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We study the properties of a Ginzburg-Landau-Wilson Hamiltonian in which an order parameter is associated
with each wave vector which points from the origin to one of two rings in reciprocal space. The existence of
the order parameter breaks the two-dimensional rotational symmetry about the axis of the rings. The
Hamiltonian may be interpreted as a simple model of the nematic—smectic-C phase transition of a liquid
crystal, if we identify the order parameter with the density of the liquid crystal and the axis with the average
direction of the director field. There are no cubic terms present in the Hamiltonian, and the phase transition
predicted by mean-field theory is second order. Fluctuations are taken into account by means of a method due
to Brasovsky, and the phase transition is found to be of first order.

I. MODEL AND SUMMARY

In this paper we apply the method of Brasovsky'
to a simple model of the nematic-smectic-C tran-
sition of a liquid crystal. Brasovsky's original
model was concerned with weakly anisotropic anti-
ferromagnets and certain liquid crystals. An
essential feature of Brasovsky’s model was that
an infinite number of degenerate order paramet-
ers, each associated with a finite nonzero wave
vector, occurred in it. Brasovsky used perturba-
tion theory to argue that a first-order transition
would occur in his model, as a result of fluctua-
tions, even though #o cubic term was present in
his model.

In this paper we introduce a simple ring model
of the nematic-smectic-C phase transition. This
model reflects the two-dimensional rotational in-
variance of the nematic state and favors the exis-
tence of a density wave in the smectic-C phase.
As in Brasovsky’s model there are an infinite
number of order parameters, each associated
with a finite wave vector. We briefly indicate be-
low how Brasovsky’s method may be applied to
our model and show how the same result is ob-
tained.

A. The model

Our model is based on the discussion of de
Gennes®** and is defined by a Ginzburg-Landau-
Wilson*~® Hamiltonian given by
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In Eq. (1), ¢ is the Fourier transform of a real
scalar field ¢(r), g, =(¢2+¢%)"/?, 7 is proportion-
al to the temperature minus the mean-field criti-
cal temperature, ¢, , and q,, are constants, and A
is a small parameter which describes the nonlin-
ear coupling among fluctuations in the order para-
meter §.

The Hamiltonian of (1) favors the existence of
order parameters associated with the two rings
defined by

4, =4, qz:iqu (2)

in reciprocal space.

The order parameter y(T) is to be identified with
the density minus the average density of the liquid
crystal. The preferred axis is defined by the aver-
age direction of the director field 7z, which we take
to be the z axis. Thus, our model favors the ex-
istence of a periodic density wave in the smectic-
C state which makes an angle a (tana =9, ,/4,,)
with the director.

As noted by de Gennes,® no cubic terms in ¢
should occur in the Hamiltonian. Also, note that
our model does not allow for fluctuations in the
director field.> Halperin, Lubensky, and Ma’
have included the director field # as well as a
scalar order parameter field y in their treatment
of the smectic-A liquid crystal. They found that
inclusion of the director field and the Frank free-
energy terms had quite a drastic effect, changing
the order of the phase transition from second to
first. It is interesting to note that for the above
model of a nematic-smectic-C phase transition,
we already find a first-order phase transition
without inclusion of the director field.

Note that our model respects the two-dimension-
al rotational symmetry of the high-temperature
nematic state, as it is invariant with respect to
rotations about the z axis. Thus, there are an in-
finite number of degenerate order parameters in
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our problem, namely, those §(§) for which q
points to one of the rings defined by (2).

B. Summary of results

In Sec. II we discuss the essential similarities
and differences between the phase space of our
model and that of Brasovsky’s. It turns out that
Brasovsky’s method may be applied step by step
to our model. In two Appendices we give the for-
mulae important to the argument, each of which
corresponds to a formula or diagram in Brasov-
sky’s paper. We briefly summarize and discuss
the results of the calculation outlined there.

We introduced a Ginzburg-Landau-Wilson Ham-
iltonian which was invariant under rotations about
the z axis in real space. The existence of a scal-
ar order parameter which varies as cosq, ' T,
where @, has a definite component perpendicular
to the z axis, then spontaneously breaks the two-
dimensional rotational symmetry displayed by our
model.

There is no term in our Hamiltonian cubic in the
order parameter so that mean-field theory pre-
dicts a second-order phase transition.? We find
that terms not included in mean-field theory cause
the transition to be of first order, at least when
A, the measure of the strength of the nonlinear
coupling of fluctuations, is small.

We find that the discontinuity in the entropy at
the transition is a number of order unity indepen-
dent of the coupling constant.

The critical temperature is shifted downward
from its value as given by mean-field theory by
an amount proportional to A1n(A?/A) as given in
Eq. (A9).

We also find pretransitional fluctuations in our
model. All Fourier components of the density
whose wave vectors point to one of the rings dis-
cussed earlier exhibit fluctuations above the tran-
sition temperature.

Qualitatively, our results are not in disagree-
ment with experiments on HBA,® in which the en-
tropy of transition is given and pretransition phe-
nomena found.

II. CONNECTION WITH BRASOVSKY’S WORK

We discussed above a model which contains, as
an essential feature, degenerate order parameters
associated with an infinite number of continuously
distributed finite nonzero wave vectors.

As we mentioned in Sec. I, Brasovsky' has
solved for the thermodynamic properties of a
model in which the same essential feature occurs.
Although our model differs in detail and interpre-
tation from that of Brasovsky, we may use the
same arguments and arrive at the same result,

a first-order transition, for our present model of
the nematic-smectic-C phase transition.

In a number of the phase transitions which have
been discussed* to date, the phase space for im-
portant fluctuations in the order parameter is de-
scribed, in reciprocal space, by a sphere cen-
tered about the origin.

In Brasovsky’s original model there are an in-
finite number of order parameters §(q); each
#(Q) being associated with a wave vector § such
that |gl=¢,. This condition defines the surface
of a sphere of radius g, in reciprocal space. The
important phase space for fluctuations in Brasov-
sky’s model is, then, a spherical shell, of inner
radius ¢, - A and, outer radius g,+A, and cen-
tered at the origin.

In lowest order of perturbation theory this phase

~ space is effectively one dimensional. This is so

because order parameters having wave vectors
with the same magnitude are degenerate in energy;
thus only the component of the vector normal to
the surface of the sphere changes the energy.

This leads to large fluctuations. (A one-dimen-
sional phase space is well known to give rise to
large fluctuations.'®)

Brasovsky showed that, due to this peculiar
phase space of his model, in low-order pertur-
bation theory the continuous phase transition
predicted by mean-field theory was removed by
fluctuations not included in the mean-field theory.
In the temperature range in which perturbation
theory was valid, Brasovsky found, by comparing
the free energies of the two states, that there was
a discontinuous first-order phase transition from
the disordered to the ordered state. This first-
order transition was found to take place at a tem-
perature slightly lower than the mean-field tran-
sition temperature.

In the model of the present paper, degenerate
order parameters ¢({J) are associated with wave
vectors which extend from the origin of reciprocal
space to one of the two rings defined by (2). The
important volume for fluctuations is then the two
toroids of major radius ¢, , and minor radius A,
where A is a cutoff, whose major axes coincide
with the axes of the two rings given by (2).

In the case of the present paper, the phase space
is effectively two dimensional in low-order pertur-
bation theory. The energy changes only when the
wave vector moves off the minor axis of one of
the toroids; either in the z direction or in the di-
rection of the vector ¢,2, +q,e,. Again, a two-di-
mensional phase space is known to give large fluc-
tuations .'®

A calculation exactly analogous to that of
Brasovsky may be carried out in the context of
the model of this paper. Although the detailed
functional forms of the terms occurring in per-
turbation theory differ from those in Brasovsky’s
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case, the argument in the present case can be
carried through, step by step, in precisely the
same manner. The conclusion that fluctuations
give rise to a first-order phase transition is also
true in this case.

Since the method and steps in the calculation
have been discussed by Brasovsky (and also by
Hohenberg and the author!! in a different context),
we do not repeat the details here, but in two ap-
pendices just give the most important formulas
which correspond to those of Brasovsky.

In Appendix A we give those formulas which are
needed in the calculation of the difference in free
energy between the ordered and disordered states.
Each formula corresponds to a formula of Brasov-
sky or Ref. 11.

In Appendix B we discuss higher-order diagrams
and justify neglecting them. Again each term and
restrictive condition finds a correspondence in
Brasovsky or Ref.11. Following Brasovsky, we
also estimate here the size of the finite volume!?’!3
to which our material must be restricted in order
that the calculation be valid.

Note added in proof. M. Gabay and T. Garel,
private communication, have recently used the
same model and method to obtain similar results.

ACKNOWLEDGMENTS

The author wishes to thank P. C. Hohenberg for
criticism and conversations and T. C. Lubensky
for manuscripts of unpublished work and conver-
sations. He thanks P. Leitner for a careful read-
ing of the manuscript. He thanks the A. P. Sloan
Foundation for support.

APPENDIX A
The Hartree contribution to the self-energy [dia-
gram (1b) of Ref. 11] is

EH(TH)E_Afén—q)SGH(YH)Q)y (Al)

where
Gﬂ(rﬁya)=['rﬁ+(|qzl"q30)2+(qJ__qJ_0)2]-l . (A2)

As explained in Sec. II, the integration is over two
toroids of major radius ¢, , and minor radius A.
We find that the singular contribution to Z, is

Zarg)=—arln(A%/ry), (A3)

where a =q,,/2m.

Here A plays the role of an upper momentum cut-
off, measured from the minor axis of the toroid.
A lower momentum cutoff, measured from the
minor axis of the toroid and inversely proportion-
al to the size of the system, is not needed for the
above integration as long as the maximum corre-
lation length encountered is small compared to
the size of the system. This condition and certain

diagrams in the low-temperature state, where a
lower momentum cutoff is required, are discussed
in Appendix B. The inverse susceptibility in the
Hartree approximation in the disordered phase v,
then satisfies

¥,=ET=2,0r,)=T+arln(A%/7,). (A4)

Consider an ordered phase in which the order
parameter has the value

(Y(T)h=2acosq, T, (AD)

where |¢q,,l=9,, and |§,,1=¢,,. In this ordered
phase the Hartree theory gives an inverse sus-
ceptibility » _ which is

y_=T+arIn(A%/r_)+rd®. (AB)

We show in Appendix B that higher-order terms
in the perturbation series and “anamolous” con-
tributions to the Hartree diagram in the ordered
phase may be neglected.

We may then calculate A¢, the difference in
free energy between the ordered and disordered
phases in the manner described by Brasovsky.
This is

Ad = (1/2)\)[2aAr _ —7,) =7ri-7%], (AT)

where 7 _ and 7, are given by (A6) and (A4), re-
spectively. We also use Eq. (10) of Brasovsky,
Ad® =2y _, valid when the external field coupling
to the order parameter is zero. One may verify
that A® passes through zero when », =7, where

r,~0.23aA, (A8)
or when 7= 7, where
T,=—=1.Tar - ar1n(A?/1.TaA) . (A9)

This means that a first-order transition to the or-
dered state occurs when 7= 7, given in (A9).

By differentiating A® with respect to 7 and then
evaluating the resulting derivative at 7,, we find
that the discontinuity in the entropy per particle
AS at the first-order phase transition is

AS=Ck, (A10)
where £ is Boltzmann’s constant and C is a num-
ber order unity which depends on the details of
the model but is independent of A.

APPENDIX B

The second-order contribution to the self energy
[diagram (1d) of Ref. 11] is

d? da? - -
2(2)(751) = Azf(‘é??)ls' (ETq')zi Gy(ry, Q) Gy(ry, q,)
XGH(rma_al_az) ’ (Bl)

where q is a vector such that |¢,|=¢,,and ¢,=q,,.



We estimate by power counting methods!! that
2(2) is

=D ()= C A2/ (r )V 2, (B2)

where C, is a constant, independent of A and 7.
We may neglect 2(2) compared to the terms we
have retained, given in (A4), if

C,A r )2 <ry, (B3)
or if
vy > A“/3C§/3 . (B4)

Since the phase transition takes place whenr, =7,
given in A8 and since for A small A> Y3, we are
justified in neglecting the second-order term (B2)
in calculating the value of 7 for which the first-or-
der transition will occur.

Consider now the anomalous contribution to the
Hartree diagram in the ordered state. This cor-
responds to a contribution

A A A
1
0Zy = f d f d f K, 5——=—7"" -
H=A & K, -1 K -1 K'K§+K§+K‘:,/(qj_0)2

L

(B5)

In (B5) we have chosen a coordinate system in
which the wave vector associated with the order
parameter lies in the x-z plane. Also, L is a mea-
sure of the size of the spatial region in which our
system is supposed to be confined. We estimate
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that the dependence of (B5) on A and L is
6Z4=Aln(AL)/LY?. (B6)

We require that L> £=[(r,)"?]"!, where ¢ is
the correlation length. Since the first-order
phase transition takes place at a value of »4 given
by (A8), the maximum value of the correlation
length we have to work with is £, (@A)"Y2.
Therefore, we require that

L> (@A), (B7)

If L satisfies (B7) then (B6) is negligible com-
pared to a term we kept, namely, (A3).

Consider the anomalous contribution to Z cor-
responding to diagram (1c) of Ref. 7. By means
of power counting we estimate this diagram to be

52, = Aa? LY ?qV2 . (B8)
Contribution (B8) is small compared to the Aa®
term we have retained in (A6) if

L<< A‘2/3q;(1)/3 . (B9)

There are further correction terms, each of
which is individually small if (B9) is satisfied.
We can say nothing, though, about the sum of the
infinite number of such terms.

We conclude that our theory may be correct if

L satisfies
(@A) V2 L A~¥/3¢7V/3 (B10)

although our arguments are not rigorous.
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