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Third-harmonic generation in phase-matched Rb-Xe mixtures has been produced using 7- and 300-psec pulses

of a mode-locked Nd:glass laser with peak powers up to 200 MW. Maximum energy conversion efficiencies of
2.8% have been achieved. A theoretical analysis is given which includes the transient excitations of the system

and the linear and nonlinear susceptibilities up to seventh order in the perturbation. Agreement between

theory and experiment has been obtained up to the highest input intensities demonstrating the importance of
the transient excitation due to the adiabatic following. The phase-matching condition for parallel and focused

beams has been investigated showing the influence of density gradients at the boundaries of the nonlinear

medium (Rb vapor) and of the field-dependent changes of the refractive index at high input intensities. The
limiting processes of self-focusing and multiphoton ionization are discussed.

I. INTRODUCTION

In recent years it has been demonstrated, in
particular, by Harris and co-workers, that alkali-
metal vapors have large third-order nonlinear sus-
ceptibilities and are well suited for efficient third-
harmonic generation and frequency mixing in high-
power laser systems. "This is due to a number of
interesting properties:

(i} Using two-component systems which contain,
for example, a mixture of an alkali vapor and a
noble gas, phase matching can be achieved by a
proper adjustment of the partial pressures, ex-
ploiting the anomalous dispersion. "4

(ii} The third-harmonic generation may be ex-
tended to the far-ultraviolet spectral region be-
cause of the small continuous photoabsorption cross
section. '

(iii} Utilizing the resonant enhancement of the
nonlinear susceptibilities, optical mixing of tunable
dye-laser radiation becomes very efficient even at
moderate laser powers. This technique has been
used for the generation of tunable coherent radia-
tion in the range 1600-2000 A and in smaller fre-
quency intervals at even shorter wavelengths. "

(iv) Metal-vapor gas mixtures exposed to the ra. —

diation of high-power laser systems are not seri-
ously affected by dielectric breakdown.

Most of the experiments reported so far were per-
formed at rather low laser powers. Using a phase-
matched Rb-Xe mixture and a mode-locked Nd: YAG
(yttrium aluminum garnet) laser system with a
maximum output of 50 kW, Young et al. ' achieved
a conversion efficiency for third-harmonic genera, -
tion of 5 x 10 '. From the measured nonlinear sus-
ceptibility of the Rb vapor they extrapolated a pos-
sible conversion efficiency of 50%%up for an input

power of 10 5QV neglecting saturation effects.
Very recently, Bloom et al.' and Puell and Vidal'
have obtained energy-conversion efficiencies of a
few percent in Rb-Xe mixtures, which are the
highest values reported so far.

This paper presents experimental results for the
third-harmonic generation in Rb-Xe mixtures us-
ing incident-light powers up to 200 WDV generated
by a mode-locked Nd:glass laser system. The ex-
periments have been performed with different dura-
tions of the laser pulses (7 and 300 psec) in order
to understand the saturation effects observed at
high input intensities. A theoretical analysis is
given which includes the transient excitations of
the system and the various linear and nonlinear
susceptibilities up to seventh order. In this man-
ner agreement between theory and experiment has
been obtained up to the highest input intensities
used in the experiments.

Section II starts with the theory for third-har-
monic generation. The influence of focusing, the
field-dependent changes of the refractive index,
and the influence of excited states due to transient
laser excitation are incorporated. Numerical val-
ues of the linear and nonlinear susceptibilities are
given as required by the experiments. Further-
more, a detailed discussion of the phase-matching
condition is given which includes the effect of den-
sity gradients at the boundaries of the nonlinear
medium. The resulting system of differential
equations which describes the third-harmonic gen-
eration in a two-component system, has been
solved numerically. In Sec. III a description of the
experimental arrangement and of the different
diagnostics is given. It is followed by a detailed
discussion of the experimental results in Sec. IV,
which contains the phase-matching curves for a
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parallel and a focused beam, the results of the
energy conversion for 300- and 7-psec laser
pulses and a discussion of the self-focusing and the
multiphoton ionization as it applies to the satura-
tion phenomena at high input intensities.

H. THEORY

A. Third-harmonic generation

In our analysis of the third-harmonic generation
we are interested in the interaction of two linearly
polarized electromagnetic waves of frequency q~
(with q = 1 and q = 3), allowing for density gradients
along the axis of propagation within the nonlinear
medium as required by the experiments. We
start with the wave equation

1 82 + 8' --
&$(r, t) ——,—,$(r, t)= —,—,o (r, t),

where the relaxation term I' „represents for nz &n

the phase relaxation rate and for m =n the energy
relaxation rate. ~p „ is the corresponding dipole-
moment matrix element of the transition.

The real part of X"}(q(d) is related to the re-
fractive index n, of the medium by

n,' —1= 4nN Re[x"}(q(0)], (7)

whereas the imaginary part represents the linear
power absorption coefficient

lm [X"'(q~)l .4m&~

The nonlinear polarization I', represents the
polarization induced in the medium due to the in-
teraction of the two waves under consideration.
Going up to the third order of the perturbation one
obtains

where $(r, t) is the total electric field of the two
waves,

${r,t)= —Q E,(r, t)e ""'+c.c. , (2)
a=le 3

and (P (r, t} is the total polarization induced in the
nonlinear medium by this field, which may be cal-
culated according to the results of the preceding
paper. ' It is convenient to separate the Fourier
components of the polarization P into a linear
term P, and two nonlinear terms P, and P, :

0 (, t}=—E P, (, t}~ P, (,(}~ 1,(,I)e '"'+
Q=lr 3

(3)

Generally, the linear polarization P, is ex-
pressed in terms of the field-independent linear
susceptibility X'"(q(d),

P,'(r, t) = &X"'(q(d)E,(r, t),
with

Pr(r, t) = ~ t}}X"}((d= 3((}—ru —((})

&&E,(r, t)E,*{r,t)E,*(r,t)

P, (r, t) = + f}}X ' (3~= ((}+((}+((}}

&& E,(r, t)E,(r, t)E, (r, t), (10)

where both third-order susceptibilities are related
byl0

x r (3~) =- x (3(d = (d+ ~+ (d) = 3x
' (~= 3~ —(d —(d) .

P, = & t}t[X (((}= (d+ ((}—((})
~
E,

~ E,

The third term I',~ in Eq. (3) describes the mu-
tual interaction of the incident and the generated
light waves giving rise to an intensity dependence
of the refractive indices at the frequencies & and
3(d (second-order Kerr effect). Evaluating P,~ also
up to the third order of the perturbation we obtain

R is the number of atoms per unit volume in the
initially populated energy level 0. For our exper-
imental situation, where the frequencies q(d are
far away from any atomic transition frequency of
Rb and the pulse duration r is short compared to
the energy relaxation time T„only those results
of Ref. 9 are used which have been derived for the
so-called "off-resonance" case with ~q(d —&u „~» 1/r» 1/T, . The transition frequencies &u „be-
tween the eigenstates E and E„of the medium are
given in a complex notation:

((} „=(E —E„)/5 —il„=0 „—i"I„, '

+ X'"((d = (d+ 3(u —3(d)
~
E,~'E, ]

P, = ,'X[X("(3(d=—3(d+3(d —3(d)
~
E,~'E,

+X {3((}=3(d+ (d —((})[E,[ E~] . (13)

x'."(q~) -=x"'(q~ = q~+ q~ q~), —

with q=1 and q=3, and

(14)

From symmetry considerations the four nonlinear
susceptibilities may be reduced to three indepen-
dent coefficients which will be abbreviated in the
following as
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y
(3)(~ 3~) =

X
(3)(~ ~+ 3~ 3~)

= y'"(3m= 3&v+ ~ —u).

E,(r, t) = E,(r, z, t)A, (r, z)e' ~',

with

(16)

A, (r, z) = (1+i2z/b) ' exp[-k, r' (/b +i2z)]

e (17)

For a linear medium, E,(r, z, t) is a constant in
space and time and represents the maximum field
amplitude within the focal plane (z = 0) of the wave
with frequency qv and wave vector k, . [Note that
r is the vector to point (x,y, z), whereas r is the
radial coordinate in the plane perpendicular to the
z axis. ] Owing to the nonlinear interaction with the
medium, however, the amplitude E,(r, z, t) be-
comes space and time dependent. This dependence

TABLE I. Third-order nonlinear susceptibilities (esu)
for the 5S ground state of Rb calculated for X= 10 600 A
as defined by Eq. (11), (14), and (15).

(3)(g )

8.56x10»

X(3)(~)

2.41x 10 3i

(3)(3

3.57x10 '4

xs(3)

—9.94x10 '4

All the third-order nonlinear susceptibilities may
be evaluated from time-dependent perturbation
theory. ' Numerical values for a fundamental wave-
length of ~= 1.06 pm arepresented in Table I. Per-
forming these calculations for Rb we used the same
energy levels and the multiplet splitting, and the
same values for the reduced dipole matrix ele-
ments as previously employed by Eicher, ""who
calculated the y'r" (3~) coefficient for the ground
state of all the alkali metals.

Here we should point out that all the suscepti-
bilities are identical with the values obtained from
stationary perturbation theory"" although our ex-
periments were performed in the transient region
with T «T, . This is due to incorporating the tran-
sient virtual excitations, as shown in detail in Ref.
9.

Comparing the numerical values in Table I we
find that the X'z"(3+) and the X'z"(&u, 3u) coefficients
may be neglected in our further discussion of the
third-harmonic generation. The influence of the
higher-order susceptibilities, namely, the fifth
order, will be shown in the Appendix.

We now proceed with the solution of Eq. (1).
Since we are interested in the interaction of fo-
cused light beams we describe the Fourier com-
ponents of the electric field amplitude by the field
distribution of a. Gaussion beam (TEM«mode)
propagating along the z direction, "

has to be maintained explicitly to account for dis-
tortions of the Gaussian beam. The confocal pa-
rameter k is given by 5= 2k@,', where R, is the
1/e radius of the intensity distribution within the
focal plane. F(z) = 1+ (2z/b)' represents the cross
section of the light beam at a distance z, normal-
ized to the focal-spot size, and G, =exp( k,r-'/bF)
specifies the Gaussian radial intensity distribu-
tion. Finally, 5, represents the phase shift asso-
ciated with the focusing,

5, = arctan(2z/b)+ (2z/b) lnG, . (16)

and the fact that A, (r, z) satisfies the equation"

(
8

&,+ 2ik, —A, (r, z)= 0,

we obtain for the amplitudes of the Fourier com-
ponent with frequency q(d traveling in a medium
which shows density gradients along the direction
of propagation z,

(Pr+ P z)e-jka~ —z E (19)
. 2z(q&u)' - n

C2k' ~ ~ 2

where &, and &~ are the two-dimensional Laplace
operators in the plane perpendicular of the z axis.
Equation (19) represents a set of coupled differen-
tial equations, since the nonlinear polarizations
P, given by Eqs. (9) and (10) are functions of dif-
ferent Fourier components E,. The second term
in Eq. (19) represents the phase shift of the am-
plitude E, associated with the z-dependent refrac-
tive index, due to the assumed density gradients.
(The intensity dependence of the refractive index
is incorporated within the nonlinear polarization
P, ). The third term in Eq. (19), containing the
transverse Laplace operators &, and &„ describes
the mutual interaction of the changes in the radial
phase and intensity distributions, which are nor-
malized with respect to a focused Gaussian beam
defined by A, This term is important for the
problem of self-focusing. " In the following, how-
ever, it will be neglected, which is a good approx-
imation as long as radial phase variations remain
small.

Equation (19) may now be applied to the problem
of third-harmonic generation. Making use of Eqs.
(9}—(11}, (16), and (17) the electric fields E, and

E, with the frequencies ~ and 3~ are given by

Inserting Eqs. (2), (3), and (16) into Eq. (1) and

taking into account the slow-amplitude approxima-
tion

82 8 82
«(q&u)'8z' ' 8z ' 8t2
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= —i, —Xr"(3~)E,'E,*G,G, exp[i(hkz+ 5, —35,))+e ' -~ E,*+izE,*~,
dz c'k 4F

(20)

4P
X'r" (3~)E,' ~ exp[i(cNz+ 5, —35,)] ~ ' ——E —izE (21)

where we used the notation

4k= 3k, —k, =(3&v/c)(n, —n, ) . (22)

Equations (20) and (21) give a detailed description
of the third-harmonic generation by a focused
light beam, including the phase variations due to
the self-action of the light beams P ~ and the den-
sity gradients along the z axis. The influence of
the changes in phase on the beam propagation,
which leads to self-focusing, is not included in our
subsequent considerations. A more detailed dis-
cussion of this effect will be given in Sec. IV. It
should be repeated that the amplitudes X, and E,
in Eqs. (20) and (21) are space and time dependent.
In the small-signal limit, where this dependence
may be neglected (together with the self-action Pz),
we find the third-harmonic emission to remain a
Gaussian beam; for hk«k„k, and G,'/G, = 1, Eq.
(21) contains no radial dependence any more, "
Since we are mainly interested in situations where
the phase-matching condition is closely satisfied,
the factor G,'/G, is neglected in our subsequent
calculations.

Before rewriting Eqs. (20) and (21) in a conve-
nient form for numerical computation, let us dis-
cuss the small-signal approximation (E, «E, )
Neglecting the self-action P ~ and the absorption
coefficient B„and introducing the intensity 4,
= n, c~E, ~'/6z, we get from Eq. (21) for the third-
harmonic intensity 4, generated in a nonlinear
homogeneous medium (dk, /dz = 0) of length L = z,

1&

'2 1
I(r&,z, b) = —exp[i(Akz+ 5, —36,)]dz

S~

eiBke

(1+i2z/b)' 2dz (24)

is identical with the phase-matching integral given
by Ward and New, '" and Bjorklund. " For plane
waves (b-~) Eq. (23) yields the known expression
for the small-signal third-harmonic intensity,

4, = (4z'kP'/c)'(n, n, ) '~y r"(3(d)~'4,'~I(C k, z, b))',
(23)

where

4 2k~ 2 (, ,) '~X',"(3 )~'

, sin(dkL/2) '
t kL/2

(25)

sin(hkL/2) '
&kI /2

(26)

Assuming a Gaussian time dependence for the fun-
damental power, W, (t)= W, e "t", the third-har-
monic energy g, is given by integrating Eq. (26),

4k

, sin(hkL/2) '
(&kL/2

Returning to the general solution of Eqs. (20) and

(21), which includes depletion of the fundamental
wave due to the harmonic generation and the phase
shifts associated with the second-order Kerr-ef-
fect and the density gradients, we separate the
two equations into their real and imaginary parts. "
Writing E,(r, z, t) = p, (r, z, t)e'"~ ""' and

6= y, —3y, -z&k(z) —(6, —35,), (28)

we get the following system of differential equa-
tions:

Nx~" (3(u)p,'p, G,G, sin6,
dz 2n, cF

dp3
dz 2n,cF Nx g~'(3~)p,

' sin6,

(29)

(30)

Ny'(3 )p ~ —' —3GG,p) 8dO Q~, » n p,'
dz 2ncF ~ 'n P

-Re[y',"(~)]p,'G,' —&k(z)+ bP .
(31)

Equations (29) and (30) describe the depletion of
the fundamental wave and the generation of the

In order to obtain the third-harmonic power W,
in terms of the fundamental power W„Eq. (25)
may readily be integrated over the spatial coordi-
nates, with the result

1 4k''
1
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third harmonic, respectively, neglecting any at-
tenuation due to absorption processes. The third-
order susceptibility X~"(3&) was assumed to be a
real quantity. If the imaginary part is not suffi-
ciently small, as in case of resonant enhance-
ment, a second term proportional to cose has to
be added to Eqs. (29) and (30). Equation (31) de-
scribes the change of the phase difference of both
waves. Note that hk(z) varies along the z-axis
owing to the assumed density gradients. In evalu-
ating de/dz, however, the term zdbk/dz is can-
celled by an identica. l term originating from
~(V', —3V,)/«.

According to Eq. (30) the largest growth rate of
the third-harmonic wave is given for 8=v/2. In
this case the first term of Eq. (31) disappears and
the angle 6 can only be maintained if all the re-
maining terms of Eq. (31) vanish. This result is
an extension of the usual phase-matching condition
and includes the terms &k —4/bE and the influence
of the field-dependent second-order Kerr effect.
(The Kerr constant for the third-harmonic fre-
quency, X", (3~), and X'z"(~, 3~) were neglected. )
A more detailed discussion will be given in Sec.
II B. It should be noted that for exact phase matching
the angle 6=v/2+ 2nv is the only stable one, be-
cause any other angle will immediately lead to a
change of phase, due to the first term in Eq. (31),
until 6=v/2+ 2'. Only in this case is a complete
conversion of the fundamental wave into the third-
harmonic wave possible.

Equations (29)-(31)provide a complete set of
differential equations describing the third-harmonic
generation in a nonlinear medium for arbitrary
field amplitudes. For a comparison with our ex-
perimental results we integrated this system nu-
merically with respect to time (assuming a Gaus-
sian time dependence of the fundamental wave) and

space (z axis), taking into account the radial in-
tensity distribution G, . The initial conditions were
chosen to be p, (t=0) =0, O(f=0)=v/2, and all the
atoms of the nonlinear medium are in the ground
state.

In our experiments the fundamental frequency is
far from any one- or two-photon resonance. In
this case real populations of excited states as well
as the corresponding attenuation of the fundamental
wave can be neglected. For the near-resonance
case, where this simplification is no longer valid,
the contributions of the excited states to the Eqs.
(29)-(31) may be included via a system of rate
equations for the population of the excited states
considering the linear and nonlinear susceptibili-
ties as a superposition of the contributions due to
all the different populated states.

The results of our numerical calculations are
presented in Sec. IP and will be discussed further

in Sec. V. In Sec. IIB the phase-matching condi-
tion and the influence of inhomogeneities at the
boundaries of the nonlinear medium are discussed.

&k = 3k, - k, = ( 3~ /c)( n,
-n, ) = 0, (22)

where n, and n, are the indices of refraction at the
fundamental and the harmonic frequency, respec-
tively. Since the refractive index of a gas is not
very different from unity, we write for n, in a Rb-
Xe mixture

n, = 1+ 2w fN, Re[X",'(q(u)]+ Nx, Re[X~'(q~) j),

where N» a.nd Nx, are the number density of the
respective gases. With Eq. (22) one immediately
obtains the phase-matching ra, tio

(
&x. Re(X.".'(~) —X.",'(3~)
&» . RelXx.'(3~) -X~'(~) (33)

and the mismatch for a given density or pressure
ratio

y

B. Phase matching

For efficient third-harmonic generation it is im-
'portant to consider the phase-matching condition
which is determined by Eq. (31). In the small-sig-
nal limit we find that t:he wave-vector mismatch
4k is compensated to some extent by the phase
shift 4/bl due to focusing. Hence, we expect opti-
mum phase matching, i.e. , optimum output, to oc-
cur at some positive value of ~k. The situation is
simplified even further in the limit of plane waves,
where 4/bE=O. According to Eq. (25) the harmon-
ic intensity is then proportional to the third power
of the fundamental intensity and the square of the
"phase-matching factor" sin(nkL/2)/(AkL/2),
which becomes unity for ~@=3k, —03=0 and de-
creases rapidly with increasing mismatch.

In the case of harmonic generation in crystals
the phase-matching condition is generally achieved
by making use of the birefringence of the crystals. "
In liquids or gases one may take advantage of the
anomalous dispersion. '"" Young et a/. ' have
shown that phase mat;ching at X, = 10640 A and ~3
=3547 A may be obtained in a mixture of Hb vapor
and xenon. Qwing to the resonance transition of
Rb at &„=7948 A, the metal vapor has a larger re-
fractive index at the fundamental wave than at the
third harmonic, whereas for xenon the opposite is
true. In Ref. 3 perfect phase matching was re-
ported for a pressure ratio px, /p»= 410. Theoreti-
cally the mixing ratio is ca.lculated from the rela-
tion
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TABLE II. Linear susceptibilities of Rb and Xe, pressure ratios for perfect phase match-

ing, and the constant D defined in Eq. (36) calculated for the wavelengths of the Nd:glass laser
(10 600 A) and of the Nd: YAG laser (10640 A).

«[XR'~b)(»]
()(' 10 22)

«[X~(') (~!3)]
(x10 ")

Re[X~ (~) ]
(X 10-'4)

Re[X&,'(~/'3)]
(X 10 24) XRb ()

D
( x1o-")

10 600
10 640

1.04
1.03

-1.39
1 45

369.8
372.2

—3.572
—3.559

2v[li(l)(+) X(l )(3~) ]bt
xe xe

Xe Xe
&Rb 0

&X,=D &X, - &Rb @
'

Rb o-
(34)

Values for the phase-matching ratio and for the
constant D are given in Table II for the wavelength
of the Nd:gla. ss laser (10600 A) a.nd the Nd: YAG
laser (10640 A). In addition, numerical values
for the linear susceptibilities of Rb and Xe are
presented. The values for xenon were obtained
from a formula for the refractive index of xenon
given by Koch. '

There is a difference in the phase-matching ra-
tio reported by Young eI; al. and our calculated
value. %e suspect that this discrepancy is due to
the difficulty of measuring the partial pressure of
Rb, if one relies on temperature measurements
and vapor-pressure curves. Furthermore, the
optimum phase-matching ratio is intensity de-
pendent, as shown below, and only in the small-
signal limit will the ratio given in Table II be ob-
served.

According to Eq. (25} the harmonic intensity is
a periodic function of hkL/2 centered symmetri-
cally around b, k = 0, implying a homogeneous me-
dium of length L with sharp boundaries. This is
generally true for crystals or liquids and gases
bounded by windows. If the metal vapor is pre-
pared in a heat pipe, "we have transition zones at
the end of the vapor column, " the width of which
depends in a complicated manner on the thermal
conductivity, particle diffusion, and structure of
the heat pipe. Using our computer program for
evaluating Eqs. (29) —(31) the influence of such den-
sity gradients on the shape of the phase-matching
curve was investigated. These calculations have
been carried out in the small-signal limit for a
para. llel incident light beam (b = ~). The density
distribution of the Rb vapor was approximated by

N„b = ~iV[1+ tanh(nL/2 —n
I
~ I) ]

where X is the Rb density at the center of the heat-
pipe oven. As long as the condition 1/n «L/2
holds, the total number of Rb atoms per cm' is
identical to the number contained in a homogeneous
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FIG. 1. Third-harmonic energy J3 normalized with
respect to J'& as a function of the Xe pressure for 1-Torr
Hb, a length of the nonlinear medium L = 28 cm, and dif-
ferent density gradients e. The corresponding mismatch
4k is shown at the top.

column of length L.
The results of our numerical calculations for

different values of Q. are shown in Fig. 1, where
the harmonic energy normalized to the third power
of the fundamental energy is given as a function of
the xenon pressure. The partial pressure of Rb at
z=0 is assumed to be 1 Torr. The upper scale
gives the corresponding mismatch hk according
to Eq. (34}. The particle density X has been deter-
mined from the pressure p by means of the ideal
gas law p=A'kT, with T= 568'K being the tempera-
ture at a vapor pressure of 1 Torr. The length of
the nonlinear medium was chosen to be L = 28 cm,
similar to our experimental conditions in See. IV.

Figure 1 reveals two important features: (a)
For a rectangular density distribution (n = ~) we

get the usual symmetric phase-matching curve
[Eq. (25)]. As the density gradients decrease the
phase-matching curve becomes more and more
asymmetric. The secondary maxima on the low-
pressure side (nk&0) increase, whereas those on

the high-pressure side decrease. For very small
gradients there are no additional maxima for hk
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&0. (b) With decreasing density gradients the opti-
mum phase-matching pressure ratio is shifted
from 6k=0 to positive values of dk.

The interpretation of these results is straight-
forward. In a Xe-Rb mixture with a partial pres-
sure of Xe smaller than the optimum phase-mateh-
lng vRlue, there will RlwRys be R rRnge wlthln the
transition zones (characterized by the density
gradient n) where the condition 6k=0 holds. These
zones contribute significantly to the harmonic out-
put. On the other hand, for a Xe partial pressure
higher than the optimum value, the condition 4k= 0
is never achieved. In See. IV an experimental
verification of these results will be given.

The preceding considerations have been carried
out in the small-signal limit. At high input inten-
sltles the phR8e matching 18 slgrllfleRntly influenced

by intensity-dependent changes of the refractive
index, which are incorporated in Eq. (31). At very
high input intensities its influence on the phase
difference 6 eventually starts to dominate and de-
stroys the phase-matching condition, since differ-
ent rRdlRl regions w'lthln the fundRmentRl beam ex-
perience different phase shifts. It should be noted
that the latter effect is explicitly taken into ac-
count in our numerical evaluation of Eels. (29) -(31)
by integrating over time and space as explained
above.

III. EXPERIMENTAL ARRANGEMENT

A schematic of the experimental set up for in-
vestigating the third-harmonic generation in a Rb-
Xe gas mixture is shown in Fig. 2. The Nd:glass
laser system consists of a mode-locked oscillator,
a single-pulse selector, Rnd several amplifier
stages. During the course of our experiments two
different oscillator configurations were used: (i)
a hemispherical resonator formed by two (wedged)
dielectric mirrors Ml and M2 with radii. of curva-
ture 8 = j.0 m and 8 =~, and ref lectivities of 99.8%
and 50ok, respectively; (ii) a nearly confocal reson
ator, where the mirror M2 was repla, ced by a
(wedged) dlelectrlc llllrl'ol' wl'tll ft = 3 111 and 50%
ref lectivity. In both cases the active medium was
a 20-em-long Nd:glass rod. A dye cell DC filled
with Kodak 9740 Q-switch solution wa.s used for
mode locking. Laser rod and switching dye were
placed at Brewster's angle within the resonator.

A single light pulse was selected from the pulse
train by a, fast electro-optic shutter" consisting of
a Kerr cell KC placed between two crossed polar-
izers PO and activated by a laser-triggered spark
gap SG. After passing the beam expander BE the
selected light pulse was a,mplified by the following
amplifier system (Nd:glass rods Al-A4, 30 cm
long, 10-16-mm diameter). For optical isolation

PD2
SP

F2
( c+-+Ww

F'P
SAj

PD)

~F
F) L LASER

HEAT-PIPE

MSD

DC A3

PO KC PO BEH~~--~g
/

~/ l

/f |~A&
SG

DC

FIG. 2. Schematic of the experimental arrangelnent.
The lower half shows the mode-locked oscillator, the
electro-optic shutter for single-pulse operation, and

the amplifier stages. The upper half contains the heat-

pipe system and the diagnostics consisting of fast photo-

diodes, filters, a pyroelectric energy meter, a saturable
absorber, and a spectrometer.

saturable absorbers DC were placed between the
different amplifier stages.

The output of this laser system was carefully in-
vestigated with respect to pulse duration a.nd radial
intensity distribution. Using the resonator con-
figuration 1 and inserting two plane parallel glass
plates GP (1 and 1.1 mm in thickness) for mode

selection, we generated single pulses with an en-
ergy content up to 30 mJ (measured with a cali-
brated pyroelectric energy meter) and a pulse
duration of v's = 300 psec (r„ is the full half-width

measured by the two-photon fluorescence meth-
od' ). TEM00-mode operation was possible without

inserting the transversal mode-selecting dia-
phragm MSD when operating the oscillator very
close to its threshold. The gain of the amplifier
system was adjusted in such a manner that the
Gaussian output pattern of the oscillator was not

significantly distorted. (At high output energies of

1 J the intensity distribution became irregular. )

The resonator configuration 2 was operated with-
out the (longitudinal) mode-selecting glass plates
GP in order to get very short mode-locked pulses.
TEM~-mode operation was ensured by inserting
the (transversal) mode-selecting diaphragm MSD

of 2-mm diameter. This system was operated with

the last two amplifier stages removed. Single
light pulses were generated with energies up to 5

mJ, a pulse duration of 7 = 7 psec, and a Gaus-
sian intensity distribution.

The output of the laser system was focused by a
lens 1, (focal length f= 200 cm) into the center of a,
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concentric heat-pipe oven" containing a homo-
geneous mixture of Rb vapor and xenon gas. The
concentric heat-pipe system allows an independent
and accurate determination of the partial pressures
pRb and p„, without relying on vapor-pressure
curves. The total pressure of the outer heat pipe
is equal to p„b and the total pressure of the inner
heat pipe gives the value of p»+px, . Using two
commercial capacitive manometers, the ratio
Pxgj» may easily be measured with an accuracy
of better than 1jg.

During the experiment great care was taken to
monitor the incoming laser energy and the light
intensity within the focal plane. For this purpose
a small portion of the incoming focused light beam
was sent through a nonlinear absorber 3A placed
in the focal plane FP of lens I. Recording the in-
cident and the transmitted energy with the cali-
brated fast photodiode PD1 we were able to deter-
mine the input energy and —from the transmission
of the saturable absorber" —the light intensity
within the focal plane. Independently, the light in-
tensity was determined from the experimentally mea-
sured values of the pulse energy (photodiode PD1),
pulse duration (two-photon fluorescence), and the
focal-spot diameter 2R. The latter quantity was
estimated from the beam divergence (in the far
field), using the relation 2R =f» The two r. esona-
tor configurations used in our experiments showed
different beam divergences (e, = 2. 2 x 10~ rad and

&, = 1.9 x 10 rad). The corresponding cross sec-
tion of the focal spots were E,=1.5&&10 ' cm' and

E,= 1.1 x 10 ' cm'. The intensity values derived in
this way (4 = J/Ers) agreed quite well with the
nonlinear-absorber measurements. Therefore,
during the course of the experiments, the readily
measured input energy was monitored as the rele-
vant quantity, whereas the saturable-absorber
method was used to check the consistency of our
input laser parameters.

The third-harmonic light generated within the
heat pipe was recorded with a calibrated pyroelec-
tric detector C (sensitive down to 2 pJ) and a fast
photodiode PD2. Calibration of this diode was per-
formed by recording the 10-mJ output of third-
harmonic light generated in two ADP crystals si-
multaneously with the calorimeter and the photo-
diode. The fundamental wave was blocked by the
filter set F3. Furthermore, a small portion of the
light transmitted by the heat pipe was deflected to
a quartz spectrograph for analyzing its spectral
pxoperties. Our diagnostics covered all experi-
mental parameters required for a comparison of
our experiment with theory, except for the length
L of the nonlinear medium. This parameter de-
pends strongly on the pressure inside the heat pipe
oven and on the applied heating power. It cannot

easily be determined since lateral observation of
the Rb column is not possible. Using the blue
emission of an argon-ion laser the red, laser-in-
duced resonance fluorescence of the Bb, molecules
was observed. In this way the vapor zone was es-
timated to have a total length I.= 30 cm. A more
accurate value of I. can be deduced from the mea-
sured phase-matching curve as described in Sec.
IV.

IV. EXPERIMENTAL RESULTS

The main purpose of our experimental. work was
to investigate the efficiency of third-harmonic gen-
eration at high input intensities. For a quantitative
analysis of the different nonlinear processes we

started with a parallel light beam at low power
levels and investigated the phase-matching condi-
tions of the Rb-Xe mixture. %e then increased the
input intensity by focusing the laser output into the
nonlinear medium. The new phase-matching curve
resulting from the focused beam was determined.
Finally, the generated harmonic energy was mea-
sured over five orders of magnitude as a function
of incident energy at different values of the Rb-Xe
pressure ratio. These measurements were per-
formed with two different pulse durations in order
to discriminate between different nonlinear pro-
cesses which might be responsible for the con-
version saturation observed at high input intensi-
ties.

A. Phase matching

The first experiments were performed with a
parallel light beam with a cross section of 0.086
cm', a pulse duration of 300 psec (oscillator con-
figurationl), and a. energy content of 0.025 J.
Keeping the input intensity of -10~ W/cm' and the
Rb pressure of 1 Torr constant, the generated
third-harmonic energy was monitored as a function
of the Xe pressure. In Fig. 3 the results are pre-
sented. The measured third-harmonic energy was
normalized with respect to the third power of the
fundamental energy in order to compare our mea-
surements with the phase-matching factor
rein(nkJ/2)/(akL/2)]' according to Eq. (27). The
upper scale, indicating the mismatch Ak for a
given Rb-Xe pressure ratio, was obtained from
Eq. (34). Our experimental results show two in-
teresting features: The phase-matching curve is
clea, rly asymmetric with respect to the amplitudes
of the side maxima and the optimum phase match-
ing occurs at about ~k=+0.03 cm '.

Equation (27) predicted a symmetric curve cen-
tered around Ah=0, as indicated by the dashed
curve, which was computed from Eq. (27) for a
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FIG. 3. Phase-matching curve for a parallel beam

(pRb
—-1 Torr, L, =28 cm). The theoretical curves for

different density gradients of the metal vapor in the heat
pipe are shown. [e =~ (broken line) and n = 0.82 cm 1

(solid line). ]

length I.=28 cm of the (homogeneous) nonlinear
medium. This value of L is deduced with good ac-
curacy fx om the position of the well-establ. ished
minima of the generated third-harmonic energy,
where n. kI./2 becomes equal to multiples of v.
Taking into account the influence of the density
gradients as shown in Fig. 1, an excellent fit of
our experimental data was obtained for e =0.82
cm (solid line). This value, which corresponds
to a density increase from 10 to 90k within a
length of 4 cm, is reasonable for a metal vapor
prepared in a heat-pipe oven. '~

It should be noted that initially our fitting pro-
cedure indicated a displacement of the Ak scale by
0.06 cm '. Since the position and the shape of the
phase-matching curve is accurately fixed by the
value n of the density gradient and the length L of
the medium we concluded that the observed addi-
tional displacement of 0.03 cm ' is due to an un-
certainty of the matrix elements required for the
calculation of the linear susceptibilities of Rb.
The susceptibility of Xe was interpolated from ex-
perimental data, "whereas the values for Rb are

based on semiempirical calculations of the oscil-
lator strengths. "" I.owering the absolute value
of the reduced dipole-moment matrix element for
the dominant 5S-5P transition by only 1% from
5.31 to 5.25 a.u. , gives excellent agreement be-
tween experiment and theory. In Fig. 3 the upper
scale was evaluated from Eq. (34) using this new

value for the dipole moment of the resonance tran-
sition. A modification of the linear susceptibility
of Xe is not justified, because the accuracy of the
measurements of Koch'o is certainly better than

1%. This discussion shows that the phase-matching
curve is a powerful method for the accurate de-
termination of relative oscillator strengths as long

as the pressure ratios are measured with good ac-
cux' acy.

For an input energy of 25 m J and optimum phase
matching we observed a generated third-harmonic
energy of 2.7&10 4 mJ, which is close to the theo-
retical value of 3.2@10 ' mJ calculated from Eqs.
(29)—(31) for a nonlinear medium of I.=28 cm and

~ =0.82 cm ', At the maximum output of our laser
system (30 mJ) a conversion efficiency of 2 x10 '
was obtained with the parallel light beam.

In a second experiment the laser output was fo-
cused into the heat pipe with a f= 200-cm lens.
The resulting decrease of the beam diameter to

0.44 mm within the focal plane (confocal param-
eter h =57 cm) provided an intensity increase of
a factor of 56. %ith this experimental arrange-
ment we measured again the phase-matching
curve at low input energies (=3 mJ) and low Rb

vapor pressure (0.35 Torr). The results are
plotted in Fig. 4 in the same way as discussed in

connection with Fig. 3. Since the Rb pressure was
lower by a factor of 3, the heating power of the

heat-pipe oven had to be reduced in order to obtain
a length of the nonlinear medium similar to that
used in the previous experiments. The length L
was determined again fx om the phase-matching
curve looking for the best fit of our numerical
calculations. A value of L =35 cm is deduced
from the data of Fig. 4.

As expected from theory, the optimum wave-
vector mismatch was shifted by 4/5 =0.07 cm ',
resulting from the focused beam, and in addition

by a value of 0.03 cm ', due to the density gradient
e =0.82 cm '. The value of e was assumed to be
unaffected by the slightly different heating power
suppl. ied to the heat-pipe oven. The experimentally
measured third-harmonic energy of 1.3x10 ' mJ
at hk =0.1 cm ' for an input energy of 2.5 mJ was
again in good agreement with the numerically cal-
culated value of 1.2@10 ' mJ.

For comparison, the calculated phase-matching
curve for a parallel beam with a beam diameter
equal to the focal-spot diameter passing through
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a homogeneous Rb vapor column of 35-cm length
is plotted in Fig. 4 (dashed curve). It is interest-
ing to note that in the case of focusing the minima
are much less pronounced, in agreement with ex-
perimental observations. The different radial re-
gions of the focused light beam see different opti-
cal path lengths, and the condition AkL =nm is not
fulfilled for all radial regions simultaneously.

The experimental results reported so far have
shown that for low input intensities, where the
second-order Kerr effect may be neglected, the
thir d-har monic gener ation in Rb-Xe mixtur e s is
in good agreement with theory. This confirms the
numerical value of t;he nonlinear susceptibility

II r (3&v) for the ground state of Rb shown in Table
I. In addition, some important system parame-
ters, such as length and density gradients of the
medium, have been accurately measured which so
far have never been determined independently. We
now proceed to the investigation of the third-har-
monic generation at higher input intensities up to
2 x 1O" W/cm2

B. Energy dependence for 300-psec pulses

Using laser pulses of a duration of 300 psec we
investigated the third-harmonic generation as a
function of the input energy J, for different Rb
pressures near optimum phase matching. The
results are shown in Fig. 5, where the third-
harmonic intensity 4, is plotted versus the input

10
10 10 10

FUNDAME. NTAL INTENSI TY x p CW/crn x Torr 3
2

Rb

10))

FIG. 5. Plot of the third-harmonic intensity times Rb
vapor pressure, @3pR&, versus input intensity times Rb
vapor pressure, 4&P (v'H=300 psec, L =28 cm). Theo-

Rb
retical curves are given for the small-signal limit
(dashed line), for the third-order calculation including
the second-order Kerr effect (broken line), and for the
fifth-order calculation (solid line).

intensity 4, normalized with respect to the partial
pressure PR„of Rb. Introducing the new variables
fIf' 'p, and V' ',o„Eqs. (29)-(31) become indepen-
dent of the particle density V. Hence, a plot

pRbC 3 ver sus pRb4 y ho lds in general for al 1 value s
of pRb as long as the initial mismatch hk remains
the same.

The photodiodes monitoring the harmonic and

fundamental output give energy values. Conversion
to intensity is performed according to 4 = J)Fr„,
assuming a Gaussian temporal and radial intensity
distribution, as discussed in Sec. III. Converting
the third-harmonic energy values to intensity val-
ues, the cross section and the pulse duration have
been reduced by a factor of 3 and v 3, respective-
ly. This procedure is valid for all our measure-
ments for which the depletion of the fundamental
electric field amplitude is negligible and the radial
distortion of the harmonic beam due to intensity-
dependent phase matching is insignificant.

The fundamental intensity was varied between
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5x10' and 5x10"W/cm'. At input powers below
10'o W/cm2 the third-harmonic intensity increases
over nearly four orders of magnitude proportional
to the third power of the fundamental intensity, as
expected from theory, Furthermore, our experi-
mental results verify the theoretical pressure de-
pendence of the third harmonic, 4, ~P„b. Qur data
points for the different Rb pressures folio~, with-
in the accuracy of our measurements, the same
l.ine in the normalized plot. It should be noted that
the experiments with different pressures were not
performed under identical conditions with respect
to the length and the initial mismatch of the sys-
tem. According to Eq. (34) Ak varied from 0.09
cm ' for p~b =1 Torr to 0.027 cm ' for p„b =0.25
Torr. The length L, was determined from the
phase-matching curves, as described above, and
varied from I.=28 cm for pRb =1 Torr to I.=35
cm for p Rb

= 0.36 Torr. Consequently, small sys-
tematic deviations of the experimental results
from the straight line are expected for the differ-
ent pressures. The calculated corrections are
small compared to the scatter of our data points.
The latter is mainly due to the shot-to-shot varia-
tion of the pulse duration and of the focal-spot
diameter, and the accuracy of the energy mea-
surements of +10k, indicated by the error bars.

For low input intensities our experimental re-
sults are in good quantitative agreement with

theory, as can be seen by comparison with the
dashed curve (which coincides with the solid line
in the low-intensity region). This curve was cal-
culated from Eqs. (29)-(31) with y~r'~(3+) =8.6 x 10 "
esu and our experimental parameters: Ak =0.09
cm ', I.=2S cm, 5=57 cm, gab =1 Torr =1.7
x10" cm '; the second order Kerr-effect was
neglected.

A't input intensities above 10 W/cm a

significa-

ntnt discrepancy between our experimental data
and the small-signal theory is observed. For 5
x10"W/cm', for example, one would expect a
third-harmonic intensity of 6X10' W/cm', where-
as experimentally 7x10' W/cm' have been mea-
sured. This effect cannot be attributed to a de-
pletion of the fundamental beam. The experi-
mentally measured transmission of the fundamen-
tal wave through the nonlinear medium indicated
a negligible attenuation. This observation is ex-
pected, since at 5 x10' -W/cm' input intensity the
conversion to the third harmonic amounts to 10 '.
The onset of other nonlinear processes, such as
parametric amplification" (which grow at the ex-
pense of the third-harmonic generation), may be
ruled out because of the spectral analysis of the
outgoing light beam. Qnly the frequencies of the
fundamental and the third-harmonic waves were
found on photographic recordings of the spectrum

from 3000 to 11000 A. In the infrared spectral
region from 1.1 to 3.0 p, m we used a PbS photo-
resistor with a Si window, 5 mm in thickness,
blocking all the radiation with X& 1.1 gm. No ra-
diation in the infrared was detected.

%e believe that the deviations of our experi-
mental data from the dashed curve in Fig. 4 have
to be attributed to an intensity-dependent change
of the phase-matching condition. Miles and Har-
ris2 have discussed this effect for a number of
alkali-vapor-noble-gas mixtures; they give ap-
proximate values of the maximum fundamental
light intensity for which no significant change of
the phase-matching condition occurs. Since we
have calculated different numbers, their analysis
is not applied to our experiments.

Our system of differential equations describing
the third-harmonic generation, Eqs. (29)-(31),
include the second-order Kerx effect. %e are able
to compute the third-harmonic output under given
experimental conditions. The results of these
calculations are shown in Fig. 5.

The broken curve in Fig. 5 represents the theo-
retical third-harmonic intensity, taking into ac-
count the second-order Kerr effect with X", (&u)

=2.4x10 3i esu (see Table 1). As a result, good
agreement between theory and experiment is ob-
served. A careful analysis of the numerical solu-
tions reveals that the decrease is due to changes
of the phase-matching condition. For 5 x 10"
W/cm', for instance, the second-order Kerr ef-
fect changes the refractive index for the funda-
mental wave in such a way that the wave-vector
mismatch increases from Ak =0.09 cm ' (given by
the Rb-Xe pressure ratio} to n, k =0.55 cm '.

The rather pronounced influence of the second-
order Kerr effect on the convex sion efficiency at
high input intensities strongly suggests that even
higher-order nonlinearities have to be considered.
For this purpose Eqs. (29)-(31}have been extended
to fifth order, as shown in the Appendix. Inte-
grating Eqs. (A11)-(A13) yields the solid line in
Fig. 5, which is calculated for a pressure ratio
P„~/Px, =(1.0 Torr)/(355 Torr). For the data points
taken at other pressures the theoretical curve in
our normalized plot has to be slightly modified at
the highest input intensities because the density
normalization is no longer fully appropriate for
the fifth-order correction terms. Qne realizes
that up to input intensities of 5 x10' W/cm' the
fifth-order terms give rise only to a minor modi-
fication which is still well within the error bars
of our measurements.

C. Energy dependence for 7-psec pulses

Third-harmonic generation at even higher input
intensities was investigated with the oscillator
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configuration 2 delivering 7-psec light pulses.
Kith this system we were able to generate light
intensities up to 2 x10"W/cm' within the focal
plane of lens L (see Fig. 2). The slightly different
beam divergence of the laser system gave a con-
focal parameter 5 =43 cm and a focal spot diam-
eter of 0.038 cm. Length and density gradients
of the nonlinear medium remained at L =28 cm and
z =0.82 cm ', respectively.

Keeping the Rb and the Xe pressure at 1 and 372
Torr, respectively, the generated third-harmonic
energy was recorded as a function of the input en-
ergy. The results are presented in Fig. 6. In ad-
dition, the results of numerical calculations are
shown. The dashed curve corresponds again to
the solution of Eqs. (29)-(31) neglecting the sec-
ond-order Kerr effect. For "low" input intensi-
ties (5x 109 to 5 x10'o W/cm') an increase of the
third-harmonic intensity is observed which follows
approximately the third power of the incident in-
tensity, whereas at higher intensities again a sig-
nificant deviation from this power law is noticed.
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At an input intensity of 2 x10"W/cm', for in-
stance, one expects from the small-signal theory
(dashed curve) a third-harmonic intensity of 10"
W/cm', which has to be compared with the mea-
sured value of 2.5x10"W/cm'. Note that the
dashed curve begins to saturate for input inten-
sities greater 10"W/cm' because the fundamental
wave is depleted at the expense of the third-har-
monic wave. Such a depletion does not appear to
be the origin for the saturation observed experi-
mentally, since it becomes effective for energy
conversions above typically 5% ' the highest energy
conversion observed in our experiment was 2.8%.

If we now incorporate in our calculations the
field-dependent change of the refractive index due
to the second-order Kerr effect

pl~3 (&u), one obtains
the broken curve in Fig. 6. Contrary to our mea-
surements carried out with the 300-psec laser
pulses one recognizes a severe discrepancy at
high input intensities. This is primarily due to
the different initial pressure ratio which was chos-
en for reasons explained below.

Similar to the experiments of Sec. IVB, the cal-
culations were extended to fifth order, giving rise
to the solid line of Fig. 6. A rather satisfactory
agreement is obtained. One may wonder whether
in this case even higher-order nonlinearities have

to be considered. That this is not the case is dem-
onstrated in Table III, which shows for the highest
input intensity of 2 x10" W/cm' the calculated en-
ergy-conversion efficiency, adding from one line
to the next the indicated nonlinear coefficients.
One realizes that the most severe changes occur
owing to the third- and fifth-order field-dependent
corrections of the refractive index, y~~ (u) and

y',"(u). It is also clear from Table III that seventh-
order corrections may be neglected. They have

TABLE III. Calculated energy-conversion efficiency
for an input intensity of 2&10 W/cm, incorporating
the indicated nonlinear susceptibilities in successive
order.

Energy conversion
( /()

10 I

)09 IO" I011

FUNDAMENTAL INTENSITY & p CW/cm if Torrid
Rb

10

3)(3 )
x~('(~)

Total 3rd order

X (5)(3~)

x (5) (~)
Total 5th order

8.71
0.77
0.77

0.96
4.98
4.10

FIG. 6. Plot of the third-harmonic intensity times Rb
vapor pressure, 43p, versus input intensity times Rb
vapor pressure, @&pRb (7'&——7 psec, L =28 cm). Theoret-
ical curves are given for the small-signal limit (dashed
line), for the third-order calculation (broken line), and
for the fifth-order calculation (solid line).

x (1)(4D)

x,"'(»)
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4.18

4.37
4.37
4.43
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been calculated with It r (3ei) =3.5 x10 "esu and
IfIs7 (&o) =-6.9x10 '0 esu.

As already indicated the Rb system shows no
close one- or two-photon resonances for the 1.06-
u, m radiation of the Nd:glass laser. For this rea-
son we have so far neglected any real excitations
and have restricted our analysis to the transient
processes. In order to justify this approach we
investigated the influence of a real population of
the 49 level, which shows the best resonance con-
dition with respect to the ground state (the two-
photon transition 55-40 is 487-cm ' off-reso-
nance). A contribution of this kind can be noticed
in fifth order as an additional polarization pro-
portional to E) E'dt, which may be interpreted
as a. contribution of the 4D-level population to the
refractive index. ' Similarly, one obtains in
seventh order an additional polarization propor-
tional to F.' JF.'dt, which may now be interpreted
as a contribution of the 4D-level population to the
third-order nonlinear susceptibilities. Terms of
this kind, which in a simplified notation are ab-
breviated by gI'I(4D) and IfI" (4D), have been in-
cluded in our calculations and the results are given
in Table III. It is apparent that a real population
of the 49 level has no influence on the energy-con-
version efficiency within the range of our mea-
surements. The reason for this is that the linear
and third-order nonlinear susceptibilities of the
4B level are very close to the corresponding val-
ues of the ground state. In addition, even for input
intensities of 3 x 10"W/cm' one only obtains typi-
cal population densities of about 1%.

The preceding calculations have clearly demon-
strated that the saturation in the third-harmonic
generation at high input intensities is dominated
by the breaking of the phase-matching condition
due to the field-dependent changes of the refrac-
tive indices. The loss of phase matching at high
power levels can be reduced by properly adjusting
the Rb-Xe pressure ratio. Since the third-har-
monic generation is a highly nonlinear process the
dominant contribution results from the peak inten-
sity of the fundamental wave. A considerable in-
crease in conversion efficiency is expected when
the pressure ratio is adjusted in such a way as to
compensate the intensity-dependent changes of the
refractive index at the moment of the maximum in-
tensity.

This idea is demonstrated by numerical calcula-
tions of the phase-matching curves for low and
high input energies, as shown in Fig. 7. The nu-
merical values for the parameters used in these
computations correspond to our expeximental
situation with the 7-psec pulses. Fox an input en-
ergy of 0.0087 mJ, corresponding to an input in-
tensity of 10' W/cm', one obtains a phase-matching

Ml SNATCH 4k [. crn ]
Q. 5 0 -0.5 -I Q

I I
f

I I I I

$
I I I I

f
I I

10

LLf

z.'
UJ )0-3

Z'.
D
X

c 10
Q

)0
250 300 350 400 450 500 550

XENON PRE SSURE p I Torr 3

I"IG. 7. Theoretical phase-matching curves for focused
beams (b =43 cm, w&—- 7 psec, I.=28 cm) with input ener-
gies of J,= 0.087 m J gine b, small-signal approximation)
and/, ==- 1.74 mJ I'line a), respectively. Note line b was
multiplied by factor 10~. The high-energy case shows
the drastic influence of the different nonlinearities.

curve centered around hk =0.1 cm ' (pressure ra-
tio 1:355), according to the small-signal limit. As
indicated above the small shift with respect to A9
=0 and the pronounced asymmetry is due to the
focused beam and the density gradients. At a
much larger input energy of 1.6 mJ, corresponding
to an intensity of 3 x10"W/cm2, the optimum
phase matching occurs at b.k =-0.37 cm ' (pres-
sure ratio 1:430) and the oscillations are washed
out. Note that the energy conversion at optimum
phase matching amounts to 10%, which has to be
compared with the theoretical value of 4. 1% and the
experimental value of 2.8% at 6k=0.

D. Self-focusing

So fax' we have considexed only the influence of
the intens ity-dependent ref r active index on the
phase-matching condition. However, it is well
known that the nonlinear refractive index n, acts
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W =(1.22K)~c/256n,

where n, is defined as an expansion coefficient
of the total refractive index,

n=n, +n, f E f'+n,
f
E f'+ ~ .

(36)

(37)

Hence, n~ includes all the terms which contribute
to a polarization P(&o) proportional to E'; i.e. ,
n, is proportional to the real part of the third-or-
der nonlinear susceptibility it&~(ur):

n, =——
)&, ((o).Pf m (3)

0
(36)

Inserting the numerical values for X',"(&o) given in
Table Iwe get n, =(3.8x10 ")Nesu, where Vis
the number density of Rb atoms. Inserting this
value into Eq. (36) we find for a Rb pressure of
1 Torr (N=1.7 x10" cm ') a critical power of W„
=3X10' W.

The critical power may be modified owing to the
higher-order expansion coefficients in Eq. (37).
The coefficient n, includes all the contributions
to the polarization proportional to .E' and is given
by

n, =——y, ((o).N m (5)

0
(39)

also on the wave propagation: Positive or negative
values of n, lead to self-focusing or defocusing of
the light beam, respectively. This effect is not
included in our theoretical treatment of the third-
harmonic generation, since in all the equations
following Eq. (19) we neglected the radial deriva-
tives of the complex field amplitude E, which ef-
fectively decouples the different radial regions of
the incoming beam. In this way one retains the in-
formation about the radial variation of the field
amplitude [included in G, (r, z)], but loses the phase
information, which describes the distortion of the
wave fronts and, hence, self-focusing or defocus-
ing effects. The solution of the wave equation (19)
including these effects is quite complicated and
out of the scope of this paper. We will restrict
our discussion to an estimate of the power level at
which self-focusing becomes important for our
experimental results.

The critical power W, for which the focusing
due to the (positive) nonlinear refractive index vg,

overcomes the diffractional divergence of the light
beam, is given by"

Inserting the numerical value for ~tz''(&u) given in

Table IV we get n, = (-3.1x 10 4')N esu. It is im-
portant to realize that n4 has a negative value and
effectively reduces the nonlinear refractive index

n, . At an input intensity of 1.5 x IG" W/cm' the

n, term cancels exactly the n, term and at higher
intensities the total nonlinear refractive index

n, +n, E' becomes even negative, which leads to a
defocusing of the incident beam.

For input powers W & W„a parallel light beam
with an initial radius r, is focused rather sharply
after a length

W2m-',

X[(W/W )' —1]
(40)

zr =z~R/(R —z-). (41)

For our experimental conditions it turns out that
in the case of the 300-psec pulses, self-focusing
does not occur within the nonlinear medium up to
the highest input powers (6 x10' W) even if one
neglects higher-order nonlinearities of the refrac-
tive index. This finding is in agreement with our
experimental observations, which revealed no

anomalous behavior of the output beam with re-
spect to its intensity distribution and showed good
agreement with theory up to the highest input in-
tensities.

In the case of the 7-psec pulses, however, the
threshold power for self-focusing within the Rb
vapor zone of length I, = 28 cm is calculated to be
4.6x10' W using Eq. (36) (this corresponds to an
intensity of 4x10'0 W/cm'). For the highest input
powers (2.5 x10' W) a self-focusing distance of 7

cm is estimated. This is in contrast to our ex-
perimental findings. Photographic recordings of
the output pattern behind the heat pipe of the fun-
damental as well as the harmonic beam showed a
smooth intensity distribution with the proper beam
diameter even for the highest input powers. This
strongly suggests that the self-focusing of the
fundamental wave within the Rb vapor is sup-
pressed by higher-order nonlinearities of the re-
fractive index which have been neglected in the
preceding estimate and tend to increase the criti-

This distance is modified in the case of a con-
verging (or diverging) light wave by taking into ac-
count the negative (or positive) radius of curvature
8 of the wave front, yielding

TABLE IV. Fifth-order nonlinear susceptibilities (esu for the 5S ground state of Rb calcu-
lated for X = 10 600 A as defined by Eqs. (A5) —(A9).

X")(5~) X
(5) (3~) X~(»(3~, ~) X s»(") X

(5) (3~) X
(5)(3~ ~) )(

(5) (~ 3~)

3.g j.x]0 43 7.78 x ZP-4' &.20 x]0-42 7.77 x ]0-4' &.45x ZP-4' Z.4Z x yP-4' 9.5P x yP-4o
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eal. power 8'„and the distance of the focal point
Z p 4

At this stage it is interesting to go back to Fig.
6. Although we have no direct experimental evi-
dence for focusing or defocusing of the incident
light beam, we like to point out the following facts:

(i) A large scatter of the third-harmonic signal,
which significantly exceeds the theoretical calcu-
lations, is observed at an input intensity in excess
of 2x10" W/cm'. This value is close to the theo-
retical value for the onset of self-focusing esti-
mated a.bove.

(ii) Our data appear to show a crossover with
the theoretical curve at an input intensity of 1.5
x10"W/cm'. At this intensity our estimates in-
dicate a cancellation of the nonlinear refractive
lndlces (@l+IIqK =0) alld belles llo focuslllg 01' de-
focusing.

(iii) At the highest input intensities of 2x10"
W/cm' our measurements are below the theoreti-
cal curve which would be consistent with a defo-
cusing due to the dominant negative n term.

From these observations we conclude that at
very high input powers a, quantitative evaluation
of the third-harmonic intensity is no longer pos-
sible without taking into account explicitly the
self-focllslllg pl'ocess ill Eqs. (29)-(31) by lll-
cluding the A~ and the V~ terms in Eq. (19).

E. Multiphoton ionization

In recent experiments of resonantly enhanced
frequency mixing" it has been demonstrated that
significant degrees of ionization may be obtained
within the nonlinear medium. Such a process would
lead to a depletion of the ground state of Rb and
would affect the total nonlinear susceptibilities of
the system. In our experiment transitions to the
continuum via a four-photon ionization process
have to be considered, since in this ease one has
an energy resonance of four photons and a free
electron.

Miles and Harris' quoted an ionization probability
of the ground state of Rb of W, = (10 "}C'sec ',
calculated according to Morton, ' where 4 is given
in W/cm'. Taking this value, we would expect a
complete ionization of the irradiated Rb column in
the ca.se of the 300-psee pulses at input intensities
larger than 2x10'o W/cm'. This estimate does not
agree with our experimental observations, which
show quite effective third-harmonic generation
above this intensity level, whereas a complete
depletion of the ground-state population during the
laser pulse would reduce the third-harmonic gen-
eration considerably. Based on our experiments
we are able to estimate an upper limit for the ion-
ization probability of (10 ")4' sec '. This value

comes closer to an estimate based on the work of
Keldysh, ' where the probability of direct transi-
tions from the ground state to the continuum is
calculated, neglecting resonant contributions (the
Rb atom shows no resonance closer than 400 cm ').
Following the work of Keldysh we estima, te fox the
ground state 58 an ionization probability of W, (5S}
=(10 ")C' sec '. Hence, even for C =2x10"
W/cm the direct ionization of the 5S level is neg-
ligibly small.

Finally, it should be pointed out that for our ex-
perimental conditions an electrical breakdown of
the medium due to avalanche ionization" i.s not

very likely to occur, since the electron doubling

time, during which an electron gathers energy
from the light field via inverse bremsstrahlung
a.nd undergoes an inelastic ionizing collision, is
typically of the order of 1 nsec. However, in the

case of pulse dux ations in excess of 1 nsee and

total pressures of the order of several 1000 Torr,
this process may lead to an even lower ionization
threshold than given by the multiphoton ionization
pl ocess.

Summarlzlng oux' lnvestlgatlons of the thlrd-
harmonic generation in Rb-Xe mixtures, some
of the essential properties of a two-component sys-
tern should be pointed out. Qwing to the relatively
small third-harmonic coefficient of Rb, input in-
tensities in excess of typically 10"W/cm' at
10600 A. are required in order to achieve energy-
conversion efficiencies of a few percent. Qur ex-
perirnents have shown that at these intensity levels
the third- and fifth-order nonlinear susceptibilities
give rise to a change of the total refractive index
of the system which affects the phase matching.
Furthermore, self-focusing Inay occur. This
problem cannot be avoided by operating the system
at moderate input intensities and increasing the
length and the particle density of the nonlinear rne-

dium, because in this ease the phase-matching
condition becomes stringent at lo~er input inten-
sities. Model calculations have shown that the loss
of the phase matching at high power levels can be

compensated to some extent by properly adjusting
the Rb-Xe pressure ratio.

So far, we have shown experimentally that an en-
ergy conversion up to 3$& is possible. Qur nu-
rnerical results indicate that for an optimum Rb-Xe
Px'essux'e 1 atloy enex'gy-convex'sion efflclencles uP
to 10/& should be feasible with our experimental
parameters. A change to a larger length or pres-
sure of the nonlinear medium would alter the
phase-matching conditions significantly and new
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calculations of the energy conversion have to be
performed. Calculations of this kind which would
reveal the optimum experimental parameters are
in progress. Their results will be reported in a
later paper.

APPENDIX: EXTENSION TO FIFTH ORDER

At very large incident electromagnetic fields the
question arises whether or not higher-order non-
linearities become important for the third-har-
monic generation. For this purpose an extension
of Eqs. (29)-(31) including the fifth-order non-
linear susceptibilities is presented. For our ex-
perimental conditions the extended equations have
been evaluated numerically in order to demon-
strate the convergence of our calculations. The
fifth order of the perturbation gives rise to the
following additional contributions to the nonlinear
polarizations P and P s.

P, =-,', N[x~" (&o = 3ur —v —&u —u+ ao}
~ E, ~'E,(E,*)'

+y'"((u =3&v+3() —3(u —(u —&u) ~E, ~'E, (E;)'
+ yt5~(&u = a + ~ + up + u —3 '}(E~) E~~],

p~r =
—,', N [y~"(3~ = &u + cu + &u + &u —&u)

~ E,
~

'(E,)'

+g (3(d 3(d 3(d + (8 + &d + &d) I E3 I (E&)

+yt"(3+ =3u) +3(o —(o —(u —(u)(E, )'(E;)'],

(A2)

P,' =,N[yt"(~ = ~+a&+&a —&u —&u) (E, ('E,

+ y' "(u = 3 (u + 3 cu —3 (o —3 ( ~ + (u) [ E,
~

'E,
+X"'(~ =3~-3~+~- ~+~) IE.I'IE, I'E, l,

(A3)

P,' = M[X' '(3~ —3~+ ~ —&+ ~ —~)ERIE, I

+)( (3(g = 3(d +3(d 3(d +3(0 3(0)
i E3 i

+ X (3& = 3co + 3 (d —3 co + rd —M) } E~ ) E~ }E~ } ],

pl~5 (q&u) -=y~"(qz =qcd +qv +q~ - q~ —qu&), (A7)

with q =1 and q =3,

y',"(3ur, &a) -=y"'(3~ =3~+~+ v —u& —~)

= 2it'"((u =3(u-3(u+(o —(u+(o), (A8)

X',"(&u, 3(u) = lt'"((u = (u +3(u —3(v+3(u —3(i)

= —,'ill"(3&v =3(u+3ur —3(u+(u —u)). (A9)

For the Nd:glass laser frequency (X =1.06 p, m)
numerical values of these susceptibilities are pre-
sented in Table IV. They were calcul. ated using the
recursion relations given in Ref. 9. In addition to
the reduced dipole-moment matrix elements tabu-
lated by Eicher" we included in our calculations
the matrix elements for the no-n'F transitions
with 4 & n ~ 18 and 4 ~ n' & 8. These values (tabu-
lated in Table V) were kindly provided by Eicher
and have been obtained by the same procedure as
described in Ref. 11.

In order to show that the process of fifth-har-
monic generation, P(5z}-yl"(5z)E'„can be ne-
glected, Table IV contains also the numerical val-
ue of the corresponding nonlinear susceptibility

X "(5&v). It is almost two orders of magnitude
smaller than the fifth-order coefficient for the
third-harmonic generation, y~r5'(3+). With regard
to the intensity-dependent refractive index the
major modification in fifth order arises from the
y~z"(u&) coefficient. Note that the y~~5~(u) has the op-
posite sign with respect to y',"(&u). Hence, at large
incident intensities the intensity-dependent refrac-
tive index associated with y,'(e) is compensated
by the corresponding fifth-order term. At inci-
dent intensities in excess of 1.5x10"W/cm' the
fifth-order term even dominates, as pointed out in
Sec. IVD.

TABLE V Reduced dipole matrix elements for the nD
n'I transitions in Rb given in atomic units.

=X" (~=cu+&u+&a+&a —3~)

= 4g '(cu =3' —() —(o —(u+(u),& (5)

)(r (3G0, (d) =X (3' =3(d +3(d —(d —Qf —Id)

(A5)

(3(d = 3(d —3 (d + (d + CO + (d)

= q)( ((d= 3(d + 3(d —3(d —Id —(d), (A6)

(A4}

From symmetry considerations these 12 nonlinear
susceptibilities may be reduced to a set of six in-
dependent coefficients which will be abbreviated
as foll.ows:

X'"(3(u) =- X'"(3' = cu + (u + (u + (d —co)

4D -6.306
5D 15788
6D —5.892
7D —1.500
8D —0.765
9D —0.491

10D —0.354
11D —0.273
12D —0.220
13D —0.183
14D —0.156
15D —0.135
16D —0.119
17D —0.105
18D —0.095

-2.845
—5.9
29.37

-12.44
—3.09
-1.554
—0.994
—0.713
—0.548
—0.441
—0.368
—0.313
—0.271
—0.237
—0.212

1,751
—3.25
—5.553
45

-20.65
—5.035
—2.519
—1.6
—1.145
—0.878
—0.706
—0.586
—0.499
-0.431
—0.38

—1.239
-2.153
—3.412
—5.264
63.05

-30.56
—42.262
—3.653
—2.312
—1.645
—1.261
—1.01
—0.839
—0.713
—0.618

—0.947
—1.58
—2.356
—3.523
—4 ~ 959
83.732

—42.147
—3.%69
—4.948
—3.119
—2.214
—1.692
—1.362
—1.115
—0.952
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Here we should note that the numerical values of
the fifth-order nonlinear susceptibilities tabulated
in Table IV include the contributions due to trans-
ient one-photon and two-photon excitations (adia-
batic following), which become important in the
transient time domain v «T„as demonstrated in

Ref. 9. Fur thermore, the perturbation approach
for evaluating the nonlinear polarizations covers
also the lowest-order contributions of the energy-
level shifts due to the ac Stark effect.

Inserting Eqs. (Al)-(A4) into Eq. (19) and sepa-

&r = X'r' (3~}+ X'r'(3 ~)P'3G'3&4F

+lt "(3(u, (d)O', G', /4F, (Aio)

which may be interpreted as the field-dependent
third-harmonic coefficient, we have

rating the resulting set of equations into their real
and imaginary parts we obtain a set of equations
similar to Eqs. (29}-(31)which now include all the
third- and fifth-order contributions. With

~do -3m' V
T ~j~3 i 3dz 2n, cF

4p, 3m' V, C~',

Brp~ sln9 ~dz 2n3gE G3

de 4—=——Sk( ) ~sGG, , ,',,',', —3 B ~ — ' —x (3, ) —x (S )) s(3F~g n~o~pq p~o~ nq (5) (y
dz 5I

r
2G2 3( 3 } S)( } EGG 3 „(Gj(3 } (3)( 3 ) + 3 3 3 (3)(3 ) (3j(

3 3

2 32 2

l(3 ) Sl(s 3 )
—xt l( 3 ) 331(3 ))

(Al 1}

(A12)

(A13)

Al. l nonlinear susceptibilities are assumed to be
real quantities. The first three terms of Eq.
(A13) represent the phase shifts associated with
the focusing, the wave-vector mismatch, and the
third-harmonic generation process, respectively.
The remaining part describes the phase shift due
to the intensity-dependent refractive indices

created by the fundamental and the harmonic
waves. For practical purposes Eqs. (All)-(A13)
may be simplified by neglecting all terms propor-
tional to the second and higher powers of p, as
long as the conversion efficiency is below typically
20%. In our numerical integration of Eqs. (All)-
(A13), however, we retained all terms.
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