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A density-functional theory appropriate to nonuniform simple classical fluids is developed. Unlike most
previous theories, the theory is in principle exact in the linear-response regime. For practical applications a
small number of well-defined approximations, including that of Percus and Yevick, are made. Given only the
Lennard-Jones 6-12 potential as input, the theory yields surface tensions and profiles in very good agreement
with the results of Monte Carlo calculations. For a liquid pressed against a hard wall the expected oscillations
in density in the vicinity of the wall are obtained. Comparisons with previous theories are made, and points of

possible improvement in the formalism are discussed.

I. INTRODUCTION

The physics of nonuniform many-body systems
has developed rapidly in recent years. The most-
studied type of nonuniformity is, of course, a
surface. The situation regarding metal surfaces,
for which density-functional (DF) theory is rea-
sonably highly developed, is reviewed by Lang.!
Liquid-surface physics prior to 1973 is reviewed
by Croxton?; more recent work in this area will be
discussed below. Low-energy-electron-diffraction
(LEED) techniques have produced important ad-
vances in solid-state surface physics.®> A new the-
ory of the free surface of zero-temperature “He
isgivenina recent paperby twoofus.? This paper
reviews earlier work.

Extant theoretical work relies heavily on the

large body of previous results for uniform systems.

In particular, local free energies and two-particle
correlation functions from uniform-system theo-
ries are used in describing nonuniform sys-
tems. It is our position that this procedure should
involve minimal use of disparate approximations
within the uniform-system physics in order that
new effects due to nonuniformities be most easily
understood. Density-functional theory is ideal
from this point of view. Most previous theories of
surfaces of classical liquids are not. In this paper
we develop and solve a DF theory of classical liq-
uid surfaces. The theory is conceptually simple,
contains as few independent approximations as ap-
pears presently feasible, and is solved without re-
sorting to such simplifications as gradient expan-
sions, an approach which turns an intrinsically

nonlocal problem into a local one. Our results are
in good agreement with the appropriate available
data. Further, we are able to clearly identify
specific aspects of the theory where approxima-
tions can in principle be eliminated and to assess
the amount of numerical work needed to implement
these improvements.

The theory which we use is the classical version
of the recent DF theory for liquid *He referred to
above.? It requires as input the direct correlation
function c(n, T) of a uniform system as a function
of number density » and temperature T, as well as
the local free-energy density f(n, T). The latter,
of course, may be obtained from the former in
various ways, e.g., by means of the compressibil-
ity sum rule. The formalism correctly reproduces
linear-response theory. In order to test this the-
ory, we apply it to a fluid characterized by Len-
nard-Jones 6-12 interactions, obtaining the re-
quired c¢(7;n, T) from the Percus-Yevick (PY) ap-
proximation.® We also briefly consider some
simpler methods of determining f and ¢. The the-
ory is developed in Sec. II, where its major over-
all features are compared with those of the very
recent work of Bongiorno and Davis® and the slight-
ly older results of Toxvaerd.”®

Section III provides the details of the calculations
of ¢ (r;n, T), the free energy, and the phase dia-
gram for a 6-12 fluid. Solutions of the PY equation
much more extensive than any previous ones are
obtained. Tables of the pair correlation functions
g(r;n, T) have been placed in a document reposi-
tory.® The contents of the tables are described in
Sec. III.
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In Sec. IV the surface tension and detailed sur-
face density profiles are computed. Good agree-
ment with a variety of Monte Carlo calculations!®™*
is obtained. As discussed by Lee, Barker and
Pound,'® agreement between the theoretical surface
tension and that measured for real argon to within
~20% requires the inclusion of three-body forces.
An interesting check of our theory is also carried
out in Sec. IV. On the basis of an obvious analogy
with the pair correlation function, one would ex-
pect that the liquid density should oscillate in the
vicinity of the interface between a hard wall and
the liquid. For the case of a semihard wall con-
structed by summing a 1/7!'2 repulsive pair poten-
tial over uniformly distributed atoms, yielding a
1/z° (z is the coordinate normal to the interface,
measured from the interface) potential, we do find
such behavior. Quite substantial oscillations are
obtained. A simplified version of our theory,
having the twin virtues that all required input exists
in analytic form'and that the predictions differ
little from our more elaborate theory, is briefly
presented in Sec. V.

A critical discussion of the results, including
areas where approximations might be improved,
is given in Sec. VI.

II. FORMALISM

The essential entity in our theory is the Helm-
holtz free energy of the system F([n] expressed as
a functional of the particle number density n(T) at
point T. Following ideas of Hohenberg and Kohn'®
for the T=0 case, Mermin'® showed that given
F[n], the density is determined by minimizing the
quantity

Q =Fn] + f @7 n(®) [v(F) - u] 2.1)

at constant temperature T, external potential v(T),
and chemical potential . The minimization is
achieved by varying n(¥), the result being that
n(T) is the solution to the functional equation

8 F[n]/6n(F) = 1 —v(T). (2.2)
In practice, of course, an approximate rather
than exact form must be used for Fln]. An exten-
sion of the arguments® for the case of T =0 liquid
‘He yields the approximation

Fl] =fd3rf(n(i-))— 4lfd°m3r' KG-7:7)

X [n(T) —n(¥))?, (2.3)

where f(n) is the free-energy density of the uni-
form system at density », and
d*q eiE-(r’-?’)

K(T‘-Y";n)=f (—2-11—)3 —m’- (2.4)

is the Fourier transform of the inverse of the re-
tarded density-density response function!” of a
uniform system at density n. The average density
appearing in (2.3) may be chosen in various ways.
One convenient and intuitively appealing choice of
the 7 is

n=3[n(F) +n(¥)] . (2.5)

Other nonlocal averages are discussed later on.
Equations (2.3)-(2.5) are exact for the situation
where the density varies only slightly from a uni-
form, constant average, i.e., in the linear re-
sponse regime. Away from this regime the theory
assumes simply that the physics underlying F(n]
can be described in terms of a local free energy
f(n(T)) plus a nonlocal effective interaction between
parts of the system at T and ¥. The nonlocal inter-
action is related to the density response function,
and corrections to linear-response theory are as-
sumed to be accounted for by use of a nonlocal
average density 7.

For a single-component classical liquid

X3'n) = (kg T/n)[1 - nc,(n)] , (2.6)

where c,(r) is the Fourier transform of the direct
correlation function ¢(7; %) at wave number ¢, and
kp is Boltzmann’s constant. Combination of (2.3)—
(2.6) yields immediately

F[n]=fd3rf(n(?))+—h’TT fd3rd3r'c(§-?';ﬁ)
X[n(T) -n(F))% (2.7

Our theory of nonuniform classical systems is
thus specified by (2.2), (2.7), and a prescription
for obtaining ¢ (r;%) and f (n) [f(n) is derivable from
¢(7;n)] from a microscopic theory of the uniform
fluid. The prescription we choose'® is that of
Percus and Yevick (PY),'® which is both widely
used and reasonably accurate.?® Details of the PY
calculation are given in Sec. III; the pair potential
chosen is a Lennard-Jones 6-12 potential.

It is appropriate at this point to compare the
formal basis of our theory with other theories of
nonuniform classical fluids. All theories involve
approximations, and the extent to which these ap-
proximations can be understood and controlled be-
comes an important point, especially when the
gross features and some of the results of the the-
ories, such as their predictions of surface ten-
sions, are quite similar.

The most recent theory, and perhaps the most
similar to ours in spirit, is that due to Bongiorno
and Davis.® These authors do in fact obtain and
minimize a free-energy functional in order to ob-
tain the surface tension and density profile. How-
ever, in their theory the local and nonlocal parts



2266 C. EBNER, W. F. SAAM, AND D. STROUD 14

of their functional come from diffevent approxi-
mate theories; the nonlocal part is incorrect in
the regime where linear-response theory holds;
and the nonlocal part is approximated by a gradient
expansion cut off at second order, in order to
simplify the computations. Our work suffers from
none of these defects. Further, second-order
gradient expansions cannot yield density oscilla-
tions of the sort expected in a liquid in the vicinity
of a hard wall; our formalism predicts oscilla-
tions (see Sec. IV). Other recent work is due to
Toxvaerd. He has two approaches, which we label
T1 and T2.% In T1 a free-energy functional is
minimized. However, the functional is constructed
from a somewhat bewildering array of unrelated
approximations, and, like that of Bongiorno and
Davis, fails to reproduce linear-response theory.
An application of T1 is given in Ref. 7. In T2 a
BGYB integral equation is solved for the particle
number density in the surface region, given a
simple approximation for the pair correlation func-
tion in terms of the actual density and the pair
correlation functions in the liquid and the gas
phase. The theory is clean and the approximations
are clear, as is the case with our theory. Its very
nature is, however, much different from theories
based on a free-energy minimization scheme.
Comparisons of results from such different ap-
proaches with both experiments on real argon and
with computer “experiments” are quite valuable
insofar as neither approach yet represents a truly
controlled approximation scheme. Further work
along both avenues is desired, and some sugges-
tions are put forth in Sec. VI.

III. NUMERICAL RESULTS FOR THE UNIFORM SYSTEM

In this section we first describe our method of
finding solutions to the Percus-Yevick equation.
This is followed by the determination of the
thermodynamic functions in the uniform system,
from which the vapor-liquid phase diagram is ob-
tained.

The Percus-Yevick equation is'®

c(r)=gr)(1 —e BVN); (3.1)

c(r) and g(r) are, respectively, the direct and pair
correlation functions, V(r) is the interatomic po-
tential, and B=1/kzT. The potential is taken to be
the Lennard-Jones (6-12) interaction,

V(r) =4e[(a/7)"* = (a/7)°]. (3.2)

In applying the results to the particular case of
liquid argon we have set €/k;=119.8 K and o
=3.405 A.%*

A second equation relating ¢(») and g(r) is the
defining relation®

gr)-1=c(») +nf ar'[g(|T-7']) - 1]c(’), (3.3)

where n is the particle number density.

Equations (3.1) and (3.3) may be combined to find
a nonlinear integral equation for either ¢ (r) or g(»).
The equation for ¢(7) is

clr)=e-8v(n_1 —nf ar'Q@,»)c(r’), (3.4)
()
where

7,
Qer,r)=2m(1-ePV)—

Irt+r]
xf ydy<che(-g—2,(—y;—l>. (3.5)
[Eatd

We have solved (3.4) using the following procedure:
A guess is made of the function ¢(») and ihis func-
tion is used to evaluate @ (,7’) and the right-hand
side of (3.4). The left-hand side is then a pre-
dicted c¢(») which may in turn be used to make a
second prediction, and so on. In practice it turns
out to be necessary to use a linear combination of
the predicted ¢(») and the previous one in order
that this iterative process converge. We repeated
the procedure until two successive functions
(r/o)g(r) agreed to 1 part in 10° for all values of 7;
this criterion is the same as that of Throop and
Bearman®? and gives convergence of the pair cor-
relation function to within 0.0001.

There are two other sources of numerical error
in solving (3.4). One is the necessity of truncating
the integration over y in (3.5) at that largest value
of y for which ¢(y) has been obtained from (3.4).
We employed 80 as the maximum value of » and »’
in (3.4) and simply set g(y) =1 in (3.5) for y>8¢.
This approximation was checked by extending » and
7’ to 100 in some cases. The error produced in
£(r) by truncating at 8¢ is generally no larger than
0.0001 and usually smaller. There are exceptions,
first, for » and T close to the spinodal line and,
second, for n large (the largest n considered is
n=1/5%. Of the first category an example is at
n*=ng3=0.25 and T*=T/e =1.4; then g(r) has a
long, slowly convergent tail which is ~1.001 even
at v=80. The truncation at /o =8 results in a
maximum error in g(») of 0.0006 both around the
peak in the pair correlation and at »~ 8c. At other
values of » theerror isof order 0.0001. As for the
functions at n*=1.0, the solution for g(r) — 1 has
an oscillatory long-range behavior such that the
amplitude of the oscillations at » =8¢ is still
~0.002. The truncation at » =8¢ produces a maxi-
mum error in g(») of about 0.0015.

The final source of error lies in the numerical
formula used to perform the integrals over »’ and
v in (3.4) and (3.5). We employed Simpson’s rule
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throughout with a step size 6» =0.025¢0. A check
on this procedure was obtained by also using 67
=0.01250 in some cases. The error in g(r) turns
out to generally be much smaller than 0.0001 ex-
cept at n*=1.0, where it can be as large as 0.0004
around the first peak in the pair correlation func-
tion.

As an additional check on our work, we have
compared our computed pair correlation functions
with the ones found by Throop and Bearman (TB)
at those values of » and T which are common to
both our work and that of TB. For those functions
which have converged to within 0.0002 of unity at
v =6¢, the agreement is generally within 0.0002
forall>; anexample is g(r)at n*=0.5and T*=1.4.
In those cases where g(r) still differs appreciably
from 1 at 60, however, there are considerably
larger discrepancies. An example is T*=1.4 and
n*=0.25, where g(» =6¢)= 1.004; our correlation
function in this case differs from that in Ref. 18 by
as much as 0.002. In such cases our solutions are
undoubtedly the more accurate ones.

In Ref. 9 one may find tables of the solutions
g(r;n, T) at 76 points is the nT plane; the locations
of these points are given by the x’s in Fig. 1. Each
function is expressed to four figures beyond the
decimal point and is tabulated at intervals in /o
of 0.025 for 0.875<#/0 <8.0; for /5 <0.875, the
pair correlation function is zero to the same num-
ber of digits.

Much has been written concerning the solutions
to the Percus-Yevick equation??~?® and we see no
point in adding to this voluminous literature here.
Rather, we shall merely point out that they, at the

[o] 05 10
n* L rﬂ3

FIG. 1. Phase curves in the T * —z* plane. The inner
solid curve is the spinodal curve calculated using the
Percus-Yevick (PY) theory. The outer solid curve is
the coexistence curve resulting from the PY theory. The
x’s are points at which the Percus-Yevick equation was
solved. The dashed line is the experimental coexis-
tence curve for argon (Ref. 29).
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FIG. 2. Direct correlation function c(7*,n*,T *) ob-
tained from the Percus-Yevick theory. Plots are given
for c(r*,n*,T*) vs r* for the cases n*=0.05, T *=1.0,
and n*=0.9, T*=1.0.

very least, possess all of the qualitative physical
features of ¢(») and g(») in the vapor and liquid
regimes. This fact is nicely demonstrated in Figs.
2 and 3; Fig. 2 shows c(#»,n*=0.05, T*=1.0) and
c(r,m*=0.9, T*=1.0) where T*=kT/e and n*=ng3.
The former case is in the vapor phase and the lat-
ter in the liquid phase. Figure 3 shows the pair

glr™

=005, T*=10

*=r/o
FIG. 3. Pair-correlation function g *,n*,T*) ob-
tained from the Percus-Yevick theory. Plots are given
of gr*,n*, T*) vs r* for the cases n*=0.05, T*=1.0
and »*=0.9, T*=1.0.
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FIG. 4. Pair-correlation functions g(7*,n*,T *) ob-
tained from the Percus-Yevick theory for values of n*,
T * in the unstable (spinodal) region. Shown are the
cases n*=0.3, T*=1.1, and n*=0.6, T*=0.7.

correlation functions at the same densities and
temperature.

For all of the correlation functions tabulated,®
ncy-o=n [ d*rc(r)<1l. M ncy-,>1, the uniform
system is mechanically unstable since

<g>T=kT[1 —nc 32 ofn, T)] <0. (3.6)
There is a large portion of the n — T plane where
this inequality is satisfied and, within this region,
the Percus-Yevick equation does not have any
physically reasonable solutions. We have suc-
ceeded in finding numerical solutions of (3.4) in
this region, but they have a distinctly unphysical
behavior in that g(r) approaches a value different
from unity at large ». As examples we show
gr,n*=0.3,T*=1.1) and g(r,n*=0.6, T*=0.7) in
Fig. 4.

In applying the density-functional formalism to a
case where the local density can be in the forbidden
part of the two-phase region (e.g., near a free sur-
face), we require direct correlation functions in
this region but do not wish to use the PY solutions
because of their unphysical form. Instead we have
constructed an extrapolation and interpolation pro-
cedure in the n — T plane to continue the PY solu-
tions for ¢(r,n, T) outside of the mechanically un-
stable region info this region. The direct correla-
tion functions constructed in this way are thus not
solutions of the Percus-Yevick equation in the un-

stable region but they do have physically reason-
able behavior and join smoothly onto the PY solu-
tions outside the unstable region. A number of
different extrapolation and interpolation formulas
of varying degrees of complexity were investigated
before we settled on the following, relatively simple
one:

cryn, T)=clr,n, T,) [< n —nv> <C(1’,n,, 7) )

n-n,) \ctr,n;, T,)
)]
(3.7

where n; and »n, are densities in the liquid and va-
por regions outside of the unstable region for all
T under consideration. We chose n#=0.7 and n}
=0.01. For any givenn, T, was taken to be the
smallest temperature for which we have a solution
to the PY equation.

Other relations than (3.7) of course do not pro-
duce the same correlation functions. However,
we generally found that more complicated extra-
polations in temperature or more elaborate inter-
polations in n changed ¢(r,n, T) by no more than a
few per cent even as did other choices of #n;, n,,
and T,. Such uncertainties in the direct correla-
tion function have an effect of order 1% on the
properties of the nonuniform system examined in
Sec. IV. Hence we feel the functions determined
by (3.7) are quite adequate for our purposes.

Given the ¢(r,n, T), we may find the pressure by
integrating (3.6) over the density; the chemical
potential is similarly found by integrating

kT
(:7“)7'=—; (1 -ncy-on, 7). (3.8)

Next, making use of the fact that the grand canon-
ical free-energy density w(n, T) is just —-P, we
easily find the Helmholtz free-energy density,

fn, T)=w, T) +np@, T)
=—Pn,T) +ni(n, T). (3.9)

In Fig. 5 we show the Helmholtz free-energy den-
sity in units of € /o® for T*=0.7, 1.0, and 1.3.
Finally, we wish to consider the vapor-liquid
phase diagram in the » — T plane. At a given T,
the vapor and liquid equilibrium densities may be
found by making the standard common tangent
construction on, e.g., the curves in Fig. 5; these
densities are determined by the criteria that the
chemical potentials and the pressures be the same

in both phases:
P(nu’ T):P(nhT)y U'(nvy T)=M(7l:, T) (310)

The calculated coexistence curve is shown in Fig.
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T*=13

% (% T

T*=10-

0.0 02 04 06 o8 10
n* = nod

FIG. 5. Reduced Helmholtz free energy f*(n*, T *)
calculated from the PY theory and plotted vs n* for the
cases T*=0.7, 1.0, and 1.3.

1 along with the experimental one for argon.?

Also shown is the calculated spinodal curve mark-
ing the points of instability of the liquid and vapor
phases; ncam(n, T) =1 defines the spinodal curve.

IV. SURFACE TENSION AND HARD WALL-LIQUID
INTERFACE

The surface tension is found by calculating the
free energy of a liquid-vapor system with a planar
interface. Let the z axis be normal to the surface;
then n(T) is just n(z) and (2.7) becomes

Fn] = f-m dz f(n(z)) +% f_m dzdz' Kz -2';7)

X [n(z) -n(zl)]zy
(4.1)

where
K(x;n)=m fm dyc((y +x3) Y2 n). (4.2)

Also F[n] is the Helmholtz free energy of the sys-
tem per unit area. At constant T and W, it is the
grand canonical free energy per unit area which is
minimized, so we seek that density profile n(z)
which minimizes

Q] =Fn] - uf dzn(z) (4.3)
and which also has the following properties:

lim n(z) =n,(T), (4.4)

&%

lim n(z) =n,(7T), (4.5)

2=

where n,(T) and n,(7T) are the equilibrium liquid
and vapor densities at temperature 7.

The surface tension 7(7T) is the difference be-
tween Q[n] and the grand canonical free energy
per unit area if the system were composed simply
of bulk liquid and bulk vapor:

7(T) =fw dz[f(n(z)) - pn(z) +P]

+%T_ ,/: dzdz' K@ -2';n)[n(2) -n@’)]*.
(4.6)

At this point the task one faces is to find that
n(z) which minimizes 7(7T), subject to the condi-
tions (4.4) and (4.5). We have done this using a
parametrized trial function for z(z), minimizing
7(T) with respect to variation of the parameters.
Several different functions were investigated using
as many as six parameters. These functions were
sufficiently flexible that n(z) could exhibit either
monotonic or oscillatory behavior. After some ex-
perimentation with the various functions we chose
the following one for the most extensive calcula-
tions:

n(2) =n, +(n; —n,)(1 +e~*%)"*

X [1 + <;ZO Y z’)e' 8'2} , 4.7

where a, 8, and the four y,’s are variational
parameters.

As for the manner in which 7 in (4.6) was chosen,
we investigated the geometric mean 7 = [r(2)n(z")] ¥/?,
the arithmetic mean 7 =3[n(z) +n(z’)], and also
used the density at the mean position, 7 =n[3(z
+2')]. The second and third choices led to very
nearly identical results for 7(T) and for n(z) while
the geometric mean produced surface tensions that
were slightly larger than those found by the other
two methods. The maximum difference between
surface tensions as calculated by the three 7’s was
6% at T*=0.7, and for T*>0.9 the difference was
always less than 1%. The numerical results re-
ported here were found using 7 =3 [n(z) +n(z’)]; this
is the same prescription for # which we used in our
earlier work on helium.

The calculated surface tension is exhibited in
Fig. 6 in units of €/0% also given are the surface
tension (experimental) of argon as well as the re-
sults of Monte Carlo calculations!®~!* using a Len-
nard-Jones (6-12) potential between pairs of atoms.
That the differences between the theoretical results
for the (6-12) potential and the experimental data
is due to the effects of three-body forces is fairly
convincingly demonstrated by Lee, Barker, and
Pound.!® The two-body Monte Carlo computations
using the (6-12) potential and our calculation are
in close agreement, a fact which we regard as
strong evidence for the reliability of our density-
functional formalism.

In Fig. 7 we show the surface density profiles
n*iz) at T*=0.7, 1.0, and 1.2. The agreement with
the Monte Carlo profiles given in Refs. 10-13 is
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* o
T*= kg T/€

FIG. 6. Surface tension in units of €/0% vs T*=kgT /e,
The solid curve is the result of our full density-function-
al theory for the Lennard-Jones (6-12) potential. The
various points are the results of the computer simula-
tions of Liu (Ref. 13) (O), Lee et al. (J), Chapela et al.
(Ref. 12) (@), and Miyazaki et al . Ref. 14) (A). The
dot-dashed curve is the experimental one for argon (Ref.
29).

most satisfactory. The profile in every case is a
monotonic function of z whose width increases with
temperature; n(z) is smooth with a rather larger
healing length going into the liquid than going into
the vapor.

As an interesting contrast we have also con-
sidered the density profile and interface energy at
a repulsive wall. The potential is determined ac-
cording to the scheme described in Sec. I. Assum-
ing n, atoms per unit volume in the wall which
occupies the half-space z <0 and an interaction
4€,(0,/7)"? between a wall atom and an argon atom,
we find that the latter feels the potential

V(z) = & eyny03(0,/2)° (4.8)

2* = 2 /0

FIG. 7. Surface density profiles from the full density-
functional theory. Shown are n*(z*) vs z* curves for
T*=0.7, 1.0, and 1.2.

as a consequence of the existence of the wall. Thus
the term

€,[n] =j:x dz V(z)n(z)

should be added to the free energy. Thereafter
the calculation becomes identical to the one just
described for the surface tension except that n(z)
must go rapidly to zero as z approaches zero from
positive values. Also, it is not necessary to pick
(n;, T) on the phase equilibrium boundary; rather
we may pick any (#;, T) at which the liquid (or the
vapor, for that matter) is stable.

The trial density profile we have chosen in the
form

3
n(z) =n,e""/‘9<1 +y y,z"e'ﬂ‘z>(1 +e~0%)"1
b=0

again after some experimentation. Here, a, B, 0,
and the y, are the variational parameters.

In Fig. 8 we show n*(z) for the case of T*=1.1
and n}=0.73. This result is typical. The profile
has a maximum in the vicinity of 2 =0.75¢, the
height of the peak being an increasing function of
n and rather insensitive to changes in T*. There
follows a minimum where the density falls some
40% below n¥. In some computer runs, this dip
was followed by a second, smaller peak with a
maximum height no more than 4% larger than n}*.

o9

o6

n%* = no3

03F =

*=z2/0

FIG. 8. Calculated liquid density profile »*(z*) near
a hard wall (potential ~ 1/2*9), The case T*=1.1,
n*) =0.73 is shown.
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Because of the restrictions imposed on n*(z) by our
choice of trial function, we are at present unable
to say whether this second peak is really present;
in any event, it is not large.

This oscillatory profile at a purely repulsive
wall is qualitatively similar to the one that has
been predicted® to exist in liquid helium under
similar circumstances. The fact that such be-
havior can emerge from our DF theory demon-
strates, once again, its power and versatility.

V. SIMPLIFIED ANALYTIC APPROACH

The calculations described in the preceding sec-
tions are based on an exact numerical solution of
the PY integral equation for a Lennard-Jones po-
tential and are therefore highly accurate in princi-
ple. On the other hand, these calculations require
considerable labor, in particular, a separate so-
lution of the PY equation for each density and tem-
perature of interest. It may, therefore, be useful
to have available a simpler model, which, though
perhaps less accurate, requires less computation.
In this section, we describe one possible approach
of this kind, and use it to compute the liquid-gas
phase boundary and the surface tension of a Len-
nard-Jones fluid.

To find the free-energy density f(n, T), we have
used a variational principle based on the Gibbs-
Bogolyubov inequality. For present purposes, this
inequality takes the form?°

F<F,+(V),, (5.1)

where F is the Helmholtz free energy of the fluid
(at fixed n and T), F, is the free energy of a refer-
ence fluid (at the same »n and T) consisting of hard
spheres of diameter d, and (V), is the pairwise
interaction energy, calculated using the actual
(Lennard-Jones) interactions and hard-sphere
gr)s.

The variational principle consists of (i) mini-
mizing the right-hand side of (5.1) with respect to
d, and (ii) taking the resulting lowest upper bound
to approximate F. This procedure has been suc-
cessfully used in the past to treat the thermody-
namics of both insulating and metallic fluids.?' In
the case at hand, F, is available analytically with-
in the PY approximation, while (V), has been eval-
uated for various values of d as a power series in
n*=ng® by Rasaiah and Stell.’* If F +(V),, as
evaluated in this way, is minimized with respect to
d, then, as noted previously by Rasaiah and Stell,
the resulting d/o deviates from unity by less than
5% over the entire density and temperature range
spanned by the liquid-gas coexistence curve. We
have therefore simply taken d=o¢. This gives the
following analytic expression for f *(n*):

T+ 'f*¥n*) = - in*+3n*(1 -+ m*)"*
~n*1n(1 - £ 0%
+(2mn*%/T*)(-0.9021 - 0.3321n*
—-0.2052n*2 +0.3558n*%),
(5.2)

where n*=ng®, T*=kgT/c, and f*(n*) =n*F.
To complete the prescription for F[n(r)], we have
evaluated the correlation function ¢(r;n, T) as

c(r;n, T) =cy(r;n) +c (v; T) +6¢c,(r;n, T). (5.3)

¢he(r;m) is the direct correlation function for a
liquid of number density n composed of hard
spheres of diameter ¢, evaluated in the PY approx-
imation. &c¢,(r, T) is the contribution of the attrac-
tive tail of the Lennard-Jones potential, which we
have approximated by

GCI(V,T) =e—V(r)/kBT_1’ r>o, (5.4)
=0, r<o.

dc,(r;n, T) is an additional correction to insure
that ¢, when used in conjunction with (5.2), satis-
fies the compressibility sum rule. We have chosen
&c, to be a step function of the form

5c2=—A(n,T), r<o, (5.5)
=0, r¥>ag.

Note that the choice (5.4) for the tail contribution
becomes exact in the limit of large » or small ».
In order that this correct limiting behavior remain
undisturbed, it seems desirable to require 6c, to
vanish for » >g. The correction (5.5) is otherwise
arbitrary but we have found that the surface ten-

). 1 \ 1
(o] 02 04 06 o8 Lo
n*=no>

FIG. 9. Solid curve is the theoretical coexistence curve
for a Lennard-Jones 6-12 fluid resulting from the sim-
plified theory of Sec. V. The dot-dashed curve is the
experimental coexistence curve for argon.
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FIG. 10. Surface tension in units of € /0% vs T *=kpT/€,
Shown are the results of the simplified theory of Sec. V
(solid curve) and the experimental results (Ref. 29) for
liquid argon (dashed curve).

sion is little altered when other plausible choices
of 8¢, are used in place of (5.5); the phase diagram
is, of course, unaffected.

The phase diagram and surface tension resulting
from this simplified approach are shown in Figs.
9 and 10. The results are in fair accord with the
Monte Carlo data'®~!* and with experiments on
argon, and are not greatly inferior to those of
Secs. III and IV. Our conclusion is that the density
functional approach to classical fluids, as de-
scribed in Sec. II, can be used in conjunction with
relatively simple forms for ¢(») and f(n), such as,
but not limited to, the forms described in this sec-
tion. Such simpler forms could be useful in apply-
ing the DF approach to liquids with other than Len-
nard-Jones interactions, or extending it to mix-
tures.

VI. DISCUSSION

In this paper we have developed and applied a
density-functional theory for nonuniform classical
fluids. As seen in Sec. IV, the theory is quite suc-
cessful in its predictions of the properties of the
free surface of liquid argon. In the vicinity of a
hard wall it predicts physically very reasonable
oscillatory behavior. As discussed in Sec. II, the
theory is clear and concise regarding the state-

ments of the approximations on which it is based.
From this point of view it is visibly superior to its
predecessors. The approximations involve an ex-
pansion of F[n] in terms of density differences,

the choice of the average density 7 in the kernel
[see Egs. (2.3)-(2.5)], and the choice of the PY the-
ory as that uniform-system theory from which the
DF theory proceeds.

Of three approximations made, that involving the
choice of # is the only one for which we have made
detailed checks. We have found the results to be
insensitive to the choice of #, provided that 7 is
chosen in a physically reasonable way (see Sec.
IV). It is in principle possible to eliminate the
need for such a choice. The basic PY equation
(3.1), written in the form

¢, ) =g(F, ¥)(1—e Vi), (6.1)

together with a generalized version of (3.3),
gE,F) - 1=c(E,¥)+ [ d*r" (g, ) - 1]

Xn(®)c(F, ) (6.2)

in principle yield c(¥, '), given =(Tf). One could
use our DF theory, together with this PY theory,
for nonuniform systems to self-consistently de-
termine both n(T) and ¢(¥,T’). This procedure re-
moves the somewhat artificial construct z from
the formalism. The practicality of this approach
is under investigation.

An even better theory would be one which utilized
(6.1) and (6.2) together with an exact theory of
Fn] formulated in terms of densities and direct
correlation functions. This theory would eliminate
the expansion in density differences, leaving the
Percus-Yevick equation as the single approxima-
tion in the theory. For the special case of the
planar free surface this has been done by Triezen-
berg and Zwanzig® and Lovett et al.*® Their ap-
proach requires that the geometry be such that the
use of a continuous wave number is appropriate.
For more general situations, e.g., small droplets,
this is not the case. However, for the general
case, it appears possible toachieve the stated goal
using functional techniques developed by Lebowitz
and Percus.®® We hope to deal with this topic in a
future publication.

*Work partially supported by NSF Grant Nos. DMR75-
21866 and No. GH-33746.
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