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The multichannel J-matrix technique is used to solve the pseudostate close-coupling equations for H
photodetachment using only L' basis functions and standard configuration-interaction techniques. The
problem of linear dependence ~hich arises when the same L ' basis is used to expand both the target and free
electrons is discussed and exactly solved using a matrix partitioning. Results for total and partial
photodetachrnent cross sections are given from threshold to 70-eV photon energy (1664 to 18 nm) with
emphasis on the single-photon two-electron ejection cross section, and the 'I' shape resonance just above the
hydrogenic n = 2 threshold.

I. INTRODUCTION

Determination of the H photodetachment cross
section has received considerable experimental
and theoretical attention due both to its astrophys-
ical importance and to the fact that it is a man-
ageable, but nontrivial, theoretical exercise. The
relative experimental results of Smith and Burch'
in the visible region of the spectrum have been put
on an absolute basis by Geltman, ""in an analysis
of the integrated measurements of Branscomb and
Smith. "b' An independent absolute cross section
in the same spectral region has recently been ob-
tained by Popp and Kruse. ' In the uv region Qtt,
Slater, Cooper, and Qieres' have attempted, un-
successfully, in an initial experiment, to observe
the 'P shape resonance above the hydrogenic n = 2
threshold via uv photoemission in a local-thermo-
dynamic-equilibrium (LTE) plasma. This shape
resonance has been theoretically discussed by
Macek'; Macek and Burke'; Hyman, Jacobs, and
Burke7; Herrick and Slnanoglu, 8(a) and Wulfman, 8(b)

using Lie algebra techniques; and by Lin. ' It has
been observed in electron impact excitation of H

atoms by McGowan, %'illiams, and Curley, "and
by %illiams and Willis

In the energy region where only the H(ls) final
state is energetically accessible the photodetach-
ment cross section has been calculated by, among
others, Chandrasekhar, "Doughty et al. ,"Bell and

ngston i Macek, " Adelman i' Kim i6 Langhoff
and Corcoran, "Rescigno and McKoy, ' Ajmera
and Chung, "and Langhoff et a/. 20 At energies
above the opening of the n = 2 threshold Macek, '
using a correlated ground state and a 1s-2s-2p
three-state close-coupling final state, has com-
puted the total photodetachment and the partial
cross section for excitation of the n= 2 levels;
Hyman, Jacobs, and Burke, ' again in the three-

state close-coupling approximation, have extended
this work to determine the o~/o„branching ratio,
which is quite sensitive to final-state coupling.
Broad and Heinhardt" have used moment techni-
ques to extract the tota/ photodetachment cross
section over the range of photon energies from
threshold to -60 eV using fully correlated initial
and final states.

paisley has recently given a review of H photo-
detachment processes. "

In this paper, using the J-matrix formulation" "
of close-coupling theory" we extend our previous
calculation" of the total photodetachment cross
section to a multichannel analysis resulting in
cross sections for the processes

h~+H -H(ls)+e
-H(n=2)+e
-H'+ 2e

and the total cross section from 0- to 70-eV photon
energy.

The close-coupling" approach has achieved con-
siderable success in the calculation of many-
channel electron-atom scattering and photodetach-
ment cross sections. The recently developed J-
matrix method provides a way of reducing the
entire set of closely coupled differential equations
to matrix equations with square integrable (L')
basis functions. Heller and Yamani" introduced
the method with an analysis of s-wave potential
scattering (to be referred to as I) and an applica-
tion to 'S electron-hydrogen scattering' (to be
referred to as II). Yamani and Fishma. n extended
I and II to general /, a wider choice of basis sets,
and to Coulomb scattering" (to be referred to as
III), while Broad and Reinhardt developed the full
multichannel formalism in the LS coupling scheme"
(to be referred to as IV). A review of this work,
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with emphasis on the application to H photodetach-
ment considered here, is given in Sec. II.

In the dipole approximation when the 'S ground
state of H absorbs a photon of sufficient energy,
one or two electrons can be ejected into continuum
states of overall 'P symmetry. In this work, a
manifold of 'P wave functions is constructed at
each energy from the output of a bound-state-type
configuration-interaction (CI) program and a sub-
sequent analysis by the J-matrix method. When a
basis set spanning the Hilbert space of two-elec-
tron bound states appropriate to the CI program
is used to describe a multichannel scattering sys-
tem, where a larger asymptotic Hilbert space is
appropriate, "a collapse of this larger space
occurs. A detailed analysis of the linear depen-
dency causing this collapse and the consequent
modification of the solution of the multichannel
scattering equations is presented in Sec. III A,
with a qualitative discussion in Sec. III B. The
form of the one-electron photodetachment cross
section is given in Sec. IIIC, and in Sec. IIID the
equivalent-q&adrature'"" construction of the cross
section for two-electron ejection is pursued.

Section IV describes the details of the computa-
tion based on the theory of Sec. II and III, while
Sec. V contains the resulting cross sections.
Qualitatively correct resonance phenomena are
seen at the inelastic thresholds, the oscillator
strength for excitation to the 'P shape resonance
just above the n= 2 threshold is discussed, and an
estimate of the total two-electron ejection cross
section converged to -15% is obtained.

1 d' l(l+ 1) Z
2 dr' 2r' r (2.2)

are of tridiagonal, or Jacobi, form:

II. REVIEW OF J-MATRIX THEORY

A. Potential scattering

The basis of the J-matrix method (I, III) is that
in the complete set of nonorthogonal Laguerre
functions

Q„(Xr)= ($r)'"e '"~'L„""($r), n = 0, 1, 2. . .
(2.1)

the matrix elements of IIo-E for

J (k)= dr P„()r)[H,—k'/2]Q ($r)

= I'(n+ 2l+ 2)/I'(n+ 1)[Z5 —$tl/(2 sin 8)[2x(n+ l+ 1)5 „—n5 „,—(n+ 2l + 2)5 „.,]}, (2 2)

where q=k/$ and x=cos8=(q' —~)/(0'+4). We
limit further discussion to the case Z =0 appro-
priate to the photoionization of a singly charged
negative ion. As shown in I and III, it is possible
to exploit the tridiagonal nature of H, —k'/2 in the
Laguerre basis to solve the infinite set of matrix
equations for the expansions of two independent
solutions to the Schrodinger equation. The regular
solution

(2.4)

is, for Z = 0, the Ricatti Bessei function (kr)j, (kr)
having expansion coefficients

of a Ricatti Neumann function (kr)n, (kr) and e '"~'r '

times a polynomical of degree 2l of such a form
that C(r) r'" as r--0. As shown in III, Eqs.
(2.6) and (2.7) lead to

2'1"(l+ —)I'(n+ 1)
~~I'(n+ 2l+ 2)(sin8)'

xg, (- n —2l —I,n+ 1;—, —l; sin'-,'8) .
(2.8)

Since the hypergeometric functions in Eqs. (2.5)-
(2.8) each have one negative-integer index, they
reduce to easily calculable polynomials.

At large r,

2' I' (l + 1)s„(q)=
( )

(sin8)'"
S(r)- sin(kr —lw /2), C (r) —cos(kr —lv/2).

(2.9)

&& g, (-n, n + 2l + 2, —,', s in' ~ 8) .

The other function,

(2.5)

(2.6)

is a solution of the inhomogeneous equation

(B„—k'/2)C(r) = k/2s, @,(gr), (2.7)

where (P,
~
Q„)= 5„,. C(r) can be shown to be a sum

The solution of potential scattering problems using
these asymptotically correct solutions is discussed
in detail in I—III, while the general multichannel
analysis of electron-atom scattering in the L-S
coupling scheme is given in IV. We restrict our
attention here to the formulation and solution of
the many-channel close-coupling equations for the
electron-hydrogen scattering problem needed to
describe the final state in the photodetachment of
H.
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B. Multichannel scattering in L-S coupling

Let the target hydrogen atom be described by a
finite set of orthonormal radial wave functions

X„(p),v = 0, 1, . . . ,N„,obtained numerically by
diagonalizing the Coulomb Hamiltonian in a finite
basis such that

I d' X(X+ 1) 1
dPXp~ ~ ~ 2 + n 2 Xy= &p)t~p'p ~

2 dp 2p p

(2.10)
The first few of these matrix eigenfunctions of
each angular symmetry will have energies close
to the correct hydrogenic values of —1/2(v+ X+ 1)'.
The remaining ones, some of which will have
positive eigenvalues, function as pseudostates. "'"

The target radial wave functions of Eq. (2.10)
are combined with spherical harmonics to generate
a channel function of the target coordinate p and
the free-electron angular coordinate r" with desired
total angular momenta L,M:

Xr (P~r) = X) (P)'Jj))(gv(P&r)

=X„(p)p C(lXL, mpM) Y, (P)Y~„(p),

(2.11)

where C is the Clebseh-Gordan coefficient com-
bining Y, and Y» into the double spherical har-
monic &g,~„,and F=(v, X, I,LM) designates the
channel.

To complete the designation of a basis, there
remains only the specification of the radial wave
function for the free electron, and it is here that
the division between an inner and an outer region
of function space characteristic of the J-matrix
method is introduced. Following Eq. (2.1), the
outer (n~Nr) radial functions are taken to be

(2.12)

The inner, or coupled, radial functions are then
chosen as an orthonormal linear combinations of
the Q„for n & N~:

E-1

(2.13)

Together, the inner and outer functions, Eqs.
(2.12) and (2.13), constitute a complete basis in
the coordinate of the free electron, r, for each
channel I, and the number of inner functions N„
determines the accuracy with which the full po-
tential will be described. Combining (2.11) with
(2.12), (2.13) gives the full two-electron functions
(for singlets)

I+P Xr(p, P)g„(r), n=0, 1, . . .Nr —14„p,r)=
Xr(P, f')P"„(r), n=Nr, Nr+ I, . . . , ~

(2.14)

where I' acts to permute the coordinates of the
two electrons. As will become clear in Sec. III,
the two-electron functions P„ofEq. (2.14) con-
stitute an overcomplete basis in the two-electron
Hilbert space usually considered in bound-state
calculations. In fact, the 4r constitute a basis
for a larger, asymptotic Hilbert space consisting
of a direct sum of channel subspaces" appropriate
to the system under consideration.

The full scattering wave function can be expanded
in terms of the 4~ as

where H is the sum of the hydrogen Hamiltonian
in p, the kinetic energy of the free electron, and
the remaining potential energy:

H=H, (p)+H, (r)+ V(p, r},
V(p, r) = —1/r+ 1/l r —p l

.
(2.19)

(2.20)

The superscript (N} in Eq. (2.18) indicates that the
potential in Eq. (2.20) and all the exchange ele-
ments of H in Eq. (2.19) are to be neglected in all

lvrg

8(prE)=pl P 4 a„, +P @ f'
r ( «=o «=))(r

(2.15)

where the a„, are unknown expansion coefficients
of the inner (n' & Nr, ) portion of the wave function
and the coefficients of the outer (n' N«r. ) portion,
f„,are expressed below. If the channel I' is
open, or kr. /2 =—E —e„~& 0,

f„".'= [ /(, .)]'"(s«(qr, )~r. r+ c«())r, )Rr, r),
(2.16)

where q~, = kr, /gr. and ~r, r is the unknown reac-
tance matrix. For closed channels, with kr2„/2&0,

f« =~2/(vkr )j' (c«())r )+Is«())r })Rr r

(2.17)

where, again, R~. ~ is unknown. Thus by Eqs.
(2.5), (2.8), (2.9), and (2.16), the sum over open
channels I' contributes terms of asymptotic form
sin(kr, r —I'x/2)6r, r+ cos(kr. r —l'&/2)R„,r to the
wave function, while the sum over closed channels
includes the expansion coefficients c„+is„ofthe
Ricatti Hankel-function-like solution to the inhomo-
geneous equation (2.7), and thereby contributes
terms which die exponentially at large r. The
addition of these closed-channel terms speeds
convergence of calculations at energies just below
thresholds. '4

The unknown a„,~ and Rr, ~ are determined by
requiring that

(c"„"l(H -z)'"'le, )=01 n'= 0, 1, .. . ,
- all channels (2.18)
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(H E)r-r ~r r+ Dr- Jr" fr"r 0
n' =0

(2.22)

Dr" r r fr"r 0
~

»
Ã&

& &
'n Nr»

=0
(2.23)

n'=0, 1, . . . , Nz, —1, I', I'"-all channels,

I" —open channels.

In IV, it was shown that these equations can be
solved by ellm1llatlllg A.„i from Eq. (2.23), by
construction of (H —E) ', followed by solving for
the reactance matrix via Eqs. (2.16) and (2.11).

III. APPLICATION TO H PHOTOIONIZATIQN

A, Collapse of asymptotic Hilbert space

When the hydrogen negative ion in its 'S ground
state absorbs a photon, the only excited states
that can be reached in the dipole approximation
Inust be of 'I' symmetry. For this total I = 1, the
rules of angular momentum addition allow only the
two possibilities k= A. a 1. To minimize the com-
plexity of the calculation, it was desirable to
choose the inner functions for the free electron,
P~, identical to the target hydrogen-atom eigen-
functions X„.This was accomplished by expanding
the target hydrogen-atom states y„'in the basis
functions 4„,as in Eq. (2.13}, and generating
the expansion coefficients Dp„soas to diagonalize
the hydrogen Hamiltonian, as in Eq. (2.10). As a.

matrix elements with outer (n ~Air) functions.
Without exchange and without the potential, these
matrix elements are immediately reduced to the
tridiagonal form of Eq. (2.3); for example,

Nrg-]

&x ~ l»".,.». -»~l., ~.":&=~,-, P ~,,(~,.)»,":.

n"~ iver-, n'&Xr. . (2.21)

As shown in IV the tridiagonal form of J in Eq.
(2.3) and the choice of expansion coefficients s„
in Eq. (2.5) and c„in Eq. (2.8) assure that the
infinite set of equations (2.18) is satisfied by con-
struction for n' ~ Nr»+ 1 and n'~ N~, + 1 in Eq.
(2.15). The remaining equations for n" ~Xr,. and
n'~Nr, are just sufficient to solve for the unknown

I'ro'„, and R z'r

consequence, the exponent $r can no longer depend
on v, X, and hence, in Eqs. (2.12) and (2.13), Q„
and Dp„are reindexed as Q„' and Dp„, while P„"and
X„canbe written as P„' and P„.In addition, the
number of inner space functions in each channel
Nr now only depends on l, and can be written as
N, , identical with the number of pseudostates of
angular symmetry /, .

There are more serious changes than mere
reindexing, however. When the inner basis func-
tions in (2.14) are

then

= (I+ P)1~~4"(p)4'(r)&el v(f ~)

~,v)tl C, nl k
n v

(3.1a)

(3.1b)

((H E)„(H E), I

L(H —Z), (H —E) j
(3 3)

To make this more explicit, consider a 'I' calcu-
lation consisting of only the four orbitals„1s, 2s,
2P, 3P. For this illustration, we will place the
indices on (H —E) in a way more conventional for
configuration-interaction calculations by denoting,
for example,

(H —E)„.„=(H —E),~p „,p,

I'=(js,pj, n'=2 and I'=(Is,pf, n=2.

In Eq. (3.4), the target quantum numbers v, X are
written first, followed by the free-electron angu-
lar momentum l and expansion-function number n.
in the ++ block of (H —E) A.

' = I'+ 1 and X = l+ 1, or
in. this example the target is in an s state and the
free electron in a P state, yielding

implying that the quantum numbers v, ~ of the tar-
get-atom electron can be exchanged with the quan-
tum numbers n, A. of the free electron without
changing the wave function. It will be useful to
designate the set of numbers (n, l. , Xj as I',

„

in
analogy to I' =(v, k, Ij.

As a consequence of (3.1b), the matrix elements
of (H —Z) exhibit symmetry under exchange of the
free and target quantum numbers:

(H @)rr (H E)ex (H @)
'

ex (H E)'x.x

(3.2)
It is then natural to split (H —E) into four blocks
according to l'= X'+ 1, l = X a 1:

182P& 1 s2P ' 182P& 1s3P 182P& 282P 182p& 2s3p

(H —E)„=
282pp g 82p

283Pq 182PH

282Pa gs3P

283p& 183p

].83pt 282p

H2 2P o 2P E

283py 282p

1 s3p, 283p

282py 283p

+283P& 2S3P

(3.5)
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In the ——block, on the other hand, A, '= 2 -1 and X=/ —1 or, in this example, the target is in a p state and
the free electron in an s state:

(H-Z) =
2P2ss 2P1 s

3P1Ss 2P1s

3P2sa 2P1 sH

+2P2s, 2P2s
—~

3Pl sa 2P2s

3P2~ 2P2s

2P1 sa 2Pl s 2Pl ss 2P2s 2Pl s& 3Pl s

2P2ss 3P1 s

3Pls, 3Pl s

3P2ss 3P1 s

2Pl sy 3P2s

2P2s& 3P2s

3Pls, 3P2s

3P2s& 3P2s

(3.6)

Note how the rows and columns in Eqs. (3.5) and

(3.6) are ordered so that the target quantum num-
ber v changes more slowly than n. The off-dia-
gonal blocks in Eq. (3.3) have the appropriate
mixed ordering X'= 5+1, A. =1 +1.

According to Eq. (3.2), however, H, ~ „»in Eq.
(3.5) equals H»„,»„in Eq. (3.6}, for example;
hence the four blocks of (H —E) are merely reor-
derings of each other. This linear dependence
among the elements implies that the full matrix
(H —E) is singular. A study of this singularity
reveals a way of solving the scattering equations.

Equation (3.2) gives a relation among the blocks
of (H E). For e-xample,

[(H -Z). ]'„"= [(H —Z)..]r;„r„'V,",„"
v

(3.11)

and designating the inner space sum in (2.15}as
er~", yields for E=A. +1,

einnsr g r'(& )r'r+ c,r'(& )r'r
n'

(3.12)

Thus for /=X+ 1, only the combination (a,)»
= (a„)r.r+(Va, )r, r is needed. Likewise, for I=X —1,
only (a )„"= (Va, )„+(a. )„is required, or in
matrix form, using the definition of:. in Eq. (3.12),

(3.7)

where V is a matrix which reorders the indices:
Thus, by Eqs. (3.9) and (3.12),

(H —E)a = [K —8](:-a), (3.14)
Trr'r
"n'n ~r'n' r v '

ex
(3.8)

Similarly for the other blocks in Eq. (3.3),

)
(H —H)„(H—H) H)„

(H-Z) V' (H-Z)

(H —H)„0
)
((. H) ( H)

(3.8)

where the definitions of [X- 8] and:- are apparent.
riting

and since [3C —(H] can be inverted, Eq. (2.22} could
be solved for (:-a). The fact that there are only
two independent blocks of coefficients a„ais
directly related to the singularity of (H —E)

The program can be completed by noticing that
the choice of identical target and inner functions
allows the effect of exchange to be included exactly
in the matrix elements of (H, + H, —E) between in-
ner and outer functions in Eq. (2.18}. The equa-
tions to be solved instead of (2.22), (2.23) are then

Eg'-1

n =0

v'o oo (3.10)
qg ~1) V Ega ~la g) gJ Pf ~

it is clear that:- is singular. Since [X—S] is
composed of two nonsingular blocks on the diagonal,
it is evident that the singularity in (H E) is due-
entirely to that of:-.

It is not possible, then, to solve (2.22) for the
coefficients a„, by inverting (H —E), but a look at
the scattering wave function (2.15) reveals that
full knowledge a~~ r is not required. Splitting the
matrix of coefficients a into blocks in the same
way as (H —E),

n"=0, 1, . . . ,+„
lt NX"-1

f tl rNr
lit j a P"

n =0
DX „-l,n n' + -)t" r" r -r" r

=0 +)t» "1~ V V H~ u-1

(3.16)

r'"r' ga
(D}. =D~ „-„»5r~ +D~,.-&,"5r-r.

„

(3.17)

By using the matrix definitions (3.9), (3.11) and
defining
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(J}r'"r'=Jr„",„5„„,, (F„)'"'=fr„".r . (3.18)

Equations (3.15), (3.16) can be written as matrix
equations

(H —E) (r+DJF„=0,
Da-E~, =O .

(3.19)

(3.20)

By further defining (D,)» =D'„,„,„.5r.„.for /"
= X +1 and 1' = X'+1, it can be seen that

D, D,V D, 0
D V D 0 D

(3.21)

[X—h]:-a+n:-JF„=0 (3.22)

which defines S.
Using Eqs. (3.13) and (3.14) in Eqs. (3.18}, (3.19},

we find

~ (DU)»'(DU)»

(}(,'

(3.29)

where, using the definition of D, and D below Eq.
(3.20),

N -1

D„,„U;(„u„)»if /=1+1
(DU)l=&" '

~

~

sr -» &U((»r»& y&» / 1
n=o

(3.30)

where U is the unitary matrix which diagonalizes
the H

„

i and j index two-electron configurations
with the implicit ordering I= A. + 1, and 0 runs over
the eigenfunctions of 0 in the finite basis. Equa-
tion (3.27) can then be rewritten as

Z, .„=-((WCJC)-'(WSJS) ).,. . (3.24)

II'~Jsr ~ r=[WrrJs „N.(r/r}

+ 5r sr, , ( r/)r] /( r&rr/2)'" (3.25)

WCJCrir = (Wr~J», , N c»(, (r/r)
l 1

+ 5r.rc„,,(r/r))/(rrkr/2)'", (3.26)

5)=a-E, =O .
Now Eq. (3.22) can be used to eliminate =a from
(3.23) and the system of equations solved in a
fashion analogous to the general multichannel case
discussed below Eqs. (2.12), (2.13). Using Eqs.
(2.16), (2.17}, and (3.18), the result is the reac-
tance matrix

einner ~ @, &I"
r ~ f i (3.31)

The notation i(vX/n) in (3.30) denotes the one-to-
one mapping from two-electron configurations i to
the multichannel quantum numbers (v, X, /, n] for
the case L = X+ 1.

Thus, once D P is known, the reactance matrix
can be formed at each energy by Eq. (3.2) with
only a channel-by-channel inversion of 5'CJC in
addition to finite matrix multiplications and the
straightforward calculation of the expansion coef-
ficients t."„ands„.The proof of the symmetry of
the open portion of the reactance matrix given in
the Appendix in IV carries over directly for the
modified form of W in Eq. (3.27).

In the same way as for %', the inner portion of
the scattering wave function in Eq. (3.12) can be
expressed as a sum over configurations with the
implicit ordering I =A. + 1:

W, ,= (m[X —h]-'=-&'), , (3.27)
where by Eqs. (3.12} and (3.27)

U[(8 E)-r] P (» »i (3.28}

In line with Eqs. (2.16), (2.17}, the channel index
in Eqs. (3.24) and (3.26) runs only over open chan-
nels whGe all the other channel indices run over
all channels, open and closed. When I" is a closed
channel in Eq. (3.26) the coefficients c„rare to be
evaluated as c„+is„"as in Eq. (2.1'/). The analogy
between the form of Eq. (3.27) and the matrix first
formulated by Wigners' and used in R-matrix the-
ory" to rnatch the solutions between inner and outer
regions of configuration space has been discussed
in IV.

As in the general multichannel ease discussed in
IV, much of the work of forming 8' and a, can be
carried out once for all energies. If H,. is diagon-
alized by the bound state CI program, then (ff —E)„'
can be written as

(a,)r.r if /=X+I
((L"x~»1'») (c )r»»r

(JF„) = -(1/(r)(WCJC)rrr„. (3.33)

8. Discussion

The above analysis shows that it is indeed feas-
ible to pursue the multichannel J-matrix method
even if the inner and target basis functions are
identical. 7'he advantages of this choice can be
seen from the form of [30 —(('] ' and its use in Eq.
(3.27), for, by Eq. (3.9),

XI'"
U»(DU)» (JF )r-r (3 32)

E~ —E

As shown in iver [Eq. (3.22)], JF„canbe simplified,
by using the properties of the s„and c„,to
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(H —E) i 0
0 "V(H E)-V (3.34)

Since for 'P symmetry, the full matrix [X—8] has
twice as many rows and columns as the ++ or ——
block, only having to invert (H E-)„means a con-
siderable savings in computational effort. Further-
more, H„canbe formed and diagonalized by a nor-
mal bound-state configuration-interaction program
and the results used advantageously as discussed
with Eqs. (3.28)-(3.30).

For two-electron symmetries other than 'P, the
rule l = X+ 1 does not hold but an analogous analysis
of the collapse of the asymptotic Hilbert space into
the usual two-electron Hilbert space could be
made. For systems containing more than two elec-
trons, on the other hand, the flexibility of varying
the free-electron basis exponent (~ for different
target states may make working with the full
asymptotic basis more desirable.

where "'@(E„E,) is a wave function for one elec-
tron of angular momentum A. and continuous energy
E, and another of angular momentum l and con-
tinuous energy E,. Since there are three Coulomb
centers, the potential felt by each electron is not
well defined in terms of a free electron interacting
with a neutral target, but the following reasonable
choice can be made in conjunction with the Pauli
principle. Since the two emitted electrons are
indistinguishable, it is necessary to avoid double
counting in (3.37), and one way to do this is to
require that Ey~ E2 in the integral. Using the 5

function under this restriction to do the integral
over dE, yields

o1 gt h(E)

dE2
C

x P I&"4 (E, E E )lrl@,

C. One-electron photoionization cross section

The cross section for one-electron photodetach-
ment from the ground state of II into channel I'
was given in IV as

r, (E) =(4w'/~c) I&"8-(E)l vl4' &I' (3 3»)

r, (E)= (4"~~c)
I

&"8-(E) lr I
4 ~& I' (3 35b)

length

in the velocity and length forms, "where 8 is the
incoming scattering wave function related to the
standing wave 8„by

r, =-i e„,1+m -,',„.
opea

The '~ ground state 4 d can be calculated with a
configuration-interaction program and the dipole
matrix elements with the inner portion of the sum
(2.15) computed over the eigenfunctions of H with
the aid of Eqs. (3.31) and (3.33).

(3.36)

28
+leagth

477 CO

dE, dE, 5(E —E, —E,)

x p I
& w-(E, E ) Ir I

4'
a& I

ill

(3.37)

D. Two-electron photoionization cross section:
5m+H ~H'+2e

When the total energy reaches zero, channels
with two free final-state electrons open up, and
we have to investigate how the channels describing
one free electron of energy E —E„„leaving behind
a pseudostate of energy E„„&0 represent an ap-
proximation to this two-electron process.

The total cross section for emitting two elec-
trons from H can be shown to be"

(3.38)

In 1970, Burke and co-workers" introduced the
idea of using pseudostates to represent the two-
electron continuum channels at energies where
they are open in electron-hydrogen scattering.
While they only used this representation to approx-
imate the coupling of the 2e continuum to the
1s-to-2s and 1s-to-2p excitation channels, we
propose to approximate the cross section into that
continuum with pseudostates, in a manner which
systemizes the recent exploratory work of Gal-
laher. "

If we could express the remaining integral over
dE, in Eq. (3.38) as a Gaussian quadrature with
abscissas at just the points E,= &„&„wecould ob-
tain

0&61,&,&E/2
2e (E) 47r 47 g (~sq)Ng

l &tt

x I& 4'-(e„x,E —e &)Irl4' a&I

(3.39)

where the equivalent weight (w~)„"~is defined as
the usual quadrature weight divided by the weight
function evaluated at the abscissa. ""Recent
work by Yamani and Reinhardt" has demonstrated
that diagonalizing the hydrogen-atom Hamiltonian
in accordance with Eq. (2.10), in the Laguerre
basis of Eq. (2.12), giving abscissas e„„,indeed
generates a Gauss quadrature, of a modified Pol-
laczek form. Moreover, they have shown that the
equivalent weights (n!~)"„~provide just the multi-
plicative factor needed to convert a 5-function-
normalized continuum wave function into a unit-
normalized pseudostate. " Thus, extending their
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single-electron argument, we obtain an approxi-
mation for the two-electron cross section in terms
of pseudostates:

(3.40)

At energies just above 0, where only a few terms
are included in the sum, Burke and Mitchell" have
noted that an approximation such as Eq. (3.40)
cannot be expected to give a smooth cross section,
but as soon as a moderate number of pseudostates
are used, the approximation should improve and
give a reasonable picture of the average energy
dependence of the cross section.

The inequivalent treatment of the two free elec-
trons is not unreasonable in that by taking the
energy of the free electron, E, , greater than the
energy of the hydrogen-atom pseudostate, E„we
have implicitly chosen a model where the electron
with greater energy feels a screened Coulomb
potential which eventually goes to zero faster than
1/r', while the electron with lesser energy feels
the full unscreened long-range attraction of the
nucleus.

IV. COMPUTATIONAL DETAILS

To form the partial photodetachment cross sec-
tions into the various open channels in accordance
with Eq. (3.33), it is necessary to calculate the
ground-state wave function for H, the scattering
wave function for the channel of interest, and the
dipole matrix element between the two. A modi-
fied version of the configuration-interaction (CI)
program written by Schaefer" with Bs, 6p, and
4d Slater-type atomic orbitals combined into 67
'S two-electron configurations was used to approxi-
mate the wave function for the H ground state.
Optimization of the exponents of the Slater orbitals
yielded an energy of -0.527 38 a.u. to be compared
with an accurate value of —0.527 751 from an ex-
tensive Pekeris calculation. "

As indicated in the theory in Sees. II and III,
several steps are required in the formation of the
scattering state, e (E). The most efficient meth-
od involves performing as many steps as possible
before designating a total energy E. First, the
full Hamiltonian was formed and diagonalized in
the inner basis functions 4, of Eqs. (3.1) and (3.30)
either by the Sehaefer program or by a two-elec-
tron Laguerre-function CI. Basis sets as large as
10s, 10p, and 6d orbitals of the form Eq. (2.13)
were combined to give, in this case, 160 config-
urations and 36 approximate scattering channels.
A variety of exponents (, were used. In what fol-

lows, the abbreviated notation of 10s10p6d(2, 1, 3)
will be used to indicate a full 'P CI generated by
taking all 'P' configurations arising from 10s, 10p,
and 6d orbitals with the exponents, $,=2, (~=1,
and $„=3.
In addition to diagonalizing the full Hamiltonian

in the inner basis, the dipole moments Pr of the
basis functions, both inner and outer, with the
ground state can be calculated independent of the
total energy. If we designate for the inner func-
tions

~inner (ginner
~

&
~

C,

then by Eqs. (3.30)-(3.32), we can write
~&r-

Ininner + g g n( 4 I (IirGdG) 1
r

& r- u Ep —E

where

(4.1)

(4.2)

(4.3)

The individual elements in the sum (4.3) were
calculated by decomposing both 4 „and4,. into
Slater functions to do the radial integrals, and
then transforming to integrals over configurations.
Similar to Eq. (4.1), we can designate

pouter @r' C,
r& r

fft =Ns
(4.4)

for the outer functions defined in Eq. (2.14). Since
the transformation from the outer basis functions
4„',to Slater functions involves so many terms for
high n that roundoff error becomes a problem, it
was necessary to do some of the radial integrals
directly over the C„'and the 4'„and the Slater func-
tions of the ground state. The total dipole moment
with the scattering wave function, in the standing-
wave form, e„is clearly the sum of Pr~" and
pouterr

As mentioned with Eq. (3.29), the elements (DU),"
can be formed independent of the energy. Thus
having calculated dipole elements over the basis
functions outlined above and having framed (DU)r,
it is not necessary to retain the full matrix of ei-
genvectors U,-„,produced by the CI. This involves
a considerable savings in core storage space.

Once these energy-independent steps are car-
ried out, the theory delineated in Sec. III was fol-
lowed straightforwardly to the W' matrix of Eq.
(3.24) to the reactance matrix of Eq. (3.21) and the
final scattering cross sections of Eq. (3.33). The
matrix inversions necessitated by Eqs. (3.21) and
(3.34) were carried out by Gauss elimination. Ta-
ble I shows the channels, including the target-state
designation, target energy, and angular momentum
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TABLE I. List of the 36 channels incorporated in the
ipsfpp6d (2, 1, 3) calculation. The channel number is
given in column 1, the principal quantum number and
angular momentum of the target in column 2, the angular
momentum of the outgoing free electron in column 3, and
the energy of the target pseudostate in column 4. The
channels have been numbered in order of increasing tar-
get energy.

f 02

tOI
N

O
O

~ too
O

O
4J
cn IO-I

IOeV 20eV
1

30 eV

TOTAL

n ~ 2
~ ~ ~ ~ ~ ~ 0 I

MOMENT

40 eV

Channel Target Wave
Target
energy

M
Mo
K IO 2=

1

2

3
4
5
6
7
8

10

11
12
f3
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36

fs
2p
2p
2s
3p
3P
3s
4p
4p
3d

5p

5p

6p
6p
4s
7p
7p
Sp

8p
5s

4d
9p
9p
6s
5d

1pp
1pp

7s
6d
Ss

1 fp
11p
7d
9s
Sd

1ps

p
d
s
p
d
s
p
d
s
p

d
s
d
s
p
d
s
d
s
p

p
d
s
p
P
d
s
p
p
p

d
s
p
p
p
p

-5.000 000 x 10
—f.250 000 x 10 i

1.250 000 x 10
f.24999f x10 i

5.555 556 x f p

5.555 556 x 1p-'

5.282436x 10-
—3.121 078 x 10
-3.121 078 x 10 '

2.8f7459x fp

1.728 078 x fp-
1.728 078 x f 0
3.285914 x f0
3.285 914 x 10 3

6.352 f.75 x 10
4.083 160 x f 0
4.083 f 60 x f 0
1.119000x10
1.119000 x 10-'
1.144 952 x 10

1,450 721 x 10
2.630 222 x 10
2.630 222 x f 0 '

3.116350 x 10 '

4.962 746 x f 0 '

6.65 1 157 x 10
6.651 157 x f 0
6.944 732 x 10
1.2f 3 151 x 100
1.555457x 100

2.394 892 x 100

2.394 892 x f 00

2.909449 x 100

4.121 219 x 100

8.657 085 x 1po

1.887419 x 1 0

of the outgoing free electron, for the largest cal-
culation, 10slOp6d(2, 1, 3).

V. RESULTS AND DISCUSSION

A. Overview

Total and partial photodetachment cross sec-
tions of H resulting from the 10slOp6d(2, 1, 3) cal-
culation are depicted in Fig. 1 for total energies
from -0.5 to 1.2 a.u. With a ground state energy
of -0.52738 a.u. , this corresponds to a range in

~ ~ ~ ~
~ ~

~ ~ ~,I
I

I

I
I i I

-0.4 -0.2 0 0.2 0.4 0.6 O.B I.O I.2
TOTAL ENERGY (p, u. )

FIG. 1. Photodetachment cross section of H from
total energy of —0.5 to 1.2 a.u. Results from the
lpslop6d(2, 1,3) calculation with the length form of the
dipole moment are plotted. The solid line gives the
total cross section, while the dotted and dashed lines
give the partial cross sections for production of H(ls)
and H(n =2), respectively. The sharp spike in the total
cross section at -—0.125 a.u. rising to 21.7ao is a
Feshbach resonance, while the next, lower, peak at
—0.119 a.u. is the 'P shape resonance. As discussed in
Sec. V D these resonances appear at slightly higher en-
ergies, and are somewhat broader than expected owing
to the compact basis used in this particular calculation.
See Figs. 5, 6, and 7. The structure between —0.0556
and 0 is indicative of the existence of resonances at
thresholds for which n —3. The alternately dashed,
dotted curve portrays the results of a previously re-
ported (Ref. 21) moment calculation of the total cross
section, which is seen to give an excellent average rep-
resentation of the cross section. The open triangles
near the maximum in the cross section are the relative
experimental results of Smith and Burch (Ref. 1) nor-
malized to the present results at 528.0 nm.

the wavelength of the photon from 1664 to 26.4 nm.
It is natural to discuss the cross section in Fig. 1
in terms of three energy domains.

In the elastic region, from -0.5 to -0.125 a.u. ,
where H(ls) is the only allowed final state, the
cross section is well converged. As shown in Ta-
bel II, the agreement among five different calcula-
tions, 7sl0p6d(1. 5, 1, 3), 7slOp6d(2, 1, 3),
10s10p6d(2, 1, 3), 10s10p6d(0. 5, 0.5, 0.5), and

7s10p6d4f(2, 1, 3, 3), using the length form of the di-
pole moment [Eq. (3.35b)] is better than 1%, while
the difference between them and the 10s10p6d(2, 1,
3) velocity-form calculation [Eg. (3.35a}] is no
more than 2%. The open triangles in Fig. 1 are
the relative experimental values of Smith and
Burch' in the optical region of the spectrum, nor-
malized to the theoretical results at their standard
wavelength of 526.0 nm (E= -0.4411 a.u.}. At this
wavelength the absolute cross section of Gelt-
man, ""and Branscomb and Smith" ' is 3.28 x 10 '



JOHN T. BROAD AND WILLIAM P, REINHARDT

TABLE II. Total H" photoabsorption cross section (go) in the region from —0.5 to —0.125
a.u. (total energy), where H(is) is the only energetically accessible state. Results for six
different P basis sets are shown for CI using s, p, d, and f atomic functions. Full configu-
ration interaction was carried out for each of the bases shown. The iosiOp6d calculations
with $~= $& ——$&—-0.5 were performed in a study of the diffuse resonances near the n =2 thresh-
old: the fact that the cross section only changes a few percent with the introduction of this
highly diffuse basis is a good measure of convergence.

Total
energy

Vs 1op6d
(1.5, 1, 3)
(length)

Vs 1op6d
(2, 1, 3)
(length)

7s 1op 6d4f
(2, 1, 3, 4)
(length)

10s iop6d ios 1op6d i os 1op6d
(2, 1, 3) (2, 1, 3) (0.5, O.5, O.5)

(length) ~ (velocity) ~ (length)

—0.49
—0.48
—0.47
—0.46
—0.45
—0.40
—0.35
—0.30
—0.25
—0.20
—0.15

0.994 6
1.421 7
1.412 8
1.342 4
1.183 3
0.708 23
0.468 27
0.339 65
0.260 24
0.211 09
0.19396

0.999 26
1.422 8
1.413 0
1.342 3
1.182 9
0.708 22
0.468 33
0.340 04
0.260 45
0.210 84
0.192 35

1.000 3
1.424 9
1.415 2

1.344 5
1.184 6
0.708 63
0.467 91
0.339 34
0.259 59
0.210 02
O.19156

0.999 29
1.422 0
1.412 7
1.342 5
1.1832
0.708 20
0.468 14
0.33976
0.260 38
0.211 13
0.19393

i.o18 5
1.387 3
l.389 6
1.342 5
1.189 5
0.705 90
0.466 89
0.334 91
0.256 21
0.209 24
0.19363

0.976 68
1.464 8
1.403 1
1.353 6
1.1754
0.728 31
0.467 39
0.335 74
0.255 42
0.207 98
0.19302

~These calculations differ only in the Inethod of evaluating the dipole moment, length, or
veloc ity.

cm2 +-10%. The 10s10p6d calculation gives 3.019
x 10 "cm' (1.0788a', ) in the length approximation,
and 3.024 x 10 "cm' (1.0806ao) in the velocity ap-
proximation. These results may be compared with
3.06 x 10 "cm' (length) and 3.01 x 10 "cm' (veloc-
ity) of Ajmera and Chung, "3.01 x 10 "cm' of Kim"
(via a moment technique), 2.96 x 10 "cm' of
Doughty eI, al. ,

"and 2.99 x 10 "cm' of Geltman, '

again at 528.0 nm. All of these results are consis-
tent with the recent absolute measurements of
Popp and Kruse. '

From the n= 2 inelastic threshold at -0.125
through the energies of the n~ 3 Rydberg states
of hydrogen up to the two-electron ejection thresh-
old at zero energy the cross section in Fig. 1 ex-
hibits considerable structure. Just below the hy-

TABLE III. Total H photoabsorption cross section (ao) above the threshold for two-electron
ejection (8 &0). Results are shown for the same basis sets discussed in Table II. Conver-
gence of the total cross section as calculated from the length and velocity forms is satisfacto-
ry. The results for the diffuse basis with /~= )&——E&

——0.5 have begun to deteriorate as the basis
can represent only very-low-energy excitations in the continuum.

Total
encl gy

781op6d 78 1op6d 7s 1op6d4f 10810p6d 1os iop6d 1os 1op6d
(1.5, 1,3) (2, 1,3) (2, i. , 3, 4) (2, 1,3) (2, 1, 3) {0.5, 0.5, O.5)
(length) {length) (length) (length) ~ (velocity) ~ (length)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1,6
1.8
2.0

0.083 68
0.044 00
0.025 26
O.O1476
0.010 15
0.007 395
0.005 553
0.004 185
0.003 162
0.002 409

0.083 18
0.044 29
0.025 11
0.014 70
0.010 09
0.007 369
0.005 526
0.004 167
0.003 151
0.002 407

0.083 28
0.043 91
0.024 63
O.0 l4 70
0.010 01
0.007 351
0,005 541
0.004 180
0.003 166
0.002 407

0.083 35
0.044 45
0.025 13
0.014 80
0.010 13
0.007 387
0.005 545
0.004 180
0.003 159
O.002 409

0.081 95
0.043 93
0.024 94
o.o1472
0.010 13
0.007 424
0.005 600
0.004 233
0.003 200
0.002 438

0.098 07
0.042 97
0.022 60
0.015 56
0.011 57
0.009 001
0.007 173
0.005 810
0.004 771
0.003 965

*These calculations differ only in the method of evaluating the dipole moment, length, or
velocity.
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TABLE IV. H total photoabsorption cross section as
a function of wavelength from 1219 to 18.0 nm in units of
10 cm . Results are not given in the region between
n =2 and n = where there is considerable resonance
structure (see Fig. 2).

PHOTON ENERGY (eV)
IQ Ipp

I I I I I I I I
I I I I i I 1 I II

—IO
is

Calculated Calculated ~

Wavelength cross section Wavelength cross section
(nm) (10 cm ) (nm) (10 cm2)

IQ

CU

O0

1219
962
794
676
589
528
358
257
200
164
139
121

2.80
3.98
3.95
3.76
3.31
3.02
1.98
1.31
0.951
0.729
0.591
0.543

62.6
49.1

40.4
34.3
29.8
26.4
23.6
21.4
19.6
18 ~ 0

0.233
0.124
0.0703
0.0414
0.0283
0.0206
0.0155
0.0117
0.0088
0.0067

0
O
LIJ
CO IQ

CA

V)0
lK

0
I-

-2~ IO

0
0
0
Z
CL

ZATION
CT ION

IP-17 Z0
O
LJJ
CI)

(A
CO0

IP O

0
I-
«X
N

0
- i9

IO 0
X
Q

Results are given to three significant figures and are
those from the 10slgg6d (2, 1, 3) length calculations of
Tables II and III.

IP

—lp ZO

drogenic n= 2 threshold there is a sharp peak which
we identify as a Feshbach resonance, while the
broader feature just above the threshold is the 'P
shape resonance. These resonances are discussed
in more detail in Sec. VD. The further structure
between the n=3 threshold at —,', a.u. and 0 arises
from the pseudostate representation of the rest of
the Rydberg series of the residual hydrogen atom.
Since, as can be seen from the threshold energies
of channels 5-12 in Table I, there are only a few
pseudostates in this region, we do not attempt to
interpret the oscillations in the calculated cross
section but rather accept them as indicative of a
more complicated actual threshold and resonance
structure. As the 2s-2p degeneracy, which pro-
duces a l/r' off-diagonal coupling between chan-
nels connected to the 2s and 2p thresholds, ~ was
not taken explicitly into account the partial cross
section into the 2s and 2p final states was not well
converged. ' Thus only the cross section for the
sum (which is well converged) into all n= 2 states
is shown in Fig. 1.

At energies above the threshold for two-electron
ejection at E=0, the total cross section becomes
smoother, and it is again useful to compare the
results from the five different calculations as was
done in the elastic region in Table II. Table III
shows that the five length and one velocity calcula-
tions agree with each other to within about 3%.
As will be argued in conjunction with the two-elec-
tron ejection in Sec. VC, the oscillations in the
n = 2 and total cross section just above E = 0 are
artifacts of the pseudostate approximation.

-4
IP

Ip '

I I I I I I I I i

IOO IPI
PHOTON ENERGY (a. u. )

FIG. 2. H photodetachment cross section. The total
cross section and two-electron ejection cross sections
are shown over a wide range of photon energies (in eV
and a.u.). The total cross section was obtained from
the data of Fig. 1, off resonance, combined with that of
Fig. 6 near the thresholds. The Feshbach resonance
(Fig. 6) is much too narrow to be seen on this scale.
The sharp resonance just above n = 2 is the 'P shape
resonance discussed in Sec. VD. The two-electron
ejection cross section is a smoothed version of that
shown in Fig. 4.

The overall results are summarized in Table
IV, where the total photoabsorption cross section
is given in cm2 over the range from 1664 to 18.0
nm, and in Fig. 2, which gives a global view of
the total and the two-electron ejection cross sec-
tions.

B. Elastic threshold behavior

As derived in Sec. 4 of IV, the J-matrix method
incorporates the threshold laws of Wigner explicit-
ly.4' In particular, the photodetachment cross sec-
tion of a singly charged negative ion is expected
to exhibit a dependence on the channel momentum
of k2r'" near kr =0. For the elastic threshold of
H, the 1s state of H is left behind, and hence the
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kl2 t Ry)
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TOTAL ENERGY (o.u. )

I

-O. I09

(E+ I/2)

FIG. 3. Total photoionization cross section near the

H(ls) threshold. The Wigner threshold laws predict
that the cross section shvuld depend on the 2 power of

E+2 near the threshold. The slope of the curve of log@

versus log(E+ 2) in the figure is 1.500+0.0005, consis-
tent with the prediction.

IO

03II
O

FIG. 5. H photodetachment resonance structure in

the total cross section near n =2, as calculated with the
10slOPGd(2, 1, 3) basis, which is too compact to ade-
quately represent the resonances, as discussed in the
text. The shaded area gives an estimate of - 0.03 for
the oscillator strength of the 'P shape resonance,
which in this approximation peaks at —0.119 a.u. The
oscillator strength estimate follows the technique of
Macek (Ref. 48). As can be seen in the figure, separa-
tion of the oscillator strength into that "belonging" to
the Feshbach and shape resonances is ambiguous but

0.03 would seem to be an overestimate for the shape
resonance. k& gives the energy (in rydbergs) above the
hydrogenic ground state.

Z
O

~ IO

fA

M
V)0
K

10

~ ~ ~ ~ ~ IO6
ooooo 75
x x x 75
o o o 75,

IOp, 6d
IOp, 6d
IOp, 6d
IOp, 6d, 4f

+$~+H ~H +e +e

o(E)-(k,)' or -(E+-,')' ', (5.1)

E being the total energy. In Fig. 3, the logarithm
of 0 is plotted versus the logarithm of E+ —,

' for
E+ —,

' from 10 ~ to 10 '. Consistent with Eq. (5.1),
the curve is a straight line with slope 1.500
~0.0005.

outgoing electron must be a p wave, and we expect
that the cross section will behave as

I I I I I I I I I I

0 02 04 06 08 IO I 2 I4 I6 I8 20
TOTAL ENERGY (a. u. )

FIG. 4. Cross section for two-electron ejection.
Dotted curve denotes the results from the 10slOp6ff
(2, 1, 3) length calculation, a velocity calculation giving
the same results to within the scatter. && and 0 depict
the results of smaller 7slOp6d calculations with expon-
ents (2, 1, 3) and (1.5, 1.3), respectively. 0 's indicate
the results of a 7sl0p6d4f(2, 1,3, 4) calculation carried
out to check convergence of the partial-wave expansion.
The use of a partial quadrature by pseudostates gives
uneven results out to -0.3 a.u. , but after that the cross
section is converged to an estimated 15%.

C. Two-electron ejection

Results of 10slOp6d(2, 1, 3), Vs10p 6d(2, 1, 3),
Vs10p6d(1.5, 1, 3), and 7s10p6d4f(2, 1,3, 3) calcula-
tions of the single-photon two-electron ejection
cross section are shown in Fig. 4. As discussed
in Sec. IIID, the cross section is poorly approxi-
mated close to the threshold, from 0 to 0.3 a.u. ,
because of the small number of pseudostates used
there in the sum in Eq. (3.40). Higher accuracy
could be obtained by using the equivalent weights
and pseudochannel cross sections to interpolate a
smoothed wave function ~'4' to use in Eq. (3.39),
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FIG. 6. H photodetachment resonance structure near
the n =2 threshold, as calculated using the 10s10P6d
(0.5, 0.5, 0.5) basis discussed in the text, giving a very
reasonable estimate of the partial and total cross sec-
tions in the resonance region.

The majority of the calculations were carried out
with a tightly correlated basis with exponents of
order 1a,' to 3ao'. These exponents give a well-
converged nonresonant cross section, but are too
compact to give a good representation of the dif-
fuse resonances near the hydrogenic n =2 thresh-
old and totally incapable of representing the very
diffuse~ resonances near the higher thresholds.
The problems encountered are shown in Fig. 5,
where the resonance structure near the rg =2
threshold (at -0.125 a.u.) is shown as calculated
using the 10s10p6d(2, 1, 2) basis discussed earlier.
The lowest 'P Feshbach resonance appears at
-0.125 a.u. rather than at -0.126 a.u. as expected.

but the predictions of %annier imply that near
E= 0 a very large number of partial waves are
needed to describe the highly correlated long-
range interaction between the slowly moving elec-
trons. In our s, P, d calculations, we can only note
that the d wave dominates from 0 to 0.6 a.u. , con-
sistent with this expectation. Above E=0.3, how-
ever, all five calculations give a smooth cross
section for two-electron ejection in agreement with
each other to an estimated 15%%up. To our knowledge,
there are no measurements of this cross section.
In Fig. 2 it is seen that over the photon energy
range from 20 to 100 eV o„/o„,-4%, in qualita-
tive agreement with the same ratio in He.~'

D. Resonance structure near the n = 2 threshold

I .0

0.3—
0.2—
O.I—
0 I I I I I I I I I I I I t I I

-0.130 "0,I2S -O. I20 -O.IIS
TOTAL ENERGY (o.u. )

FIG. 7. 'P shape resonance as seen in the total cross
section for photo detachment of H, in the 10slOp6d
(0.5, 0.5, 0.5} calculation. The Feshbach resonance at-—0.126 a.u. has been graphically subtracted out. The
shaded area gives an estimated Qef. 48) oscillator
strength of 0.024+ 15%, in comparison to the three-
state close-coupling estimate of 0.044. k& gives the
energy (in rydbergs) above the hydrogenic ground state.

The "shape" resonance, rising to a height of 0.89ao
at -0.119 a.u. with a roughly estimated full width
at half-maximum (FWHM) of 4 X10 ' a.u. , is sim-
ilarly misplaced and too broad: The close-coupling
plus correlation e-H scattering calculations of
Taylor and Burke~' as analyzed by Macek and
Burke' would lead us to expect a much narrower
(-5 && 10 4 a.u.) shape resonance occurring at an
energy of --0.12434 a.u.

Scaling estimates based on independent~' I.a-
guerre-CI work within a Feshbach projection
scheme suggested that the exponent choice $ =0.5
would be more suitable for obtaining a good "posi-
tion" for the low'est 'P Feshbach resonance. This
choice of scale parameter, with the fairly large
radial basis sets used, also allows spanning of the
hyperspherical "potential curves" of Lin, e which
give rise to the Feshbach and shape resonances.
The results of a single 10slOpsd(0. 5, 0.5, 0.5) cal-
culation are shown in Fig. 6. The lowest 'P Fesh-
bach resonance has a minimum at -0.126019 a.u. ,
in good agreement with previous values. ~' The
shape resonance now peaks -18 meV above the n = 2
threshold with a width (FWHM) of 1"-15 meV, in
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excellent agreement with the e-H scattering esti-
mates. ' However the peak height is 9.5 x 10 "
cm (3.4a2O) in contrast to the Macek "equal-area"
estimate' of 15 x10 ' cm'. Estimates of the os-
cillator strength (see Figs. 5 and 't) following the
technique of Macek" yielded -0.03 (quite uncer-
tain, but undoubtedly an overestimate) for the
10s10p6d(2, 1,3) calculation and 0.024 (+15') for
the 10s10p6d(0.5, 0.5, 0.5) calculation. These are
to be compared with the Macek' and Hyman et al.'
1s-2s-2p close-coupling estimate of 0.044, which
Macek assumed would not change appreciably with
the addition of correlation terms (closed channels).
At this point we note only that these results sug-
gest that the Macek oscillator strength and peak
height for the 'P shape resonance may be too large

by a factor of -2, possibly helping to rationalize
the negative results of Ott et gl. '
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