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The possible generation of photon echoes is discussed for a system where the incident radiation resonantly
drives two-photon transitions. Use of the adiabatic-vector-model approximation of Grischkowsky, Loy, and
Liao allows echo behavior to be calculated in a multilevel system by methods similar to those previously
employed for two-level atoms. %e find that observation of the double-quantum photon echo requires the
presence of a nonresonant probe field at the time of formation of the echo pulse. The echo then radiates at the
sum and diA'erence of the probe and two-photon frequencies. As an example, we consider a possible
experimental arrangement for the detection of double-quantum photon echoes in Rb va,por.

I. INTRODUCTION

In a recent paper, Grischkowsky, I.oy, and
I.iao' introduce a useful adiabatic vector' model to
describe resonant optical two-photon parametric
mixing and pulse propagation. This model, origi-
nally developed by Takatsuji, ' extends the Feyn-
man-Vernon-Heltwarth' treatment of resonance
in a two-level atom to more general multilevel
systems. In this paper we apply it explicitly to a
new problem the possible generation of double-
quantum photon echoes.

A double-quantum photon echo is that process„ in.

a system where the incident radiation excites two-
photon transitions, which corresponds to the well-
known photon echo4 in the simple two-level sys-
tem. To form a double-quantum echo, a coherent
superposition of atomic ground and excited states
is prepared by a sequence of intense light pulses.
The frequency components of the preparation pulses
are chosen so as to drive a two-photon resonance.
After completion of the preparation-pulse se-
quence, the system can. be made to emit an echo
pulse whose characteristics are determined by the
time evolution of the atomic density matrix, aver-
aged over the many atoms of a macroscopic sam-
ple. In the double-quantum echo, unlike the usual
photon echo, the ground and excited states are„
in general, not connected by a dipole matrix ele-
ment. Observation of the echo therefore requires
the simultaneous presence of a probe light beam.
The probe field mixes the superposition state with
a set of intermediate states, allowing dipole tran-
sitions to occur. Its frequency may be different
from that of any of the preparation pulses, and
need not be in resonance with any atomic txansi-
tion.

The echo appears at the sum and difference of
the probe and two-photon resonance frequencies.
In the case discussed here, the difference-fre-
quency term is resonantly enhanced, and therefore

dominates the observed emission. Zernik has
studied a similar process: the incoherent quench-
ing of excited hydrogen 2s metastables due to the
mixing of states by nonresonant optical-frequency
fields.

The vector-model approximation we use in this
calculation has previously been applied to studies
of two-photon parametric frequency mixing, ' self-
induced transparency, ' and adiabatic rapid pas-
sage. ' Brewer and Hahn' have applied a somewhat
different vector model, which yields exact solu-
tions for the development of the density matrix
of a three-level atom in the presence of resonant
optical fields, to the calculation of transient emis-
sion following intense two-photon pulsed excita-
tion. Hartmann' has analyzed the behavior of
Raman echoes in a three-level system, a problem
closely related to the one we discuss here. A
"doubly- resonant" echo, in which an intermediate
state is populated by the exciting field, has been
described by Aihara and Inaba, ' while Makhviladze
and Shelepin'0 treat a three-level echo by means of
a general group-theoretical formalism.

II. DOUBLE-QUANTUM ECHO CALCULATION

Ne begin our calculation of a double-quantum
photon echo by considering an atom illuminated by
two linearly polarized beams of light at frequencies
(u, and &u, . (The notation used here will closely
follow that of Grischkowsky, Loy, and Liao. ) The
sum frequency ~ = m, + v, is assumed to be nearly
equal to the energy separation Q„=Q, —Q, of a
pair of nondegenerate atomic states ~1) and ~2).
Neither cu, nor ~, is resonant with any other atomic
transition frequency. %'e also assume that the two
beams propagate in the same direction, which we
take to be the z axis. A schematic energy-level
diagram appears in Fig. 1.

In the presence of the light beams, the Hamil-
tonian becomes



QJ)

FIG. l. Sclmmatic energy-level diagram. Preparation
pulses are applied simultaneously at (d& and (d2, driving
two-photon transitions between levels ~1) and ~2). To
observe the double-quantum photon echo, a probe beam
is applied at (d&. The echo radiates at Q~2-(d~ and O&2

+Q)p.

The adiabatic requirement cRQ x'eld1ly be satisfied
experimentally by use of tunable dye laser excita-
tion.

To make the adiabatic-vector-model approxima-
tion, we change coordinates to a "doubly-rotating"
frame, using transformations developed by Grisch-
ko'%sky, Loy, Rnd Llao. Fox' clRrlty RQd con-
tinuity in presentation of the echo calculations, me
briefly restate some of their results as Eqs. (4)-
(11). The density matrix p" (t) and Hamiltonian X"
in the new coordinate system ax'e given by

&" =R(t)&'R '(t)+iIt R '(t},

K=X -p ~ E.
+0 18 the uQpeI'tuI'bed Rtom1c Hamlltonl. any p ls the
electric dipole moment operator, and E is the
electric field, given by

E =xlg, (t) cos(to, t —k,z) + $,(t) cos(to, t —&,z)].

-i8(t)@ jg (f}
2 95

and p(t} and & are the density matrix and Hamil-
tonian in the laboratory frame. R(t) is the rotating-
frame operator

e+i {&t-4'~)Q P e e s 0

We assume that the matrix elements P,„=(1~p)&}
and P,„=(2)p~n} are nonzero for some intermedi-
ate state )n}, but that (l~p~2} =0. (For example,
(1}and ~2} could correspond io the ground and a
higher-lying s state in an alkali metal; the states
~n} would then correspond to the P states. )

The Rbsence of R dipole matrix element between
gxound and excited states invalidates the two-level
assumption commonly made ln optical I'esonRnce
problems; therefore, the simple Feynman-Vernon-
Hellwarth vector model is no longer a correct rep-
resentation of the problem. Takatsuji' shows,
hovrever, that the Bloch equation, and thus a vec-
tox' model description, may be obtained as 3n
approximation to the exact equation of motion fox'

a many-level system by making an appropriate
canonical transformation of the atomic basis
states. Thus a new set of mixed states mill re-
place the actual atomic levels. Use of this vector
model approximation assumes that any optical
pulses applied to the system are turned on and off
Rd1abRticRlly, l.e.y

fox' R given risetime, the de-
tuning from resonance with any infeemedzate state
must be sufficiently large. This adiabatic condi-
tion takes the fox'm

e-i (id&-ft&) h 0 ... 0

while S(t) is an operator which represents the mix-
ing of the ground and ex««d ~~~i~~ Il }»d I2)
with the intermediate states (n} caused by the
presence of the field E. The near mixed states,
designated by ~1'} and (2'}, are shifted in energy
from ~1} and (2}by the optical Stark shifts sQ,
and AQ2, where

j. g2 g2~ ~~rt ~f1' tfi ~2 2 + 2 2Pf „~ —4P& A„» —%2

OuI' coox'dinRte tl RQ8formRt1on cox'responds to
taking ~1'} and (2'} as a basis set for the density
matrix and for representation of the Hamiltonian
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in place of
~
1) and

~
2 }.

Unlike the unperturbed atomic states, the mixed
states are connected by a dipole matrix element,
allowing the density matrix equation of motion in
the doubly-rotating frame to be written in the Bloch
equation form

the adiabatic condition of Eq. (3) must still be
satisfied independently. A suitable choice for the
pulse risetime exists only if the following inequal-
ity holds

(ha~)'» g p,„p „8'8,'

where

y, =~8, $, ,

y2 =0,

y, =0„—((u, +(u, )+t(Q( —t(A, .
The two-photon gyroelectric ratio & is given by

(10)

where ~~ is the detuning from the intermediate
states as defined in Eq. (3).

To generate a double-quantum photon echo, we
illuminate the atomic system with two pulses of
areas ]9, and O„separated in time by an interval
of length 7. The evolution of the doubly-rotating
density matrix p" (t) as the pulses are applied can
be ealeulated by the same methods used for the
single-quantum echo."' At time I, =I0, imme-
diately following termination of the second pulse,
the Bloch vector has components:

r( = sin 8, siny, 7+ g[(I —cos 8( +sin 8~ sin 8()

)(cosy,7 +cos 8, (1 —cos 8,)],
&, = -cos 6', sin 8, cosy, 7 —s in 9, cos 6],

p'(t) =Rp(t)R ' (12)

as the fields are turned off adiabatically.
Explicit expressions for the matrix elements of

S(t) and a more detailed discussion of the proper-
ties of the adiabatic vector model approximation
appear in the Grisehkowsky-Loy-Liao paper. ' The
canonical transformation procedure employed is
derived by Takatsuji. 2

In the doubly-rotating frame, the effect of apply-
ing a.pulse of duration 4I; at frequencies u, and ~,
is to rotate the & vector around the y vector through
an angle (9 equa. l to the two-photon pulse area

6t
8= x 8((t')b, (t') dt'.

0

If the pulse is nearly square (but still adiabatic
with respect to the intermediate states) so that
8, and 8, quickly reach the constant values 80,

and $02, we can approximate 0 by

8=KB 8 At

Q p, „p„, + . (11)
1 1 1

t? tQ I tf2 2

The operator S(t) is proportional to the field
amplitudes 8, and 8,. The doubly-rotating density
matrix p" (t) therefore transforms smoothly into the
conventional rotating frame density matrix p'(t)

+ )[sin 8, sin 8, +cos8, (1 —cos8, )]cosy',
&, = sin&, sin6), cosy, ~ —eos 8, eos 6),

—&[(I —cos 8, )(sin 8, + sin 8,)]siny, 7,
where 5 =y, /(($0($20. We can greatly simplify these
expressions, while retaining the essential features
of the echo, by assuming that we have applied the
Carr-Purcell preparation. pulse sequence, for
which (9, =-, n and O, =v.

The laboratory fra.me density matrix at I; =I;0 can
easily be found, since S (to) =0 and the doubly-
rotating frame has transformed smoothly into the
conventional singly-rotating frame. Inverting the
rotating-frame transformation, we obtain the fol-
lowing nonzero elements of p(to):

p„(t,) =-' —(r, /)(&;&,') stn1', r,
p„(t,) =-,' + (y, /((8'(8,') siny, r,

(t )
( te+(y&(e-((toto-)I)

(t )
) t t)'~eK f(it)(0-+RE)

where $ =r +I/xS,'8,'.
The intensity of radiation subsequently emitted

by the system mill be proportional to the square
of the expectation value of the electric dipole mo-
ment (p(t)} For a single atom,

This approximation will be valid so long as the
pulse risetime is small compared to the reciprocal
of the two-photon Rabi flopping frequency

II„=(1/2(()xylo(820.

The risetime, however, cannot be too short, as

(P(t}&=»Pp(t) = g IP,„«p,.(t)+ p Rep.„(t)].

In the absence of any further perturbation, the
evolution of the density matrix for g& &0 mill be
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governed by the unperturbed Hamiltonian . As

is diagonal in the laboratory-frame energy
representation, p,„(t) and p2„(t) will remain zero,
implying (p(t)) =0. Since none of the intermediate
states ~n) have been populated, the atom ha. s no

dipole moment; except for spontaneous emission
processes, it emits no radiation. Nonetheless,
the states ~1) and ~2) retain a well-defined phase
relationship, as evidenced by the nonzero off-
diagonal density matrix elements p»(t) and p»(t).
This phase coherence can be exhibited by probing
the system with nonresonant beam of light.

We use time-dependent perturbation theory to
evaluate p(t) in the presence of the probe field

dpi'

—- [p„v,l, (21)

where

sing i ih p(t)e-i K t) h

y j $Cpt/h y $ 3C ptlh
(22)

To first order in V~, this equation has the solution

(23)

frequency, but is otherwise arbitrary. Transform-
ing to an interaction picture, the density matrix
equation of motion becomes

Eh = xSP cos(i))ht —khz) .

The probe-field frequency ~p is assumed to be
far from resonance with any atomic transition

(20)
Evaluating the commutator, returning to the
Schrodinger picture, and calculating Tr[pp(t)], we
obtain for the polarization the result:

(p(t))= —P '" "' ' + cos[(n„—~,)t-t, z&, ~J
PPp 1

~1n P n2 P

1
cos[(n„+ &d&)t —tih z —y, ]J

1n + (dp n2+ (dp
(24)

k = k kp ky = k + kp ~ Terms oscillating
at frequency up have been neglected. The probe
field thus induces a dipole moment, allowing the
system to radiate. Since the induced moment os-
cillates at up while the probability amplitudes
oscillate at Q», sum and difference beat terms
appear in the polarization. The polarization is
proportional to gp, and exhibits resonant behavior
as (dp approaches Q,„or 0„,. The difference-
frequency term will therefore be resonantly en-
hanced, and thus will dominate the observed emis-
sion, when the probe frequency lies in the optical
region. Because we have explicitly treated the
Carr-Purcell preparation pulse sequence, Eq.
(24) shows no dependence of the polarization on
the amplitudes of the exciting fields g', and g'2. For
a more general choice of preparation pulse areas,
the expression obtained above would have a factor
sin(9, sin'&62 as has been found for photon echoes in
a two-level system. 4

An alternative method for producing an obser-
vable echo would be to apply a dc electric field in
place of the ac probe field of Eq. (20). This pro-
cedure has been discussed by Zernik' as a means
of quenching an incoherently populated hydrogen
2s state, which otherwise can decay only through

iv)t)) =&f (v(t))g)v„)dD„, (25)

where N is the number density of atoms in the
sample. We assume that g(n») has the Gaussian
form:

g(n„) =(T,*/v)exp[-(n, , -n, )'(T,")'/)i] .

This averaging yields the result

(26)

spontaneous two-photon emission. Application of
a dc perturbation corresponds to taking the limit
of (t)(t)) as ~h -0, with a probe field amplitude hh
replaced by the dc field strength $p. In this case,
the two terms in Eq. (24) are equal, and the echo
appears at the two-photon resonance frequency Q».
Use of a dc field, however, yields no resonant
enhancement of the polarization; the emitted radia-
tion may therefore be dominated by single-photon
allowed transitions from the excited state ~1) to a
lower-lying intermediate level.

To evaluate the polarization for a macroscopic
sample, we must average the single-atom polariza-
tion given by Eq. (24) over the inhomogeneous dis-
tribution of two-photon resonance frequencies
g(n„):



The exponential factor has a maximum at t= y.
Since we measure t from the end of the second
pulse, this maximum corresponds to a sharp echo
pulse at about 2z following the start of the px'e-
paration pulse sequence.

III. NUMERICAL EXAMPLE: Rb 59 -7S

The expression for the polarization [Ecl. (27) J

suggests as a possible experimental arrangement
the apparatus sketched in Fig. 2. Ne consider as
an example the 5S-VS two-photon resonance in
rubidium. A pulsed dye laser, transversely
pumped by a Q-switched ruby laser, is tuned to
7601 A, halfway between the Rb 5s and Vs levels,
exciting two-photon transitions in the sample.
Optical Stark shifts may displace the resonance
from that predicted by the zero-field levels. Never-
theless, the resonance can be located experiment-

Ruby Lase&

Delay l

BS-2

Dye Lacer

F

FIG. 2. Schematic experimental arra gement for
observation of double-quantum photon echoes ln rubKlluIQ.
BS 1-4 are beamsplitters, F is a narrow-bandpass fil-
ter, and PM is an 8-1 response photomultiplier.

ally by tuning the dye laser. Beamsplitter BS-2
divides the dye laser beam, sending about 50% of
the intensity to an optical delay line, which intro-
duces a delay y. The delayed pulse is recombined
collinearly with the undelayed dye laser beam by
beamsplitter BS-3, forming the preparation pulse
trai~. Beamsplitter BS-1 picks off a small fra,c-
tion of the 6943 A ruby laser pulse for later use
as a probe. The probe pulse is delayed by 2w

in a second delay line, then fed into the sample
along the ox'iginal excitation direction, stimulating
the echo at 8397 A. This wavelength can be moni-
tored by a photomultiplier with S-1 response.
Since the double-quantum echo appears at a differ-
ent wavelength than either the preparation pulse
train or the ruby lasex' probe, a narx'ow-bandpass
filter may be used to discriminate between the
echo and probe pulses, as well as to prevent de-
tector satux'ation. Although for clarity our figure
shows two separate delay lines, both excitation
and probe pulses may be delayed in the same set
of mix'1 ox'8 through an appx'opx'1ate cho1ce of beam-
steering optics.

For the energy levels and excitation wavelengths
just discussed, the laser power required to gen-
erate a double-quantum photon echo can easily be
estimated. Evaluating Eqs. (11) and (14) for the
5S-VS two-photon transition in rubidium, we find
that a m pulse at 7601 A corresponds to an intensity
of 7 MW/cm' in a 10-nsec pulse. As the detuning
from the nearest p state is 339 cm ', the adia. batic
condition of E(l. (3) ls clearly satlsf led. Our cal-
culation employs the published matrix elements of
Heavens, "and assumes that only the 5p, 6p, and
Vp intermediate states contribute significantly to K.

The high-power levels necessary for the double-
quantum echo effect imply substantia, l optical
Stark shifts during the pulses. At 7601 A the &get

shift calculated from Eq. (7) is found to be 750
MHz, largely in the ground state. If we assume
transform-limited pulses, this shift exceeds the
pulse linewidth. %hile the resonance can still be
found experimentally, the magnitude of the Stark
shift may impose a xestriction on the relative
amplitudes of the initial and delayed preparation
pulses: if both pulses are to be in resonance,
they must have comparable intensities. Such a,
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restriction is in practice readily satisfied.
Although the calculated power density for a

double-quantum m pulse is much greater than that
required to invert a typical single-photon transi-
tion in an alkali, it is still well within the range
of output power available from a ruby-pumped dye
laser. A substantial reduction in the power needed
can readily be obtained by tuning one of the ex-
citing frequencies close to resonance with an
intermediate state, enhancing the transition prob-
ability. With this procedure, however, two-photon
resonance can be attained only through the use of
two separate dye lasers.

In view of the results obtained above, experi-
mental observation of a double-quantum photon
echo appears feasible. As in other resonant op-
tical processes, generation of a double-quantum
echo entails the creation of a coherently-oscillat-
ing superposition of a pair of atomic states in the
many atoms of a macroscopic sample. In the
double-quantum case, however, this coherent
superposition no longer corresponds to a macro-
scopic dipole moment, thus requiring the use of
a probe beam to produce an observable echo pulse.
As the probe frequency is arbitrary, the echo can
be obtained at a wavelength different from that of
the exciting radiation, facilitating detection.

Use of this new technique can extend photon echo
relaxation-time studies to atomic states previously
inaccessible to single-photon excitation due to the
operation of dipole selection rules. Although
single-photon forbidden transitions can be driven
by stepwise or doubly-resonant excitation, direct

two-photon pumping eliminates many complications
which arise when intermediate levels are populated.
The greater energy available using double-quantum
excitation would allow photon echo investigation
of phase-changing collisions in high-lying Rydberg
states.

Although we have restricted our attention to the
simple example of collinear pulse preparation and
detection, a more elaborate calculation, explicitly
analyzing echo directionality and propagation
effects, would be straightforward. In particular,
the work of Brewer and Hahn' suggests the possi-
bility of echo generation with counter-propagating
beams, allowing the selective excitation of partic-
ular fine and hyperfine components under the
Doppler-broadened atomic linewidth. Even though
the two-photon resonance would then be "Doppler
free, " the motion of individual atoms following the
preparation pulses would dephase the excited state
in the usual manner, and an echo would subse-
quently form. Our calculations could also be
extended to include interference effects arising
from level degeneracy, as has previously been
done for the photon echo" and for other two-photon
processes. ' "
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