or second-order nature of
the transition. This raises the question of the
relative importance in practice of these different
couplings, and indicates that the most general ap-
proach to this problem requires extensive knowl-
edge about both the nematic and the smectic phases
near the transition.

In Sec. IV, the molecular-field model for satu-
rated nematic ordering was used to estimate the
magnitude of the coupling between the first and
second translational order parameters, as a first
step toward answering the question of the relative
importance of different couplings. At the end of
Sec. IV, a. criterion for the tricritical point in
terms of the width of the effective pair potential
U was calculated. For the full width of the poten-
tial being greater than about one third of the layer
spacing, the transition should be second oxder. If
we interpret the width of the potential as roughly
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the length of the conjugated center section of the

typical liquid-crystal molecule, and the layer
spacing as roughly the total molecular length, this
says that long molecular end chains promote a
first-order nematic -smectic -A transition. This
is the experimentally observed tendency.

In discussing the results of his model calcula-
tions, McMillan used the same interpretation of
the width of the effective potential, relative to the
layer spacing, and found the same tendency for a
first-order transition to be promoted by long end

chains. However, his calculations accounted for
only the coupling between nematic and smectic
ordering. One concludes that both kinds of cou-
pling could be equally important. The question of
their relative importance in reality remains open.

Experimental data should help clarify the situa-
tion. For instance, if materials are found for
which the nematic ordering is saturated at the ne-
matic-smectic-A transition, and that transition is
first order, one can suspect that coupling between
translational order parameters may be most im-
portant. An example is

0-C 0-C CN

an asymmetric double benzoate, for which T»
=249'C and T» =139'C. With such a broad ne-
matic range, nematic ordering is probably nearly
complete at T», but the transition to the smectic-
A phase is first order. "

The minimal experimental data needed to resolve
this kind of question are the magnitudes of the ne-
matic, and at least the first two smectic order pa-
rameters near the transition, in addition to the
basic thermodynamic data, including T», T»,
and the latent heat at T». Even with these data,
one must also make assumptions about some of
the coefficients in the Landau theory, perhaps us-
ing those given by the molecular-field models for
both the nematic and the smectic phases. Beyond
this minimal combined experimental and theoreti-
cal effort to determine which couplings between
order parameters tend to make this phase change
first order, the prospect for more detailed under-
standing of this phase change remains unclear. On
the experimental side, translational order param-
eters can be measured by x-ray or neutron scat-
tering, and the first two orientational order pa-
rameters can be determined by various techniques,
but the mixed nematic-smectic order parameters
may be unmeasurable. On the theoretical side
there is not a microscopic model for the coupling
of orientational and translational order, so that
even the simple theories considered here are

rather incomplete.
The discussion of polar molecules was motivated

by the existence of some highly polar liquid crys-
tals which exhibit unusual properties in the smectic
phase. The much studied CBOOA has a layer
spacing roughly 1.5 times the molecular length
and exhibits, probably, a second-order phase
change. However, it may be that there is a strong
tendency for CBOOA molecules to associate as
pairs, oppositely oriented, and thus minimize the
importance of the polarity of the individual mole-
cules. In any case, our simple calculation did not
indicate that polarity drives the transition second
order; the opposite result is suggested. Polarity
may have another effect not mentioned yet. Longi-
tudinal dipole moments on neighboring molecules
oriented parallel to one another, and perfectly
ordered in layers, interact repulsively. If the
molecules are slightly displaced from one another,
in a direction normal to the layers, this repulsive
interaction is eliminated, and at larger displace-
ments the interaction is attractive. This adds a
short-range repulsive interaction to the pair po-
tential at z, -z, =0, in this case. Note that in the
case of an oppositely oriented pair of molecules,
perfect layer ordering may place the dipole mo-
ments far from one another, so their interaction
may be less important. This suggests that the
presence of strong longitudinal dipole moments
tends to broaden the normally attractive pair po-
tential (U, in Sec. VII). This tends to decrease
the ratio T2»/T», making the transition more likely
to be second order. There is not enough experi-
mental knowledge to test such a speculation.

The influence of other molecular interactions on
this phase change remains to be explored. One im-
portant possibility is excluded-volume effects. The
formalism of the molecular-field model discussed
here can also be used for the lowest-order calcul-
lation of pairwise repulsive interactions, in the
same spirit that this is done for the nematic
phase. " Fundamentally, if molecules are ordered
in noninterpenetrating layers, their freedom of
motion within each layer is increased; smectic
ordering can increase the entropy of the system
by this mechanism. This model will be discussed
in more detail elsewhere.
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