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A fluctuation theory for the dynamics of metastable fluid states is presented which relies on a limiting form

for the static structure factor S(k) previously presented by the authors. The transport coeNcients are found to
show a divergence in the hydrodynamic regime. In the nonhydrodynamic regime a model is presented which

uses an approximate single-particle memory function and a diffusive mode is found; this is compared with

fluctuation theory results of other workers. A recent computer experiment has shown numerical agreement
with the static model.

I. INTRODUCTION

In this paper we will extend the theory of meta-
stable fluid states below the freezing point. Our
theory is based upon the assumption that there
exists an order parameter for this transition,
and that this order parameter is the k, = 2w/a

Fourier component of the average density. Using
a mean-field theory of Brout' for the static struc-
ture factor, S(k), we are able to obtain expres-
sions for the dynamic structure factor in the hydro-
dynamic regime (small k) and in the regime near
the first peak of S(k).

The history of metastability dates back to the
work of Fahrenheit and is linked with the refine-
ments which he made in thermometry. " It was
Gstwald' who identified two types of nonstable
states in supersaturated solutions, those which
are metastable, that is, stable to all appearances
for a seemingly unlimited amount of time unless
mechanically disturbed, and those which are
labile or unstable states which spontaneously de-
compose to the thermostatically stable phase.
This leads to the question of the boundary between
these two states. If a mean field theory is to be
believed, such as van der %aals equation, ' then
the thermostatically unstable regions, sP/sV & 0,
correspond to the labile region and the metastable
region lies between the phase boundary derived
from Maxwell's construction and the spinodal
bounds, ry, sP/a V = 0. However, experimentally
this boundary has not been directly observed;
another boundary intervenes which can be described
by nucleation theories. ' This does not render
the spinodal concept (i.e. , the line at which SP/BV
changes sign) invalid, in fact this unstable region
is obtainable in multicomponent glasses and binary
mixtures. The spinodal boundary makes its ap-
pearance in the stable and metastable regions

through anomalous trends of thermostatic and
thermodynamic properties. ' Similarly, in this
theory we propose a limit which may not be direct-
ly observable, but whose trends will be felt at
some distance from the boundary.

Kirkwood and Monroe' presented a theory of
freezing based on the Kirkwood integral equation.
In their theory a nonlinear integral equation of the
Hammerstein type is developed for the one-particle
distribution function. It is recognized that the
fluid state, p(r) = p„ is always a solution, but for
sufficiently low temperatures there are noneonstant
solutions for which p(r) = p(r+A) where R is a
lattice translation vector. These solutions break
the symmetry of the original Hamiltonian and have
a lower free energy. To construct a solution a
particular Fourier component is singled out as
dominant, the components of which correspond to
the first peak of the structure factor for the solid,
(p, ). The radial distribution function, g (r), is

0
assumed to be fluidlike and no assumption is made
concerning the pair potential V(r). The Fourier
component, (p, ), is considered to be an order

0
parameter which changes discontinuously at the
freezing point.

Brout's theory' is similar in content to Kirkwood
and Monroe, but he treats the pair correlation
function by breaking the potential into hard core
and attractive contributions. A variational calcu-
lation which relies on local free energy yields
a condition for noneonstant solutions for the den-
sity. In Sec. III we mill discuss the static treat-
ment of Brout using a perturbation theory of
Zwanzig. ' One of the authors' has derived the
results of Brout using functional differentiation;
this presents an alternative to manipulating re-
normalized vertices in Brout's derivation and
makes explicit the mean-field character of the
theory.
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Kobayashi" has extended the theory of Kirkwood
and Monroe to include the time dependence of the
one-particle distribution function. The equation
is a, Vlasov equation whose solution ha.s been
extensively studied by van Kampen and by Case."
The condition chosen for the instability boundary
of the fluid was that the damping of the density
mode be zero. In Kobayashi's theory the fluctua-
tion is nonpropagating and damps with a tempera-
ture dependence
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where T is the temperature, T~ is the density
dependent limit of stability, p is the density, and

G(k, T) =— clr g (T) (kt cosk1' —slnkt),
4v d V(r)

dr

(l 2)

V(r) and g-'(~) have the same meaning as above.
In the static limit Kobayashi's theory reduces to
the nonlinear theory of Kirkwood and Monroe and
the dynamics of the Kobayashi theory is not
consistent in the hydrodynamic regime. The rea-
son for this lies in the terms neglected in the
equation of motion for the one-particle distribu-
tion function to produce a Vlasov equation. The
poles of the Vlasov equation are not caused by colli-
sions between particles which must satisfy con-
servation laws, but from single-particle phase
interference due essentially to the distributions
of velocities for the individual particles. '" This
requires restricting the theory to the nonhydro-
dynamic regime. We will again discuss this theory
in Sec. IV as a comparison with our own and the
results of others. We note that this mode has been
the object of study in supercooled liquids via neu-
tron and x-ray scattering.

In a rigorous way Penrose and I ebowitz" have
outlined an approach to describing metastable
states in statistical mechanics. An important
condition of this method is the restriction of phase
space to be locally in some long-lived state and to
ignore the global aspects of the phase space which
require that the free energy be convex. Recently
this approach to metastable states has been applied
to a lattice system with short-range potential. "
Gates has shown rigorously that fol certain
kernels in the nonlinear equations of the mean-
field theory of freezing there is a nonconstant
solution and a freezing transition. A special case
of thi. s theory is the Kirkwood and Monroe theory
and it is formulated in terms of a, variation princi-
ple which yields an integral equation used by van
Ka.mpen. '" Raveche and Stuart" have provided
molecular approach to crystallization based on the

equilibrium BBGKY hierarchy. They provide
solutions for hard-core systems which are repre-
sented as nonlinear eigenvalue problems and the
branching eigenvalues represented the limit of
stability for the fluid a.nd solid phases.

In Sec. II we will present a synopsis of the
Zwanzig-Mori projection operator technique.
Section III will be devoted to a discussion of the
static structure factor and in Sec. IV the results
of the theory will be given for the transport coef-
ficients and for the memory function; the memory
function derived by Schneider et al."and Mitra
and Shukla" will also be discussed. It is empha-
sized by the authors that the possibility of reaching
this boundary may be prevented by a freezing-in
of fluctuations, such a,s would occur in a glassy
state of simple liquids, as well as by nucleation
and growth mechanisms.

p = ~n~
' g e'"'» (2.1)

the particle current density

(2.2)

Z„= ~Qj
' Q ' +e, e"'~,

ieA
(2.3)

where 0 is the physical space containing the
particle with metric volume ~Q~; r„p;, and M
are the ith particle's position, momentum, and
mass, respectively, and

We begin with the I iouville equation for the
evolution of the set of dynamical variables, A,
and by introducing an inner product between two
dynamical variables a and b which we denote by
(a, 5) The Liouville e. donations for the dynamical
variables is cast into the form of generalized

II. ZNANZIG-MORI PROJECTION OPERATOR TECHNIQUE

A. ZwanziI, -Mori formalism

We wanted to use a theoretical framework which
would allow us to compare all the present theories
which have been developed. The Zwanzig-Mori
projection operator technique has been widely em-
ployed to study the properties of correlation func-
tions. " In this formalism a, subspace of dynamical
variables or vectors is chosen from a Hilbert
space. The dynamical variables we will be using
are Fourier components of the microscopic den-
sity „



Langevin equations. A projection operator is
defined which projects a dynamical quantity, 8,
on to the subspace of dynamical variables

P B = (B,A)(A, A) 'A . (2.4)

This subspace is often referred to as the relevant
or slow variable subspace. It is called slow be-
cause the variables one chooses satisfy conserva-
tion laws which require a long time compared to
interparticle collisions in which to dissipate a
local fluctuation.

It is important to note that the generalized
Langevin equation has as a generalized force a
quantity which lies in the subspace orthogonal to
the dynamical variables

7 (t)=exp[t(I -P)iL](I -P)iIA,

:-,(z) =(A(z), A)(A, A)-'. (2.6)

The equation of motion for the matrix is an
alegbraic relation in this space yielding the solu-
tion

=,(z) =[zl -zQ, + ",(z)b.,'] ',
where

:-,(z) =(~, (z), t, )/(&„&,)

(2.7)

I is unit operator, and iL is the Liouville opera-
tor.

The details of this procedure are omitted, but
they are covered in detail by the authors quoted
in Ref. 19.

The equations which are developed are formally
exact. A specific inner product is obtained by
assuming an ensemble subject to initial constraints
upon the dynamical variables used in the calcula-
tion. At this point of the analysis the equations
become approximations to the exact development
of the system's dynamical behavior. However, in
the analysis no assumption is made concerning
the stability of the states used in the average.
Ne only require that the states be stationary.
This will be discussed as it relates to metastable
states below.

Since the phase space states are stationary,
the correlation matrix .,(t), will be time trans-
latable. %e use this property to Laplace trans-
form the correlation matrix from time space, t,
to its inverse space, z. The result is expressed
as

algorithm. This procedure can be repeated to
obtain a continued fraction representation for the
correlation matrix. The result for a subspace
containing a single dynamical variable is written

=,(z) = I/{z+a', /[z+ n,'/(z+ ~ ~ ~,

where

(2.9)

This equation is solved in the appendix for the
ease of an ideal gas. It involves only equal time
correlations instead of the more complicated time
translated correlations, but it is difficult to as-
sess at what point the continued fraction may be
truncated. %e shall be interested in approximations
for =,(z) in what follows. A metastable state is
locally an equilibrium state and small fluctuations
will not decay to the globally stable phase in gen-
eral. If the constrained canonical ensemble used
in the Zwanzig-Mori theory is aQowed to implicitly
delete that part of the phase space which would cor-
respond to the globa. lly stable phase, then the
properties of equilibrium fluids can with equal
validity be applied to metastable fluids. Ne have
only required that the system be stationary and
that the correlation functions preserve Galilean
invariance; this is an implicit restriction of the
phase space solution which, as we shall see in
what follows, has an instability at a sufficiently
low temperature. Below the limit temperature a
fluid solution cannot exist and nonconstant solutions
are required.

8. Transport coefficients

In the hydrodynamic regime (i.e. , long wave-
lengths) E(ls. (2.1)-(2.3) comprise the usual set of
coupled dynamical variables. They are conserved
variables and slowly varying in this regime. The
generalized Langevin equation is required to
satisfy the fluctuation dissipation theorem which
relates space- and time-dependent transport coef-
ficients to correlations of the generalized forces.
In the hydrodynamic regime we neglect nonlocal
contributions to the transport coefficients.

The volume viscosity, q„, shear viscosity, q„
and thermal conductivity, ~~, have the Kubo
formulas:

The process of projecting onto subspaces (ortho-
gonal to each other) may be continued with the
subspace 7); the variables 7)(t) satisfy a modified
Liouville equation which is amenable to the same

k, = (Mk T) f{J())J )dk, '"'
k, = (Mk )') j{J(()J )dt, '''(2.10a)

(2.10b)



(2.10c)

(2.11a)

(2.11c)

Schofield'" ha, s expressed the relaxation time for
density fluctuations as

7«« = p'C„Pz /Azk'. (2.14)

C, is the specific heat and P~ is the thermal ex-
pansion coefficient.

III. STATK MODEL

In a recent paper" we have presented the results
of a mean-field theory developed by Brout':

S(k) =—(p«p «) 1+p (k)(
(P«P «)~-

where P~(k) is the Fourier transform of
P~(A)g„'(R), @~(R) being a long-ranged attractive
part of the total pair potential and the subscript
"x"denoting a property of the reference system
attributed to a short-ranged repulsive potential.
A perturbation scheme for the l.ennard-Jones
potential used in the calculation has been amply
discussed by Andersen, Weeks, and Chandler. "
The procedure for computing S(k) is summa. rized
as follows: We equate the properties of the re-
pulsive reference system to those of a hard-core
system with a temperature-dependent diameter,
d(T); the diameter is chosen by any number of
cx'ltel la ' and the Pereus- Yevlck approxlmatlon
is used to represent the hard-core system. "
The zeros of the denominator of E(l. (3.1) are
related to the limit of (meta-) stability for the one-
phase system, If we initially have a low-density
system and temperature between the triple and
critical point temperatures and we isothermally

All these variables have been defined in Eqs.
(2. 1)—(2, 3) with the exception of k; which is the
enthalpy per particle.

It is useful at this juncture to define the relaxa-
tion time" for a pair of fluctuating variables (a, b}

(2.12)

in the Zwanzig-Mori formalism this is

raise the density, Brout has pointed out that the
first instability will occur at wave number, k = O.

This is the limit of stability for the gas phase;
at this point, the system spontaneously decomposes
into a liquid-gas two-phase system. This boundary
of infinite compressibility has been termed the
spinodal boundary. " Below this boundary the sys-
tern is thermostatically unstable to any fluctuations
in the system. The scaling properties and pseudo-
eritical exponents of a mean-field Ising system
nea, r this boundary were recently discussed by
Compagner. "

As we further increase the density isothermally,
a second zero is found, this time at the wave
number corresponding to the first peak of the
structure factor, 0,. The instability is not ac-
companied by a divergence of the thermostatic
compressibility; hence, the boundary is not called
the spinodal boundary. From computer experi-
ments of Matsuda and Hiwatari28 the evidence indi-
cates that the equation of state does not contain
van der Naals loops and that the boundary, if one
exists, must certainly occur for densities and

pressures higher than the equilibrium solid density
and pressure. The glass phase is not associated
with some hidden order parameter in this static
theory of metastable states, but it may be due to
the slowing down of the local structural rearrange-
ment and thus, would be considered a relaxation
phenomenon connected with the time scale of the
Quid state. "

To summarize the results of this theory: taking
note of the success of using the hard sphere struc-
ture factor to fit a variety of data including argon"
and liquid metals" which have very different repre-
sentations for pair potentials, we found that the
first peak of S(k) was overenhanced by the attrac-
tive interaction, but out of this region the agree-
ment was quite good. It is worth noting that molec-
ular beam experiments on argon have shown an
overenhanced first peak in (111) (their electron
diffraction pattern") and metallic alloy glasses
have shown a sharp first peak, as well as, a split
second peak"; the splitting of the second peak is
evidence that there are important correlations in
the system which are not taken into account in the
mean-field theory. The compressibility is finite
contrary to suggestions by previous authors~; as
the limit of stability is approached at constant
density,

S(k) =S,/[(k —k, )'+ K'], K'= x,'(T —T~) (3.2)

and for a density p = 0.84/o', cr being the Lennard-
Jones range parameter, T~ = 55.5 K. This form
for S(k) was suggested by Schneider and co-
workers" in their theory of the freezing instability;
their results used a molecular dynamics computa-



tion and the random-phase approximation yielding
T~ = 64 K. Another result derived by Mitra and
Shukla" based on a scaling generalization of the
Schneider theory (presented below) yields T~
= 69.5 K.

Recent experiments on supexcooled Quids35
have observed no anomaly 111 S((lo) down 'to tem-
peratures (T —T~)/T~ = 0.044-0.09, where T~ is
obtained by extrapolation of the quasielastic line-
wldth to zero. However, our numerical work on
the mean-field approximation has suggested the
requirement that (T —T~)/T~ & 0.02 for marginal
observation of the anomaly. This puts a severe
restriction on the ability to test this theory for
real systems, but perhaps not for a computer
fluid.

A recent computer experiment by Mandell et al. 36

has observed crystal nucleation in a Lennard-
Jones fluid. Large fluctuations in the stx'ucture
factor at vector position R, were observed, and
the limit of metastibi. lity they observed for the
system mas in agreement with our model.

Ne feel that before this theory may be pursued
in greater depth that a formalism should be
developed which Rlloms a systematic improvement
of the theory, such as have been presented for
lattice theories. " There are similarities of the
inhomogeneities caused by fluctuations in a meta-
stable system and lnhomogeneltles introduced in
a random system mhich are worthwhile pursuing.
Further generalizations might include nonadditive
effects which certainly play a xole in mater, but
mill also be present in weakly quantum systems, "
and considerations of properties of liquid and
plastic crystals where an interaction is present
betmeen angular Rnd translational ordex" param-
eters. " In closing we stress that the fox m of the
structure factor in Eq. (3.2) puts very stringent
conditions on the convergence of the functionals
representing the transport coefficients and memory
kernels.

IV, DYNAMICS

A. TFSMpoft COCfflCEcfltS

In Sec. II me discussed generalized transport
coefficients mhich are wave-number and frequency
dependent. These expressions are too difficult
to carry out in practice, but me mill consider
some limiting cases mhich simplify the computa-
tlon8,

The simpliflcRtlon me Rx'e concex'ned with hei e
is the hydrodynamic or small wave number regime
used to derive Eq. (2.10). The technique used to
study these coefflclents was developed for a one
component van der %Rais gas by Mountain and
Zwanzig" and for tmo components by Deutch and

now, since P~(R) is Fourier transformable

(4.2)

(4.3)

(4.4)

The las't term ln Eq. (4.4) may be neglected, so
that

The four-point density functional in the integrand
of Eq (4.5) is no.w simplified by the following as-
suxnPtlonS:

(4.6)

(p) p )p)'p )'}=-2(p) p -)) 6a ~ +-(p))] p ))(p)'p )'-}. -

Zwanzig. " A less yhenomenological ayyx"oach than
theirs was developed by DeSobrino" and Kawasaki4'
and applied to one- and tmo-component systems.
DeSobrino's calculations are based on the non-
equilibrium BBGKY equation for a van der %Rais
gas. Hls equilibrium results Rre identical to van
Kaxnpen's results. " The nonequilibrium properties
are primarily due to the short-ranged repulsive
interaction with modifications to the system prop-
erties from the longer-ranged and weak attxactive
interaction. Kawasaki reformulated these results
in a may which lends itself to application to the
freezing instability presented in Sec. III.

%e Rl gue thRt the kinetic-energy Rnd l.epu181ve
short-ranged potential-energy contributions miU
not lead to any anomaly in the transport coeffi-
cients. %hat may be said about the long-ranged
attractive contributionP As an example, consider
the sheRl' vlscoslty

(4 l)
g", is the part from nonanomalous contributions,
and
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The first assumption recognized that a coarse
graining has taken place in the statistical de-
scription of the density whose time dependence is
governed by a diffusive mode. v~ is related to
generalized thermal diffusivity of the reference
system. The second assumption decoupled the
four-point functional and corresponds to a
Gaussian approximation. "

Substituting Eq. (3.2) for (p» p „), note that for
a = 0 our integrals are divergent. We will approxi-
mate the integrals whose main contribution is at
wave numbers near k, by the integrand evaluated
at k„ then using

nq, =A/»'. (4.9)

A. is a constant which depends on temperature
and density, but has no anomalous behavior. The
expression for the volume viscosity, q„, proceeds
in exactly the same manner. The anomalous part
is again a functional of the density to which we

apply assumptions [Eqs. (4.6) and (4.7)]. The con-
tribution of the long-ranged attractive potential
to the volume current density is

~Z =- dk 3~. k- —e, k

x[p (~)p „(~) —(p„(~)p „(~))], (4.10)

nq„= B/»'. (4.11)

B is a temperature- and density-dependent con-
stant.

The thermal conductivity has a heat current
whose long-ranged contribution is

(4.12)

The particle current J ~ contains both longitudin-
al and transverse components. In the wave-
number regime with which we are concerned,
the relaxation time of the currents is diffusive.
The reference-state relaxation time is taken as

We assume that the current has the time de-
pendence

(4.13)

1,=, = tan ' + —,(4.8)k'+bk+ c b,

6=4c —b'. In our case c= I(."+k,' and b =-2k, . The
most divergent contribution to the shear viscosity
which is proportional to dI, /dc -is

and noting that

(j»J„)= kzTP/M,

we find

n. &z =C/».

(4.15)

(4.16)

C is a constant which depends upon temperature
and density. From Eq. (4.16) we can infer that
the density relaxation time [Eq. (2.14)] will behave
as

~„-»/k' (4.17)

and we may expect a kinetic speeding-up very
close to the boundary. In an actual experiment
a large viscosity attributed to the reference sys-
tem may interfere in the measurement of this
effect, but from Eq. (3.2) this will mean that

7 -(T —T )"'/k'

n.~-(T T) "-'

nq, „-(T—Tz) "'.
(4.18)

(4.19)

(4.20)

Thus, the light-scattering spectrum from this
system has a central mode whose peak grows and
half-width narrows as (T -Tz) '~' The h. alf-
width and height of the Brillouin peaks change as
(T —Tz) '~', but the sound velocity has no anom-
alous behavior. The total intensity being related
to thermostatic quantities also has no anomalous
behavior.

B. Nonhydrodynamic regime

The technique of Sec. IVA is not conducive to
analytic methods in the nonhydrodynamic regime.
In the hydrodynamic regime we were able to neglect
the effect of the projection operator on the time
dependence of the memory function, and to employ
a Markoff approximation. Also, the continued
fraction technique is not easily handled by analy-
tical methods. For these reasons, in the large k

regime it is better to use approximations which
have been developed for the correlation matrix
:-,(z). This approach has been discussed by
Ortoleva and Nelkin. ' One approximation is the
ideal gas memory function related to its correla-
tion function by

"'(k, z) =[z+ n', =', (k, z)] '. (4.21)

Here, we assume a one-variable subspace
where for an ideal gas, s', = k'V~, and the thermal
velocity is Vr= (kzT/M)'~' For an interacting.
system we have

decoupling the four-point functional n'= k'V'/S(k) (4.22)
(~- (t) P (&)~- P ) = (~- (t)& )(P (t) P )6-

(4.14)
and substituting the ideal-gas memory function
yields
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C (k) = [S(k) —1]/S(k) .

{4.23)

(4.24)

Another approximation which we shall consider
is the memory function for the self-motion of a
single atom. The correlation function for this
case ls

(4.33)
This result has been called the simple collective
Inodel by Ortoleva and Nelkin and it is equivalent
to the random-phase approximation used by
Schneidex et a/. " The dispersion relation for
this approximation is determined by the zeros
in the denominator,

the most important mode being the smallest
nonpropagating zero, they found that

& =&~+y — —' [)i'+()}i-Ii )'j .
QW$0 0 (4.26)

Kobayashi's theory is similar in form, but the
equation was derived by an entirely different ap-
proach, the denominator of his expression has the
form

(4.27)

G(k) being given by Eq. (1.2). This theory does
not xely on a divergence of the static structure
factor, but it is restricted to large wave numbers
as discussed earlier. The G(k) here plays the
role of 62, in the Zwanzig-Moxi theory.

Another approximation used by Mitra and Shukla, "
but originally derived by Pathak and Singwi, "may
be brought under the Zwansig-Mori formalism by
scaling the ideal-gas memory function"

(4.28)

= ~"(0,z) is the self-part of the density autocorrela-
tion function:

For this case we will formulate an appxoximation
which should yield a correct short time description.
An approximation which can be thought of as
being a compromise to the ideal-gas and scaled-
ideal-gas theox'ies. Our approach is to split the
Liouville operator into its kinetic and potential
ener gy contributions

(4.35)

Making use of this decomposition and noting that
the iL,, operates on an eigenfunction, we rewrite
this expression neglecting noncommutativity be-
tween lLO and 'SLY,

x
s)i(g) df c gt (e(I.-) tp ihP) i /M}-

0

&»tp» C2/V &-k&~&tl g

expand the first average in the integrand into
moments of t2, and exponentiate the first nonzero
moment; we find that

p = [(&u~) —(u, ')/2(uo2S(k} j"',
((),' = k'leT/MS(k) . (4.29)

Evaluating the exponent gives

(4.37)

3k'%AT 82
&u', = + p — drg'(r)(1 —coeur")

(4.30)
where we have made use of

(4.38)

s='(0 s/p) = —p, /[S(I() —1] .

p, is defined in E(l. (4.29). As before

(4.31)

z = i())+ y= ' [)i'+ {0—)|i,}']p, .
v'm 80

(4.32}

~2, and ~2 are related to the zeroth, second, and
fourth moments of ",(Ii, T). In this manner we
are able to write an expression for the dispersion
relation and x"igorously fit the first four frequency
moments of the correlation function. The disper-
sion relation for this model is

(4.39)

If we assume a central pair potential, then

82C i 82
=p ( d'r g'(r), , (}){r)

Brl /
8y'2 (4.40)

Again we will considex the most divergent part of
this expression due to the attractive part of the
potential which we take as being Fourier trans-
formable, then
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=p dkSkk" Qi k

—Sec /' U(-'„Q) + 0(S')], (4.43)

where U(a, x) are parabolic cylinder functions"

R = (2k'D//(PM) ' ', Q = k'/2PMR,

z/Rl/2

For S= 0 (z = 0) the relaxation time is

S(k)~" Q2)U(0, Q) (4.44)

For the Schneider case,

~pp= "'(k, 0) S(k), (4.45)

and the Pathak and Singwi approximation (using a
similar technique as above):

T„==-'(k, O) S(k)//,

)/ [(p$ /k2)Pf)/]~/2 /(~/2 (4.46)

1V is a constant which depends on k, and the poten-
tial. The dispersion equation from Eq. (4.36) is
similar to the previous cases already considered
in detail. The propagating component is zero and
the attenuation is

-2[(k —k,)'+ //']R"'
~~+ ~ m"'U(0, Q) &2/' (4.47)

There is a difference in the models in temperature
and wave-number dependence, these differences
are in principle testable. Table I presents these
three approximations evaluated at k: kp.

TABLE I. Inverse lifetime and relaxation time,

Tp

Schneider et al.
Pathak and Singwi
This work

= 8m'pk0$0gz(k, )/K = D/(/(pM) . (4.41)

D is a constant which depends on the density. The
self-correlation function reduces to

,„( ) j .,
(

)(r)t'/-a ~ ( /2)'
0

(4.42)

Considering the case of small z we may write the
integral as

s/(((z) [+)/2 eo /4 U(0 Q)
1 2

V. CONCLUSIONS

In this paper we have presented a ca.lculation of
the dynamic properties of a fluid as it approaches
the limit of stability. The basis for the calcula-
tion is the form of the static structure factor sug-
gested by Brout. In the hydrodynamic regime we
employed a mode decoupling approximation of
four-point functionals to products of two-point
functions which allowed us to assess the diver-
gence of the transport coefficients. The form
[Eq. (3.2)] for S(k) put stringent requirements on
the convergence of the integrals. The transport
coefficients were found to diverge under this mo-
del in Eqs. (4.8), (4.9), and (4.18). The thermal
conductivity determines the height and width of the
central Rayleigh peak in a light scattering experi-
ment; this peak is changing in such a, manner that
the area is constant giving a nondivergent Landau-
Placzek ratio. The relaxation time [Eq. (2.1)] cor-
responds to a critical speeding up.

In the nonhydrodynamic regime, we employed
the Zwanzig-Mori formalism to express the re-
sults of several researchers. Using the ideal-gas
memory function, we recovered the results of
Schneider et al. A variation on this theory was
developed by Pathak and Singwi and is equivalent
to the scaled ideal-gas memory function as was
pointed out by Rahman. Since the ideal-gas ap-
proximation neglects any dependence on the po-
tentia, l in the memory function, we presented a
short-time approximation for the self-memory
function. This approximation is equivalent to
keeping the moments of the single-particle memory
function up to fourth order. This should provide
a representation somewhere between the ideal gas
and the full interaction representation of the sys-
tem. We expect this to be a valid approximation
at large k where the distance probed is short and
the corresponding time scale is also short. The
relaxationtimes and the lifetimes of the nonprop-
agating modes given in Table I yield similar de-
pendences on x. Temperature, density, and wave-
number dependences are significantly different to
provide a test in an experimental situation. Each
result has been derived not by nucleation consider-
ations, but by a fluctuation approach. The stable
and metastable states are not formally different
in these theories, but we must be aware that in
some sense we are restricting the region of phase
space allowed, so that the state of lowest free
energy is not obtained. In simple atomic systems
this may not be possible by continuous cooling.
An approach such as Farges may be useful in
providing information about metastability in these
systems. Two other systems of interest are:
hydrogen-metal systems which have been found
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to obey a mean-field equation of state and which
also show an ordered state'" and helium adsorbed
on a carbon surface which has an ordering transi-
tion. ~9 These systems may provide an insight into
the physics of a liquid-solid-type phase transition
without other order parameters coupling in the
theory. Molecular systems, although they are
easily supercooled, display couplings between
angular order parameters and transverse trans-
lational modes which are probably important in
suppressing the ability of the system to attain a
translationally ordered state or in the case of
plastic crystals the temperature of txanslational
ordering is affected by the coupling strength for
the order parameters. "

APPENDIX

(pa(z) p-. )
(Pgp l!)-z + +I

g+
g + ~ 0 ~

(A2)

(A3)

The f„are the generalized forces described in
Sec. II. Each f„is orthogonal to all previous
f„ f (n, and the weight factor of the inner product
is a Gaussian. Therefore, the polynomials for the
f„will be in essence the Hermite polynomials;
carrying through the algebra yields:

~'„= -', s(ik}'(2k, r/M) .

Letting V'r = 2/PM,

It is weQ known that for an ideal gas the correla-
tion function is

&-802/ag

(p~(z) p„„)= (2wMkzT) "' dp

(p, (z) p, )
(Pap a)-

1
—,(ik}'V„'
z —(fk)2V2

z - —,'(fk)'Vr2

g ~ 0 ~ 0

(Al)

Howevex, we will derive this expression using the
continued fraction representation of the Zwanzig-
Mori formalism. In Sec. II we showed that

This is the continued fraction for (Al)." A direct
projection operator calculation of the ideal-
gas memory function in this formalism was re-
cently performed by Mountain. "
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