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Calculation of autoionixation widths for two-electron systems

Lester Lipsky
Department of Computer Science and Department of Physics, University of Nebraska, Lincoln, Nebraska 68588

M. J. Conneely
Department of Mathematical Physics, University College, Galway, Ireland

(Received 21 January 1976)

A procedure is used which combines the truncated diagonalization method with the open-channel close-
coupling approximation in the calculation of widths of autoionization states in two-electron systems. The
method is capable of systematically and efHciently calculating the widths for all two-electron systems.
Calculations are made for 'P and P helium, and 'P~ hydrogen below the N = 2 threshold. In particular, it is
found that the lowest member of the third series [classified as (2, 3c)] has a width of 4.61 X 10 ' eV, four times
smaller than any previous calculation. It is also shown that the (+)-{—) classification used by many authors
is inadequate to describe these states. Detailed comparison is made with the three- and six-state close-coupling
and other calculations.

I. INTRODUCTION

The doubly excited states of two-electron sys-
tems are fairly well understood qualitatively, but
the energies and lifetimes of most of these levels
are not known in detail. Although the intensities
and shapes of resonances caused by the existence
of such doubly excited states depend strongly on
the type of process considered (e.g. , electron-
atom collisions, atom-atom collisions, photoion-
ization, etc.), the characteristic widths (or, equiv-
alently, lifetimes) and positions are virtually in-
dependent of the particular process. A general
knowledge of the energies and lifetimes of these
autoionization states is needed by experimentalists
in order to identify the peaks and valleys seen in
their electron and photon spectra.

In this paper we describe a calculation which
combines the truncated diagonalization method
(TDM)' and the open-channel close-coupling (CC)
approximation' to evaluate the autoionization
widths of all doubly excited two-electron systems.
We then discuss the results of applying this meth-
od to 'P' and 'P' helium, and to the 'P' configura-
tion for the hydrogen negative ion. Preliminary
results for the widths were first presented in
Ref. 3. The energies and wave functions for
all two-electron systems with nuclear charge less
than or equal to 5 have been discussed and tabu-
lated elsewhere. '

Although there have been many calculations
made on various systems which have been rela-
tively successful, they are not well suited for
general use because either they fail in their at-
tempts to calculate narrow resonances, or they
are very difficult and costly to use (e.g. , the
close- coupling method), or because they become

II. METHOD

Consider the problem of an electron elastically
scattering off an atomic system of one electron
and a nucleus with charge Z. In the static ex-
change approximation' (which is the same as the
close- coupling approximation with only one chan-
nel), the wave functions satisfy the conditions:

Qr iHig .) =ED(E —E),
1 1 1 e

H = (P', + P', ) —Ze' —+—+—,
2vl' V]

(lb)

pe(l, 2) = C[R„(l)Fe(2)Y', (2) +R„(2)Fe(l)Y, (1)]

(2)

increasingly difficult to apply to higher members
of any series. In this paper we see that previous
works have failed to predict correctly the posi-
tions and/or widths of the second and third
Hydberg series in 'P' helium because not enough
configurations (e.g. , the 3dkg have been included.
In effect, the angular correlations between elec-
trons have not been sufficiently accounted for.
The width of the lowest member of the third series
[previously classified as 2p3d, but here called
(2, 3c) because it is 60% sp] is too narrow to be
calculated without careful numerical analysis of
the procedure. We find this width to be 4, 608
x 10 eP, about 4 the width reported by Burke
and McVicar. ' It is known that generally the
widths calculated in the close- coupling approxi-
mation are highly dependent on the step size used,
especially for narrow resonances; thus a numeri-
cal study of this dependence should be made,
especiall, y with the 3dkf channel included.
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and R„ is the hydrogenic 1s wave function for
charge Z. The I ~'s are the continuum functions
satisfying the differential equation

A 2d 2 d 2 2'~
2', dh ch 8'

'—~ ),' — —' r((s,, ( /r)))"

more conventional one.
The TDM calculations give a discrete set of

wave functions Q„, with energy levels E„below
the %=2 threshold. The P„'s satisfy the condi-
tions

The 1"s are the usual Slater integrals over 1/r»,
which are defined below in Eq. (10).

Solving Eq. (3) for all energies is equivalent to
finding the eigenfunctions of the operator PHP for
the projection operator P given by O' Malley, and
co-workers. "' Briefly, P i.s the operator which

projects all two-electron functions onto the sub-
space in which one of the electrons is in the 1s
state with nuclear charge Z. Such an operator is
Hermittan and idempotent (P'=P), and is called a
projection operator. The $@ s which satisfy

Eqs. (2) and (3) have the property that P())z ——(t)z

and, because Eq. (3) is derived from a variational
principle, are eigenfunctions of PHP. If one in-
cludes the possible bound-state solutions of Eqs.
(3), then these Ps's are all the nonzero eigen-
functions of PHP.

The projection operator Q =I —P defines the
Hamiltonian QHQ, whose eigenvalues can be in-
terpreted as the energy positions of doubly ex-
cited states of the two-electron system. Many
authors" 4' '" have solved for approximate eigen-
functions of QHQ by variational methods. We, in

particular, have used the truncated diagonaliza-
tion method (TDM)'"' with no

~
lsnf& contigura-

tions included. Briefly, the TDM is a particular
application of the Feshbach formalism" whereby

(1) Q space is defined in terms of an orthonormal
set of square-integrable basis functions made
from products of one-electron orbitals; (2) the
basis functions are separately asymptotically
orthogonal to the relevant adjacent continua.
Hydrogenic functions are used here because they
provide uniformly accurate information (albeit
incomplete) about an entire series instead of just
its lowest member(s). After all, these functions
have mean radii which are proportional to n',
just, as the true functions have, whereas Sturmians
for instance are proportional to n.

When
~
lsnf& configurations are not used, the

TOM calculations become consistent with the
Hahn, O' Malley and Spruch"' realization of the
Feshbaeh formalism, and the equations to be
solved are simpler than they would be if such
basis functions were included. We feel that no
useful information is lost by deviating from the
Lipsky-Hussek formulation and adhering to the

and themselves can be written as

'ttj=(l/&2)[R„. ..(1)R„,(2)Ff, , (1,2)

aR„, (l)R„, (2)F~), (2, i)], (5b)

F", , (1,2) = g (E,lg ~,M-, )F, (i)F", (2),

(5c)

where (f,/, 1.
~
m, mgf) is the Clebsch-Gordan coef-

ficient, and F, is the spherical harmonic defined
in Bose.

The sets of functions p~ and p„ together are the
eigenfunctions of the Hamiltonian

Ho = PHP+ QHQ.

The total two-electron Hamiltonian can be written
as

(Gc)

In comparing with Pano, "we see that g~ and p„
satisfy his Eqs. (la) and (lc), where the Q„'s are
the discrete states imbedded in the continuum of
the (1)s's. We define V„(E) by the following inte-
gral:

())s~(1, 2)—(t)„(1,2) d'r, d'r2

'Il~(Z)= f () ((, 2)—ql~((, 2)d'r, d'r, . (Vb)

The width of the nth state can then be calculated by
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This formula is strictly true only if the nth state
is well separated from all other levels. We might
consider two levels to be "well separated" if the
sum of their widths divided by the difference of
their energies is very small in magnitude. As it
turns out, this ratio is always less than 0.032 for
all pairs of states quoted here, and for the two
closest series (the k and c series in 'P') this
ratio is one-sixth as great.

Note that the '0&'s are integrals over the pro-
duct functions 'hj, whereas the V„'s are sums of
'0,.'s, or integrals over the actual eigenfunctions
of QHQ. (Compare Fig. 1 with Figs. 2, 3, and 4
below. )

If the resonances below the N=3 threshold are
to be examined, then the appropriate projection
operator P to be used projects onto the 1s, 2s,
and 2p states. The eigenfunctions g,E of PHP in
this case are the functions of the close-coupling
three-state calculations. The eigenfunctions Q„
of qHq, as before, can be approximated by the
TDM where all configurations which include a
1s, 2s, or 2p function are excluded. The partial
autoionization widths can be evaluated by

(»)
where i labels the exit channel. The total width
is the sum of the three widths,

(9b)

This method has several attractive features. In
particular, the TDM can be used to get approxi-
mations of QHQ using an arbitrarily large basis
set, with many different configurations (in this
paper, for "P', 83 configurations were used),
with relative ease. Qf course, owing to the fact
that the discrete set of hydrogenic functions is
incomplete, the TDM can never fully describe the
radial correlations between the electrons, al-
though the angular correlations are well accounted
for. The radial correlations are important only if
there is a significantly high probability that both
electrons will be near the nucleus at the same
time, such as in the case of the (ls')'S ground
state of isohelium.

III. DESCRIPTION OF CALCULATION

The calculation of widths of autoionization
states by Eq. (8) was carried out for the dozen or
so lowest singlet and triplet P odd states below
the N=2 threshold in helium, and for the lowest
'P' state for the hydrogen negative ion. The cal-
culation is actually made up of three separate
parts. The first part involves solving Eq. (3) nu-
merically for EE at several different energies.

This type of calculation has been discussed many
times, ' and nothing need be said about it further
except that the phase shifts here agreed with the
literature to within four places, and the interval
step size used was small enough so that six-place
stability of the wave functions FE seemed assured.

The second step involves finding the eigenfunc-
tions of QHQ, using the TDM. An enumeration of
the 83 basis functions used here is significant.
They were 2s2p to 2s10p, 3s2p to 10s2p, 2p3d to
2p10d, 3s3p to 3s10p, 4s3p to 10s3p, 3p3d to
3p10d, 4p3d to 10p3d, 3d4f to 3d10f, 4s4p to 4s6p,
5s4p, 6s4p, 4p4d to 4p6d, 5p4d, 6p4d, 4d4f to
4d6f, 5d4f, 6d4f, 4f5g, 4f6g, 5s5p, 5p5d, 5d5f,
5f5g. This represents a larger basis set than
carried out in the past, "and is the same as that
quoted by Bruch et al. ' for Li', and Anania et
al. ' gene rally.

It is not easy to compare this calculation with
the CC calculations, since the TDM is superior to
the three-state CC approximation in that it con-
tains more channels (e.g. , 3skP, ks3P, 3Pkd,
etc. ), but is inferior in that the latter contains
the equivalent of higher configurations such as
2sllP, etc. , including the continua (e.g. , 2skP).
However, comparison of results from the two
methods in which the same channels are repre-
sented, where such data is available, shows
agreement of the resonant energy positions to
within 0.01 eV, and in many cases the agreement
is 20 times closer. This point will be discussed
further in Sec. VI below.

The third step of the calculation requires bring-
ing together the first two steps, in order to eval-
uate Eqs. (7) and (8), for each resonant energy
considered. This involves a numerical integration
of the function FE, with each of the many differ-
ent Stater integrals of the form Y,(ls, n, l, ~r)
xR„, (r), where"2'2

Yg(ls, nf ~r) -=
2l+ 1 R„(r')R„,(r')r"" dr

+ (2l + 1)r '

(10)

The Y, 's can be expressed analytically as prod-
ucts of exponentials with a finite sum of powers
of r. The coefficients of the powers of r must be
evaluated carefully since they in turn are made
up of alternating sums of rational numbers. An
indiscriminate summation could introduce large
roundoff errors, which would destroy the accu-
racy of the entire calculation.

The three steps together take about 20 minutes
of processor time on an IBM 360/66 computer for
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each energy E. Most of the time is consumed in

step three (step two is the same for all energies
and need not be repeated). Although Eq. (8) is
defined at each resonant energy, it was decided
to evaluate V„(E) and 1i~(E) at three energies only:
at the lowest resonance energy (which for 'P' is
E = 1.5+ 0.5 —0.688383 a.u. ), the 2s threshold
(E =1.5 a.u. above the 1s state), and halfway in
between. The various V„(E„)'swere then eval
uated by carrying out a, quadratic interpolation.
This procedure will only work if the V„(E)'s are
slowly varying functions of E, which, as we shall
show below, they are indeed.

The results of these calculations are summa-
rized in Tables I and II. The rows marked E
(a.u. ) come directly from the TDM calculations,
while the effective quantum numbers (n~) are
defined by the formula

where

%=2 and Z=2.

Both of these sets of numbers are ab initio, in
that no experimental constants are required for
their evaluation. However, in order to compare
with experiment and other calculat1ons lt wa.s
also necessary to express the energies in eV.

There are no accepted conversion factors, al-
though the equation can be written in the form

E(eV) =A+ (ExE)(a.u. ) .

Since our main interest is to compare with Burke
and McVicar, ' we have used their constants, as
listed in Table III. For the convenience of the
reader, we have included the conversion factors
as used by several other authors. Ba.in et al."
argue that the resonance position which exper1-
mentalists measure can differ from process to
process because of the different reduced masses
of the various systems. The different conversions
can give differences of as much as 30 meV; thus
it is best, whenever possible, for theoretical re-
sults to be compared in a.u.

The fourth rows of Tables I and II express the
widths of each of the levels in eV. It is well
known that each Hydberg series (for both 'P' and
'P' there are three such series) is approximately
characterized by a quantum defect (the fractional
part of the effective quantum number) and reduced
widths (I'~*'), as well as the type of configura-
tion mixings of the wave functions. For 'P' for
instance, the series beginning with the lowest
level (first, third, sixth, ninth states, etc. ) fol-
lows these characterizations very closely since
the quantum defects are (2 —1.679 743)

= —0.370 757, -0.181034, —0.157 537, ete. , and
the reduced widths are all of the same order of
magnitude (0.14726, 0.162 79, 0.17610, 0.182 61,
0.186 16). Furthermore, the hydrogenic compo-
nents of each of these states [the a„,. 's of Eq.
(5a)] are very similar in their configuration mix-
ings. In these states, the coefficients of the 2snp,
ns2p, and 2pnd configurations are all of the same
sign for each n from 3 to 10, while the 2pnd con-
figurations, although far from negligible, repre-
sent less than 20% of each state. This partly
supports the Cooper- Fano- Prats" notion that
these states are more or less 2snp+ns2p. How-

ever, the ratio of the two configurations is not
nearly 1:1, but rather 1:2. The other two series
(except for the second lowest level at 62.77 eV)
a,re even less describable by a simplistic + con-
figuration, since both are 40 jg 2pnd. It is gener-
ally unreliable to classify series by their wave-
function correlations, and so the notation (N, nn)
has been used, where N represents the threshold
below which the state exists (the state of the inner
electron —see also Fano and Maeek" who treat N
as an actual quantum number). n represents the
quantum number of the outer electron, and orders
the members of a given series, and n = a, b, e. . .
labels each series for a given I., S, and m. a is
given to the series to which the lowest level of a
given configuration belongs; b is given to the
series to which the lowest member not belonging
to series a belongs, and so on. The last rows of
Tables I and II give these classifications for 'P'
and 'P'. Brueh et al."give a complete classifi-
cation for all states in Li', while Anania et al. '
give complete classifications and wave functions
for all isohelium systems through Z = 5, below
both the N = 2 and N = 3 thresholds.

Since the b and c series are very close to each
other for 'P', it is not possible from the use of
wave function and quantum defect alone to judge
which series goes with the (2, 35) state. However,
the reduced widths do. The reduced widths show
clearly that (2, 35) goes with the higher member
of the doublet, giving the sequence: 0.0015458,
0.00308978, 0.0034211, 0.0035353, 0.00359816.
The c series has reduced widths of 1.6086 ~10 ',
5.275 62 x 10 ', 6.7948 & 10 ', 7.1178 & 10 '. It is
most interesting to note that the reduced widths
for each of the three series differ by more than
a factor of 100, there being as much as a factor
of 10000 between series a and c. This is true for
'P' as well as 'P'. This observation, which may
have general validity, has not been explained
adequately, and may give some support to those
who are looking for some, as yet undiscovered,
symmetry property. See, however, Macek" and
I.in,"who have used hyperspherical coordinates
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TABLE III. Constants for conversion from a.u. to eV as chosen by vaxious authors. See
Eq. (12).

Authors Value of -0.5 a.u. in eV

Lipsky and Russek ~

Burke and McVicar
Bhatia and Temkin ~

(electron-atom)
Bhatia and Temkin c

(pho ton-atom)
NBS (1973) d

78,983
79.0078

79.015 14

79.004 39
79.0058

27.210
27.2106

27.21165

27.207 95
27.2116

65.378
65.4025

65.4004
65.4000

~Reference 1 data taken from C. E. Moore, Atomic Energy Levels, Nat. Bur. Stand. (U.S.),
Cir. 467 (U.S. GPO, Washington, 1949).

b Reference 5.' Reference 8 (1975); authors claim that conversion depends on process.
d Reference 15.

to approximately sepax ate the Hamiltonian. The
resulting equations, when decoupled, produce
potential curves for each series which support the
hierarchy of widths.

IV. ENERGY DEPENDENCY OF 'U,.(E) AND V„(E)

In the previous section it was mentioned tha. t
only three energies were used to evaluate Eqs. (7)
and (8) for all energies, by quadratic interpolation.
To test the smoothness of these integrals, the cal-
culations were actually carried out for many ener-
gies between E =0.15 and 10 By. The value of
1l,.(E)(2vk)'~' for the lowest j's are plotted in Fig.
1. We see that in the range of interest (between
2.6 and 3 Ry) they are all slowly varying and of
the same order of magnitude. This fact shows
that even a simple model will give more or less
correct results for the a series, since the corre-

I V„(E)l'
(13)

sponding V„(E) will be more or less a positive
weighted average of these curves, owing to the
fact that all configurations have the same relative
sign. Furthermore, even the poorest of calcula-
tions will show that the other series are much
narrower than the a series, since the 'U's will
subtract from each other. However, the super-
narrowness of the c series must depend most
heavily on a precise knowledge of the wave func-
tions. This point will be discussed in more detail
below, when compaxison is made with other cal-
culations.

It is of interest to see how the V„(E)'s [Eq.
(Va)] behave, since not only do they determine the
widths, but they also can be used to evaluate 4,
the shift due to coupling to the continuum. From
Fano" or Feshbach"" it can be shown that

.04-

.03

.02-

o
0cf

CL

g —.01-

Z.
—.02-

-.03

REGION OF RESONANCES

I

10

(233p)

(3s2p)

(2p3d)

ENERGY (Ry) ABOVE '1s' LEVEL OF He

FIG. 1. Dependence of && (27tA)' 2 on Energy (in ryd-
bergs), for the four product functions 2s2p, 2s3p, 32P,
and 2p3d in H helium. The '0;'s are defined in Eq. {7b).

where P stands for the principal value of the in-
tegral, and the integration is over all E, includ-
ing a sum over discrete states of PHP, if any.
We have not evaluated the shifts, but from Eq.
(13) and Figs. 2-5 it can be seen that 6„and I „
a.re of the same order of magnitude.

The V„(E)'s times (2vk)'~' for the three lowest
a-series states are plotted in Fig. 2. It is clear
that these are also smooth functions of E. Fur-
thermore, they behave much better near the ori-
gin than the Q,.'s.

The three lowest b-series states are plotted in
Fig. 3. Here too, their behavior near the origin
seems regular. Note, however, that these cuxves
reach their peaks below the resonance region
rather than above and are a factor of 10 smaller
than the a-series cuxves for all energies,

Figure 4 shows a different behavior for the e
series. Here, the curves reach their minima
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FIG. 4. Dependence of
the interaction matrices
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bly excited states in 'P' he-
lium. The V„'s are defined
by Eq. (7a).
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state is determined by the value of I' for that
particular state at the energy of the resonance.

V. HYDROGEN NEGATIVE ION

The method described in this paper is equally
applicable to all two-electron systems. The only

-1
10

10

10

—4
10

0
U

10

question is whether TDM calculations can give
good results for hydrogen, since the outer elec-
tron sees a polarized, neutral atom, whereas the
TDM functions are all hydrogenic. In any case,
these calculations for 'P' yield only one level be-
low the N =2 threshold. Its energy, wave function
and width are given in Table IV. The energy of
-0.126 02689 a.u. , is lower than the variational
calculation of O' Malley and Geltman' who found
two levels, the lower one of which was at
(-0.125965) a.u.

An examination of the hydrogenic components
in Table IV shows that the configuration mixing
of this state is very similar to the (2, 3b) state in
helium, implying therefore that there is no 2s2p
state in H . This is in agreement with the work
of Macek and Burke. " The width calculated here
is 0.311 && 10 4 eV, and matches the b-series
widths in He. Lin,"following Macek, has calcu-
lated an energy value for the (2, 3b) state of
-0.— .125 955 a.u. , and has calculated potential
curves which show why the a series does not
produce Feshbach resonances.

—6
10

VI. COMPARISON WITH OTHER CALCULATIONS

A. Close coupling

10 0

REGION OF RESONANCES

2 3 4 5 6 7
ENERGY (Ry) ABOVE '1s' LEVEL OF He'

I I

8 9

FIG. 5. Dependence of the width functions, I'„on ener-
gy for the six lowest doubly excited states in 'P helium.
The width of each state is the value of its I' function in
the resonance region. Note that the F scale is logarith-
mac, so the a, b, and c series differ by orders of mag-
nitude above 1 Ry. The l"'s are defined by Eq. (8).

Burke and McVicar' performed a three-state
CC calculation of 'P' and 'P' helium, results of
which are in Table V and compared with the re-
sults of this paper. Several points of comparison
between CC and this work are enumerated here.
(l) All series a states agree to within 0.01 eV,
and have comparable widths (although our results
are consistently 20% narrower) (2) The calc.ula-
tions of the (2, 3b) state agree very closely as to
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TABLE IV. Energy, width, and configuration mixings
of the lowest ~' doubly excited states below the %=2
threshold in H f.classified as (2, 3b))„

Energy(a. u. )

Energy (eV)
Width (eV)

—0.126027
10.165809
0.3llxl0 4

n( li n2 l2

2 0 2 1
2 0 3 1
2 0 4 1
2 0 5 1
2 0 6 1
2 0 7 1
2 0 8 1
2 0 9 1
2 0 10 1

—0.024 522
—0.316661

0.477 804
—0.330 664

0.167 707
—0.055 900

0.019355
—0.000 683

0.005 663

0.470 168

3 0 2 1
4 0 2 1
5 0 2 1
6 0 2 1
7 0 2 1
8 0 2 1
9 0 2 1

10 0 2 1

0.336638
-0.451759

0.307690
—0.152 874

0.051965
—0.016803

0.001408
-0.003 647

0.438453

2 1 3 2
2 1 4 2
2 1
2 1 6 2
2 1 7 2
2 1 8 2
2 1 9 2
2 1 10

Q (2pnd)'

Q (other)

Classification

-0.098 639
0.215255

-0.160464
0.085 136

—0.028 299
0.010474
0.000 037
0.003 733

0.089 986

0.001392

(2, 35 )

both wid'th and position. (3) Except for the (2, 3b)
state, both the 5 and c series differ by more than
the expected 0.01 eV. (4) In both calculations, the
5 series is the broader and c is the narrower of
the two series. However, in CC b is not as broad
and c is not as narrow as our calculation. (5) The
states classified as (2, (n+ l)b) are very close in
energy to the corresponding states labeled (2, nc);
however, in CC the b's are slightly lower, while
in TDM they are slightly higher.

The differences between the two calculations,
especially item (5) above, deserve further inves-
tigation. It was mentioned in Sec. III that TDM
and CC could be expected to be in close agree-
ment as to the positions of the various resonances
if the same channels are represented. But the
three-state CC calculation only includes the 2skp,
ks2P, and 2PM channels, whereas the TDM cal-
culation also includes among other things, the
Mkf channel. %e therefore ran a, restricted 67
configuration calculation which excluded all con-
figurations which had orbitals with an / &2. Those
results are also included in Table V. The energy
comparison between the 67- and 83-state TDM
calculations is also made in Fig. 6, where the
quantum defects are plotted against the energy of
the states.

%e see immediately that the 67 configuration
calculation is again in very close agreement with
the three-state CC calculations as to energies,
thereby indicating that the Burke-McVicar work
does not correctly predict the properties of the b

and c series, because it does not include all con-
tributing channels. A similar situation occurred
in the study of '9 helium. There, CC and TDM
differed in the calculation of the (2, 2b) state by
0.5 eV. The TDM calculation showed that the
(2, 2b) state had 3.5% of d' configurations, and a,

recalculation by Macek, "using a six-state code
yielded an energy value which agreed with TDM
to less than 0.01 eV. In the iP' case, the contri-
bution to b and c series from "other" channels is
less than 0.2 jg. Even so, their effects cannot be
neglected. Part of this sensitivity is certainly
due to the closeness in energy of the two series,
where even a small perturbation can have a large
influence.

Thomas, Ormonde, and I.ipsky" have made cal-
culations for 'P' helium, using a six-state close-
coupling code which included the 3s, 3P, and 3d
target states. Their values for the energies of the
(2, 3c) and (2, 45) states agree very closely with
our 83-state calculations. They are 64.1255 and
64.1405 eV, respectively, within 5 meV of the
values quoted in Table I. They have had great
difficulty in calculating the widths however, since
these have proven to be highly dependent on the
step size in the radial coordinate chosen to nu-
merically solve the differential equations. This
is not entirely unexpected. O' Shea" has shown in
other cases, that the energy position of a reso-
nance will stabilize even while the line profile is
still uncertain. The line profile (and the apparent
width) will eventually stabilize also if the step
size of integration is made small enough. In gen-
eral, the smaller the width, the smaller the step
size must be.
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TABLE V. Comparison of 83-state TDM calculation with that of the close-coupling calculation (Ref. a), several var-
iational calculations (Refs. b and c) and a restricted 67-state TDM calculation, for P' and P helium below the N=2
threshold. The 67-state calculation does not include any configurations which have orbital angular momentum greater
than 2. The CC calculation is a three-target-state calculation, including 1s, 2s, and 2P targets. All energy levels in
eV were obtained using the second formula of Table III.

Energies (eV) Widths (eV)
TDM 83 TDM 67 Burke and Bhatia and Chung and TDM 83 TDM 67 Burke and Bhatia and

Classification s tate state McVicar Temkin" Chen state state McVicar Temkin ~

Singlet P odd, below the N=2 threshold in helium

(2, 2a)
(2, 3a)
(2, 4a)
(2, 5a)
(2, 6a)

(2, 3b )

(2, 4b )

(2, 5b)
(2, 6b)
(2, 7b)

(2, 3 c)
(2, 4c)
(2, 5c)
(2, 6c)

60.2771
63.6905,
64.4811
64.8244
65.0051

62.7750
64.1453
64.6643
64.9171
65.0592

64.1288
64.6555
64.9122
65.0562

60.2791
63.6918
64.4814
64.8245
65.0057

62.7754
64.1381
64.6604
64.9149
65.0578

64.1625
64.6717
64.9210
65.0 615

60.2687
63.6905
64.4811
64.8244

62.7726
64.1342
64.6579

64.1716
64.6756

60.1537
63.6828

62.7607

60 ' 1602
63.6649
64.4738
64.8249
65.0120

62.7606
64.1396
64.6618
65.0120
65.0621

64.1232
64.6545
64.9135
65.0584

0.3405
0.7266 2

0.3104
0.1600
0.9282

0.1312
o.s6so-4
0.4325 4

0.2383 4

0.1443 4

0.461-8
0.679
o.465-'
0.289 6

0.341
P 73P
0.311
0.161 2

0.932

0.133 3

0.341 4

0.144 4

0.750
0.441 5

0.379
O.22O-4

0.128
0.795

0.4375
0.8718
0.3690
P.]891-2

0.1394
0.5032 4

0.2300"4

0.1539 ~

0 7759

O.363-'
0.10

0.1165

Triplet P odd, below the N=2 threshold in helium

(2, 2a)
(2, 3a)
(2, 4a)
(2, 5a)
(2, 6a)
(2, 7a)

(2, 3b)
(2, 4b)
(2, 5b)
(2, 6b)
(2, 7b)

(2, 3 c)
(2, 4c)
(2, 5c)
(2, 6c)

58.3745
63.1345
64.2543
64.7119
64.9421
65.0739

63.2657
64.3328
64.7545
64.9671
65.0897

64.0820
64.628 1
64.8963
65.0463

58.3599
63.14 12
64.2551
64.7119

63.2757
64.3336
64.7543

64.1211
64.6453

58.2872
63.0969

63.2533

58.2880
63.0926
64.2368
64.7041
64.9405
65.0764

63.2527
64.3281
64.7532
64.9668
65.0896

64.0756
64.6275
64.9024
65.0521

0.1392
0.4113-'
0.1615
0.7682
0.4211
0.2548

o.456o-'
0.1570
p.7823-5
0.4469-5
0.2829 5

O.33O1-'
O. 1S33-'
0.1041 5

0.6387 6

0.1064
0.3101
0.1231 2

0.5928

0.7764
0.3157
0.1592 4

0.4528 5

0.2725 5

0.890
0.261

o.4ss-4

' Reference 4.
Reference 8 (1975).

c Reference ll (1972 for iPO and 1974 for 3P0)

B. Variational calculations

There have been numerous variational calcula-
tions of the lowest 'P' and 'P' states in helium.
Table V contains two of the more recent sets of
results, those of Bhatia and Temkin (1975),' and
Chung and Chen. " All energy levels were ob-
tained using the second conversion formula of
Table III. Almost invariably, variational calcu-
lations provide lower energy eigenvalues for the
first few members of each series [a notable ex-
ception is the (2, 3b) 'P' state for H ], but for in-

creasing n, the TDM values get better, and in all
but one case, provide lower eigenvalues for the
higher members of each series.

There are very few width calculations available.
Bhatia and Temkin (1975),' using their variational
wave functions together with the same continuum
functions as used here evaluated the widths of the
three lowest states in both 'P' and 'P' helium.
We see from Table V, that where comparison can
be made, agreement is reasonable. Note, how-

ever, that for the a series in 'P' helium, our
disagreement with Bhatia and Temkin is as much
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FIG. 6. Quantum defects
(n* —n) of the various dou-
bly excited states in ~P~ he-
lium below the N =2 thresh-
old, plotted against their
energies. The defects are
plotted modulo 1, making
—0.2 the same as 0.8.
Thus, the (n+1) b level,
with quantum defect near
—0.7 interacts closely with
the nth c series level with
quantum defect near 0.3.
"0"are both 83 and 67-
state TDM calculations for
a series. x and CI are 83-
state TDM calculations, al-
though (2, 3b) has the same
value for the 67-state cal-
culation. "4" and "V" rep-
resent c and b series re-
spectively for the 67-state
calculation. Note that al-
though each solid line is
below a dotted line (in ac-
cordance with the Hylleraas-
Undheim theorem), the b

series have actually moved
up in going from 67 to 83
states.

as 50%, whereas Burke and McVicar are halfway
in between. On the other hand, for the b series
in 'P', this paper and Bhatia and Temkin are very
close, and Burke and McVicar differ by 70%.

Since Bhatia and Temkin do not quote any width
values for the narrowest (c) series for either 'P'
or 'P', we can make no comparisons here. It
has been recognized, however, that calculation of
such narrow widths is difficult indeed.

VII. SUMMARY

The method described in this paper has shown

itself to be a practical and efficient way to sys-
tematically calculate autoionization widths for all
doubly excited states in two-electron systems.

It can be applied in an automatic, straightforward
manner. No heuristic effects (such as deciding
when a root has stabilized or hunting for rapid
changes in phase shifts) are necessary.
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