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The matrix element for Rayleigh scattering by atomic K-shell electrons is evaluated in the limit of high
photon energies at finite momentum transfers A. The limiting form of the matrix element 3% is derived from
its relativistic expression at finite energies 9 in which the one-electron Green’s function G is replaced by its
nonrelativistic approximation G, with adequately modified parameters. The expression obtained for 1 is exact
in A and the atomic number Z, and is equivalent to the one found by Goldberger and Low. The evaluation of
the matrix element is carried out in momentum space for the case of a Coulomb atomic field. Exact integral
representations are used for G, and the ground-state eigenspinors. The integration of 9 is carried out
analytically as far as possible and at one stage the high-energy limit is taken. For one K-shell electron, when
electron spin-flip is possible, 91 is expressed in terms of three real amplitudes H, K, and L, whereas the
matrix element for the closed K shell, 31, depends only on H. The amplitudes are obtained as one-
dimensional integrals over Appell functions F,. They simplify considerably in the case of forward scattering,
and the connection of their imaginary parts with absorption cross sections is discussed. Expansions of the
forward amplitudes in powers of a = a Z are also given. Further, a connection between H and the
nonrelativistic form factor is established, and the asymptotic behavior of H with respect to A is derived. Then,
a description is given of the numerical methods used. H is computed for 0 < A/am <15and 1 < Z <a™'. Of
the electron spin-flip amplitudes only K is computed for forward scattering (L vanishes in this case). The
numerical results are discussed and comparison is made with other works. The validity of the high-energy
result 3T, at lower photon energies is considered. Finally, the magnitude of the Rayleigh matrix element My is

compared with the one for Delbriick scattering.

I. INTRODUCTION

Several elementary processes contribute to the
elastic scattering of a photon by an atom: Ray-
leigh scattering by its bound electrons, nuclear
Thomson scattering, Delbriick scattering by the
electrostatic field of the nucleus, nuclear reso-
nance scattering, and higher-order processes.
The matrix elements of these processes have to be
added coherently in order to obtain the matrix ele-
ment for elastic scattering by the atom as a whole.

We are interested here in Rayleigh scattering at
high energies. In the independent-electron approx-
imation, in which all electrons are assumed to be
under the influence of the same central atomic
field, the matrix element for the whole system re-
duces to the coherent sum of their individual con-
tributions. This should be a good approximation
for the case of inner-shell electrons, even if the
atomic field is taken to be of Coulomb form.

The one-electron matrix element for relativistic
Rayleigh scattering was derived by Waller.! It
contains a summation over the complete set of
(positive and negative) energy eigenstates of the
electron in the atomic field. Because of its com-
plexity, the matrix element cannot be evaluated
analytically exactly even for a Coulomb field.
(This is contrary to what happens in the nonrelati-
vistic case, where the matrix element can be ex-
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pressed in terms of known transcendental func-
tions.?%) Consequently some simple analytic ap-
proximations have been sought, such as the rela-
tivistic form factor,* along with small-angle cor-
rections to it,% and a first-order Born approxima-
tion for the sum over intermediate states.®

Major progress was achieved when a numerical
computation of the matrix elements became fea-
sible. This was first done by G. E. Brown and
collaborators for the case of the K shell, in the
1950’.” The method is based on a partial -wave
analysis of the matrix element. Because of the
limited possibilities of the computers of the time,
angular distributions were obtained only for Z =80
and photon energies x/m=0.32, 0.64, 1.28, 2.56.
The same method was subsequently applied to de-
rive the angular distribution for Z =80 and «/m
=5.12 by Cornille and Chapdelaine.? Until recent-
ly, these were the only accurate results at rela-
tivistic energies which could be used for compari-
son. However, recently a new partial -wave cal -
culation has been completed by Lin, Cheng, and
Johnson.®

Other relativistic calculations have been carried
out for the special case of forward scattering'® or
for evaluating the index of refraction,'’ a problem
which is directly related to forward scattering.

Some time ago Goldberger and Low considered
the case of Rayleigh scattering at high energies.'?
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Practically all photons are then scattered close to
the forward direction. The higher the energy of
the photon «k, the smaller the relevant scattering
angles 6 will be. In this case it is convenient to
replace 6 by the photon momentum transfer A=2x
singf. Thus, in the high-energy limit, the matrix
element will be nonvanishing only for finite mo-
mentum transfers A. In the following we will
therefore express the matrix element I in terms
of the variables k, A, Z (the nuclear charge).

The limit considered by Goldberger and Low is
k-, with A kept fixed. They obtained a finite
result of the form

LimM(x, A, Z) = (4, Z), 1)
ko
and gave a formula for &ITL(A, Z) which, however,
they did not evaluate. The consequences of the ap-
plication of dispersion relations to the problem
were also discussed.

In this connection, in earlier days there have
been some uncertainties and inaccuracies. For
example, Gell-Mann, Goldberger, and Thirring'®
suggested that in the high-energy limit and for for-
ward scattering, A=0, the matrix element I of
Eq. (1) would be independent of the binding of the
electron (i.e., of Z) and would have the same value
as if it were free (=1, in our notation).'# !5 This
suggestion was questioned soon afterwards by Le-
vinger and Rustgi'® who considered the specific
case of lead and found from a numerical evaluation
of the dispersion relation for a K -shell electron
that N was smaller than 1. The formula derived
by Goldberger and Low for 3 clearly displays at
A=0 the Z dependence and hence the inaccuracy
of the previous suggestion.

The relative magnitude of the matrix elements of
the processes contributing to the elastic scattering
of a photon by an atom depends on the energy of
the photon, on the scattering angle, on the nuclear
charge Z, on the number of electrons and their
configuration, and, at higher energies, on the nu-
clear structure. At energies up to about 1 MeV,
Rayleigh scattering is dominant for all Z. For
higher energies, especially for high-Z atoms and
large angles, Delbriick scattering becomes in-
creasingly important and finally completely ob-
scures Rayleigh scattering. In the energy range
between 1 and 10 MeV there are interference ef-
fects between the two.

There has been considerable experimental in-
terest lately in the detection of the Delbriick ef-
fect, and a new theoretical calculation was made
by Papatzacos and Mork.'® The effect has finally
been established experimentally at energies higher
than 10 MeV and for angles where Rayleigh scat-
tering is negligible. However, the agreement be-

tween theory and experiment is rather poor in the
energy range 1-10 MeV and at small angles, where
both effects contribute. This is partly due to un-
certainties in the theoretical knowledge of Rayleigh
scattering, which has been estimated on the basis
of semiempirical formulas. Whereas the energies
in this range are low from the point of view of Del -
briick scattering, we shall see that they may be
considered high for Rayleigh scattering. Conse-
quently, one will be able to use for the latter the
high-energy-limit matrix element (A, Z), per-
taining to the whole system of atomic electrons.

At not too small momentum transfers A this is
close to that of the K shell, as can be inferred
from the approximate form-factor calculations for
the higher shells.

In this paper we present the evaluation of the
high-energy -limit matrix element (A, Z) for the
case of a K -shell electron. The atomic field is as-
sumed to be of Coulomb form. The integration of
the matrix element is carried out in momentum
space by a relativistic extension of the Green’s -
function method used previously by one of the au-
thors in the nonrelativistic case.>® We start from
the matrix element at finite energies M(k, 4, Z),
which we express in terms of the relativistic Cou-
lomb Green’s function, the properties of which
were studied by Hostler.” Whereas in the nonrel -
ativistic case exact closed-form expressions are
known for the Coulomb Green’s function, this does
not hold in the relativistic case. Nevertheless, we
show that in order to obtain the exact A and Z de-
pendence of (4, Z) it is sufficient to use the non-
relativistic Green’s function, with parameters
modified so as to take relativity into account. For
this we use the Schwinger integral representation
in momentum space.!® Exact integral representa-
tions are used for the Dirac ground-state spinors.
Thus the matrix element involves integrals over
the momentum -space variables p, and p,, over the
two auxiliary variables introduced by the repre-
sentations of the initial and final bound -state spin-
ors, and over the auxiliary variable of the repre-
sentation of the Green’s function. After having
integrated over P, and p, we take the limit k -,
with A kept fixed. The analytic calculation of the
remaining integrals is pursued as far as possible.
We are left in the end with a one-dimensional inte-
gral containing Appell functions F,. In order to
proceed further, numerical methods have to be
used.

Section II contains the derivation by our method
of the high-energy matrix element (4, Z). We
treat the one-electron case, when electron spin
flip is possible. The equivalence of our result
with that of Goldberger and Low is proved. In Sec.
III we give the decomposition of (4, Z) in terms
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of rotation-invariant amplitudes. Section IV con-
tains the analytic calculation of these amplitudes.
For forward scattering the results simplify con-
siderably and the connection of their imaginary
parts with absorption cross sections is discussed
in Sec. V. Agreement is shown to exist with the
high-energy cross section of the photoeffect,
studied by Hall'® and Pratt.*® Expansions in a=a Z
of the amplitudes for forward scattering are also
given. In Sec. VI it is shown that for sufficiently
small a and not too large A /am the matrix ele-
ment for the K shell, M,(4,Z), is closely approx-
imated by the nonrelativistic form factor. The
asymptotic behavior of 3, (4, Z) with respect to

A is discussed. The methods we have used in the
numerical computation are presented briefly in
Sec. VII. We give a discussion of our results in
Sec. VIII. Comparison is made with other calcula-
tions [result of Levinger and Rustgi,'* and partial -
wave expansion calculations of Brown etal.,”
Cornille and Chapdelaine,® and Johnson and Lin
(private communication)]. The interference with
Delbriick scattering is also considered. Finally,
the paper contains two appendices of a mathema-
tical nature.

II. HIGH-ENERGY LIMIT OF MATRIX ELEMENT

We consider the initial state of the process to
consist of a K -shell electron of magnetic quantum
number m, =+ 3 and a photon of momentum &, and
polarization vector §,. After the photon has under-
gone the elastic scattering, we consider the K -
shell electron to be in a state of magnetic quantum
number m,=+3, the photon having momentum K,
(k, = k,=«) and polarization vector §,. We thus al-
low for the possibility of electron spin flip in the
process (m, #m,). This can occur only for a hy-
drogenlike atom. We shall allow for this more
general case because of its theoretical interest.

The relativistic matrix element of Waller can
be written as?"??

My,

=_m(s (Om, | @ *8,e" %27 |n) (n| @ -§,%1'T |Om,)
n E, —(E,+kK+i€)
. S Om, | -'s‘le‘;l';]n) (n|a +8,e T
" E,-(E, -k —i€)

Om 1)) '

@

Here, the initial- and final-state vectors of the
electron are denoted by |0m,) and |Om,), respec-
tively, and the summation is to be carried out over
the complete set of relativistic (positive and nega-
tive) energy eigenstates ]n). The infinitesimal

positive quantities € in the denominators prevent
the occurrence of singularities for k>m ~E; in
the case of the first term, and for k>m + E, in the
case of the second term.

The K -shell contribution to Rayleigh scattering
is given in the independent -electron approximation
by the coherent sum

Me= D My ®)
m=£1/2
The matrix-element equation (2) can be expressed
in terms of the Green’s-function matrix for the
Dirac Hamiltonian of the electron. This has the
following eigenspinor expansion:

G(T,, T); Q)= S u"(I-EEZ)fIIS}(FI) ’ (4)

where the sum is extended over all positive and
negative energy eigenspinors. Taking this into
account Eq. (2) becomes

M =9 4 9@ (5)

mom mamy mom,

where
- 2 .
M, = - [ [l FIe @ BIOG 5 2,)

x(a "S’x)eixl.rlumliﬁl) df, dt,,

(6)
Em"("22)"‘1= -m ff uLZ(Fz)eﬁ‘.l';Z((; * 8))G (T, T,59,)
X(d + 8y)e % P, (F,) dF,dF,,
and
Q =E +k+i€, Q,=E; -k —ic€. 7

Note that 9>, can be obtained from M), by

m
interchanging &, and §,, k, and —&,, andm%Jy1 re-
placing ©, with Q,.

The Green’s function G associated with the linear
Dirac equation can be expressed in terms of the
Green’s function G, for the iterated (second-order)
Dirac equation as follows?®:

G(F,, T,Q)= - (@ * B,+ mB+a/7,+ Q)BG,(T,, T; )8,

®)
with a=aZ. G, satisfies the integral equation
G(T,, T); Q) =Go(T,, T); Q)

‘f Go(F;, Tg; QWG (Fs, T,5 Q) dF,
©)

where G, is the nonrelativistic Green’s function
with modified parameters and W(T) is the operator

W(T) =iad » T/r3+a?/r?. (10)
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By iterating Eq. (9) one can express G, in the
form of an expansion in ascending powers of a.
We prefer to write the matrix elements (6) as
integrals in momentum space. In fact we need
consider only the case of ), , because M3,

mom
can be derived simply from it.l By introducing the
Fourier transforms of the quantities involved and
by using Eq. (8), we get

(1)
mzm]

=m _[“;2(51 —i)@ - 8,) & D+ mB+V(D,)+ Q]

XBGI(§2’ 51; Ql)ﬁ(& ¢ §1)
Xuml(§1 _El)dﬁl dﬁZ' (11)

Here U(D,) is the integral operator in momentum
space of the potential

V(EI6(B, 5= V(B -DC@BIdd, (12

with V(P) the Fourier transform of a/». Equation
(11) can be further written

ML= m [ [ (B, + D)@ 5,)

X[& (D + k) +mB+0(D,+K,)+Ey+ k]

X BG (D, + Ky, B, + Ky, ©,)8(c +8,)

where we have introduced the photon momentum
transfer A=%, —&,.

G,(P,,D,, ) appearing in Eq. (13) can be ex-
pressed by the Fourier transform of Eq. (9),

Gl(ﬁz, 51; Q)= Go(ﬁzv 51; Q)
~ [ [ 6ol Bis W @

X G[(ﬁs"‘a’ﬁl; Q)dﬁa da (14)
Here W(J) is the Fourier transform of W(¥) of Eq.
(10).
We want to obtain the high-energy limit of Eq.
(13). As in Eq. (1), we denote

MO = limam |, i=1,2. (15)

mzml mzmli
Here and in the following the symbol “lim” will
mean x -2, with A being kept constant. Then, to
lowest order in 1/k, we have ¥, =k, =k = kU, where
7 is the unit vector of X; also, VA=0, $,=75,=0.
To begin, let us consider the limit

mKG (D, + K, D, + K; Eo+ K +1€), (16)

where D, and D, belong to a finite domain. We want
to prove that it is equal to the function

§U(P,, P,) =limkG (D, + K, D, + K; Eo + k + i€) . (17)

For this purpose we shall use the iteration expan-
sion of Eq. (14).

First we show that the limit defined by Eq. (17)
exists. This can be done by using the Schwinger

X um1(§1)d p,db,, (13) integral representation for G,, given by'®?*
. 1 L d [1-p? 1
Go(P ,Q=——X3f "-—( S )d,
oPo P )= =3z X |07 o (T X708, “BP+ (b T+ X022+ X0 - 0 /4pT ) % (8

where, in the present case,

X2=m?-Q%, T=aQ2/X, ReX>0.

2 2~ . - s s
XT+Kk*~ -2EK —i€, X,~~ik, T,~ia.

Hence by introducing Eq. (18) into Eq. (17), we find®

. . i 1o, d (1 =p?
9“’(p2,p1)=—4—"2f p"'%-< P
0

This shows that §* is indeed well defined.

Next, we consider the contribution to the limit
(16) of the second term of the iteration expansion
of G;, Eq. (14):

(19)
If we replace £ in Eq. (19) with ©, of Eq. (7), we get in the high-energy limit
(20)
S— S S— » 2>dp. (21)
p [(p1 -0, —(Eo-DP,V+i€)(Ey —DV+i€)(1l -p) /P]
r
From here it follows that we can write
T(ﬁ?_“lh E; 51"’ f)= —f/Go(ﬁz"'E’ 53"‘ E; 91)W(a)
X Go(ﬁs‘*'"? -g, p,+ i Q)
xdp,dq . (23)

T(ﬁz, 51)= —ffGo(ﬁzﬁa;Qx)W(a)

XGO(53 ‘a, ﬁl; Ql)d§3d6~ (22)

Therefore in the limit x —« and with §,, D, bounded,
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by taking into account Eq. (17) we get the dominant
behavior?®

- - - 1 - - -
kT(D,+ &, P, + £) = —;ff 84D, D) W(Q)

x (B, -4, B,) dP; 4 .
(24)

This term is of order 1/k and is vanishing with
respect to the term given by Eq. (17), which is
finite. Similarly, one can show that the nth term
of the iteration expansion of G;, Eq. (14), yields
a contribution of order 1/k™! to the limit Eq. (16).
Hence, as stated,

1im kG (D, + &, D, + K; Eq+ k + €)= 8(D,, D)) -
(25)
This equation is exact in the atomic charge Z.?"
Let us now consider the limit (15) of the matrix
element (13). By noting that the spinors u,(p) are
rapidly decreasing functions of p,?® it follows that
only an essentially finite domain of momentum
space will contribute to the integral of Eq. (13). In
Eqgs. (15) and (13) we can invert the integral with
the limit and use Eq. (25).?¢ Also, the term dp,
+mpB+E, in the square bracket of Eq. (13) should
be neglected.?® Moreover, from Egs. (12) and (25)
we find that for large values of k

J
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v(ﬁz"‘-’acl(ﬁz"“’?’li*"’?; 2,)
=fV(§z —E)GI(E*"E’EF"EJ&

= (1/")'0( 52)9(1)(52, 51) »  (26)

which shows that the term is vanishing and should
be dropped.
We are finally left with

Wit = [ [ (Bo+ BNG -B)(1+G - PG - 5)

X 8By, ByJun(B))dB,dB,.  (27)

The case of M) can be handled similarly. We

mom;
now define
82X, P,)=1imkG,(D, K, D, —K; E, — Kk —i€).
(28)

The expression of 8®’ can be obtained from Eqs.
(18) and (19) by replacing Q with ,, given by Eq.
(7). However, instead of Eq. (20), we now use

X2+K2=+2E K —i€, X,~ -ik, T,~ —ia. (29)
We thus find

9(2)(52961)= —[9(1)(5”51)]* ’ (30)
with §% defined by Eq. (21). Finally, we get

ﬁff}..f -mffu;.z(ﬁz*' A")(&°§1)(]"" &'F)(&'§2)g(2)(§2,ﬁx)“ml(ﬁl)dﬁldﬁz . (31)

We will now show that the high-energy limit we derived for the Waller matrix element, Egs. (5), (15),

(27), and (31), agrees with the result of Goldberger and Low. To this end we need the expression of me)

Eq. (27), as a configuration-space integral, mem?
Tiin =m [ [l (F)e!® (3 E)(1+ & D) - §1>< lim ke"®TaG,(F,, ¥, Ql)e‘;‘?x> U, (F) AT, dF,.

This can also be written
T, =m [ 1, @D @51+ & D)@ -8 Nim ke F T HD - X3]2eF Fha, (F) aT (32)

where o tF T (5 —Xﬂ"e‘zG: [-(B+10)2+2aQ,/r -X2]*.
Hy=-$2+2a0/7, (33) Inserting this into Eq. (33) and taking the high-en-

and [H, - X?]" is the operator form of the Green’s
function G,.*®
We then apply the operator equality®®

e F[HB+K) - w] e *F = [HB) - 0], (34)

where H (P) is a Hamiltonian and H(P + &) is the
result when the momentum operator P is replaced
by P+K; w is a constant which does not belong to
the spectrum of H.

By setting in Eq. (34) H=H{" and w=X?2, we get

ergy limit, it follows [see also Egs. (7) and (20)]
that

— o= 1+ a7V
T, =m [, @ 7@ 5) GG 5)

-]
X (Eo+% - is-F+i€> U (F)dT.
(35)
This represents the first term of the result of

Goldberger and Low, Ref. 12, Eq. (2.7). By pro-

ceeding similarly with ;). one obtains also
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their second term, and thereby the desired equi-
valence is established.®*

III. INVARIANT AMPLITUDES

In the following we analyze the high-energy limit
of the Waller matrix element in terms of rotation-
invariant amplitudes and derive their analytical
form.

The exact K -shell eigenspinors in momentum
space have the following form:

Un(D)=la(p)+20(P)AE *B] X - (36)

Here x,, is the constant spinor of a free particle
at rest. For m=3, x,is (1,0,0,0), and for m
=-3%, X, is (0,1,0,0). The functions a(p) and
b(p) can be expressed in terms of the integral
representations® 3

—

© A(l+x)

ﬁr(n!zzm= xrnz (A(& S )@ 8+ z(d@ - L9107 -F)(&-E,)(d’ '§1) +%(E'§z)(&'§2)(& D) -8))

OB TCRACEATC
iJ

where

A=mff a(§2+Z)a(ﬁl)g(l)(523§1)dﬁxd§2’
(43)

B,=m [ [ B,a(5,+ &b(5,)8*(5,,5,) 4B, P,
(44)
Bo=m [ [ (8,+)b(5,+D)a(5)8(5,, 5) 4B, 5.,
(45)

Cu=m/fﬁu(?zj"’Aj)b(ﬁﬁx)b(ﬁx)

xgW(D,,P,)d P, dD, - (46)

The last three integrals must have the following
forms:

B,=B'7+B"3, (")
B,=B' -B"5, (48)
Cy;=Cd;;+Dvv;+E(v;5; —v;6;)+F5;5;. (49)

Here the 6; are the components of the unit vector
of the momentum transfer, 5= K/A, whereas §,;
is the Kronecker symbol. The special form of
Eqs. (47)-(49) can be established by changing the
integration variables according to B,~D, -4, P,

-P, -4, and noting that from Eq. (21) we have

-

g(”(ﬁl - K, p: - K)= g(l)(ﬁz, 51) ’

R YDl S v ires
M= £ Ty S, * R
(38)
where N is the normalization constant
N=(@"2/mn/2[(14+9)/T(2y+ 1)]*/2. (39)
We have denoted here
a=aZ, r=am, v=(1-a?2. (40)
The energy eigenvalue of the ground state is
E,=my. (41)
By inserting Eq. (36) into Eq. (27) we get
(42)

r

since PA=0. Therefore
B,(-X)=B,8), ¢, (-8)=c,(d),

from which Eqs. (47)-(49) readily follow.

After carrying out the matrix algebra implied
by Eq. (42) and taking into account that §, - V=8,V
=0, 7+-5=0, we find that ™ can be cast in the
general form

T, Xotxms =12, (50)
where ¥ is the matrix

UD =g S, 3,)+iKDE - (8,85,

+iLDE, - 8)5 - Fx D). (51)
In the present case i=1 and we get
HY=A _-B'+3C+iD+%F, (52)
K"W=A -B' -3C+3iD -%F, (53)
L™= _ (B +3E). (54)
The case of ﬁ,‘fz’ml immediately reduces to that

of ML), , if one considers Egs. (28), (30), and (31).
We find that Egs. (50) and (51) remain valid also
for =2, and that

H(2):H(1)* s K(2)= _K(l)*, L(2)=L(1)* (55)

By summing the two contributions for i=1 and
i=2, we get

Mo my = Xy WXom, 5 (56)
with
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w=H(S, §)+KG+ (§,%x8)+iL{E, - 8)5- Fx3),
(57)

where H, K, L are given by

H=2ReHY, K=_-2ImK"“, L=2ReL%,
(58)

We have thus achieved the decomposition of the
matrix element Eq. (56) in terms of three invari-
ant amplitudes. Note that all of them are real.

From Egs. (56) and (57) it is apparent that for
m, =m, all amplitudes contribute, whereas in the
case of electron spin flip, m, #m,, only K and L
contribute.

The K -shell contribution to Rayleigh scattering
is given by [see Eq. (3)]

M, =2H(E, - §,). (59)

H is therefore the physically important amplitude
and we shall be concerned mainly with it in what
follows.

J

IV. ANALYTIC EXPRESSIONS FOR THE AMPLITUDES

We are now faced with the calculation of the
amplitudes (58) and (52)-(54). Taking into account
Eqs. (43)-(46), (21), (37), and (38), these are ex-
pressed in terms of three parametric integrals,
followed by momentum-space integrals. Many of
these can be carried out analytically, but not all.
We shall try to pursue the analytic calculation as
far as possible and only in the end apply numerical
methods.

For all of Eqs. (43)-(46) the first step will be to
change the order of integrations: perform first the
integrations in momentum space and leave the pa-
rametric integrals to the end. Further, instead of
using the integral representation Eq. (21) for §*,
we prefer to consider it defined by Eq. (17) in
terms of G,, and use the integral representation
Eq. (18) for the latter. This is because we have
already calculated elsewhere the relevant momen-
tum -space integrals in terms of G, (for finite ).

Let us consider the case of A, Eq. (43). By in-
serting here the integral representations Egs. (18)
and (37) we can write

- 1i m N ? s [0 - (7 ° "7—-d—(1 _— >
A=lim (— 4-,,—2)(1«—(1‘;7)) KX:_/; app 1fo dxfo dy (xy) \ U, (60)
where
U=ff A(L+y)(1+x)dD,dD, . (61)
[(3, -2+ 21+ ) PIX (D, -0, + a(p2+ X D (p2+ X DF(F, -1, + X2(L+ )]
We have abbreviated
a=(1-p)/4p. (62)
The momentum-space integral equation (61) can be expressed in terms of
J-‘-"ff Ed = e > dﬁldﬁz > > . (63)
(P, - %)% + kI [X (D, -D)*+ a(pi+ X ) (p3+ X )] (B, - k,)* + 27
Indeed, we can write?®
- _m N e g [ % -7J 13 3_1_ a2 _d_l—pz
A=— 4ﬂ2<r(1 _7))[) dpp /o' /0' dxdy ()" | imX 3 gm0 =T ¢ (64)

where it is understood that after performing the derivatives contained in the curly brackets of Eq. (64), A
and u should be replaced by A(1+x) and A(1+y), respectively.
The integral (63) was encountered and calculated in a previous work. We have calculated there [Ref. 3,

Eq. (23)] also the derivative

d/1-p* \_ 167 1

35( p J)__)?r?’ (65)
with

c={lX+2)2+x2]=p[(X =22+ 2H{[(X + p)?+ k2] = p[(X - n)?+ 2]} + 4pX2A% + 4pX 2(X — p)?. (66)

From this it follows that
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82 d(l—p2J>=64ﬂ4(X+A)(X+u)+2p(2X2—ku)+(X -AM(X - p)p? 8Az[X+7\+40(X A)][X+u+p(X )]

axdudp\ p X*? c?
—8p(1 - ) - #)Ki[X+7t+p(X -K)]-;éff[Xw* p+p(X - u)])_ )
In the high-energy limit, by taking X=X, and using Eq. (20), we get
et gt (18 (LAt oY -0, ©8)
where
¢’ =1im(1/4Kk?)c = [Ey+ix = p(Ey —iM)] [Eg+ip —p(Ey —ip)]-p[AZ+ (X - p)?]. (69)

In Egs. (68) and (69) we now have to replace X and p by A(1+x) and A(1+y). When we insert the result
into Eq. (64), we get

C c

C is obtained by making the aforementioned substitution in Eq. (69), which gives
T=c,c, —pAd? c,=[E +ix —p(E, —i\)] +idx+ixpy, c,=[Eq+iX —p(E, —i\)] +iNpx+i)y . (71)

We shall consider next the case of B,, Eq. (44). By using the integral representations (18), (37), and
(38) we can write

§1=lim< m)12+ay<1‘(1Ny)> f dpp f f dxdy (xy)” (1 pﬂ), (12)

"7 =ff = = X(1+y)(§1—il)d§1d§2
! [(B, —%2)2+ A2(1+ 92X 2(D, - D,)? + a(p2+ X (P2 + X )P, - £,)? + X3(L+ x)?]?

This also can be reduced to the evaluation of the integral J, Eq. (63),%°

= _ m - 1 82 d l—pz
B‘_—4_1r2—_1+7(r‘(1 Y))f dppt f f dxdy (xy)” L thX14 EPErd dp(—p J>J (74)

Again, after having taken the derivatives in the large brackets of Eq. (74), one should replace X and u by
AM1+x)and A(1+7y).
From Eq. (65) we find

82 d (1 - p? >=64ﬂ4[( A-p)X+p+p(X-p)] 8oL —p)x — u(X+p)* +K5 —p[(X - p)* +«2]}

(73)

dusk, dp\ p X2 =
_ 801 -p)X+p+p(X - p)][a%+ (A - u)2]>,;
C3 1
- 2, 2 _ )2 2
+8p{[(X+u)+p(X w](X+2) +ch3 pL(X -2+ ki1}-4pX >0 - )] & ] (15)
With X=X,, we get in high-energy limit
1 9 d/1-p° (1-p% ip(1 —p)(X = w)E;+ip —p(E, —in)]
3 L (=P 5\= 4 _ 0 0
_hmxX14 51 O%, dp< . ) + 167 [( 16e72 4z
L =pPpl -p%) A% - p?)
86/3 86[3 l
L PA+p)Eg+ir — pii‘i‘,s—zh)] Zzp(k—u)Ai] (76)

We next have to make the required substitutions for » and p and insert into Eq. (74). By taking into ac-
count the decomposition Eq. (47) we find*®
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T 2a N 2 1 - 2 © o _7,(1 2p>
'z o —m [ —— a(1 — 1+ 2A2 L
B 4m1+7<r(1_7)>f0 dpp™(1 p)fo fo dxdy (xy)"7| =+28755), 1)

2a N 2~ . wq @ 1
" A «fg+l -y N i . 1
B ~m T+ <——1"(1 _},)) /; dpp (1 +D)./0. '/0‘ dxdy (xy) "[Ey+ix = p(E, —i\) + ixx(1+ p)] 3 (78)

Finally, we consider the integral C;; of Eq. (46). Proceeding as before, we get

m 2a \* N 2 1 © ~ow d /1-p?
=1i - —_— —_— — 3 ~ia -y % ___P_ B
Cy hm( 47r2)<1+'y) <1_, § -y)) chL'[0 dpp '/0 ./0 dx dy (xy) an < 5 W”> y (79)

where

_ (p -k i)(pz.L_KZJ)dﬁjdﬁz
L B (A s vy o e F e g Ty ) o A o (80)

Also, this can be expressed in terms of Eq. (63),%

_ m (2 N( N N o o '7\:. 1 d1-p )]
Cis= =g <1+7> (F(l —7)> —[ e -[ -o/ dxdy Gey)” | limie X' o, p \ o 0) ) @Y
with the usual substitutions for » and p in the square brackets.
From Eq. (65) we find

92 d1-p* \ _ 4[2;) 8p(1 — pH{(X + w)2+ k2 —p[(X - u)?+«2]}+32p2x 2
3Ky ; 9Ky d_p-< p J) = 6dn 2'75”_ c? KyiKyj

((1 -p)*  8p(L —pP[a+(x - p)?]  8p(1 —p){(X+ AP +k2 —pl(X -1 +3]}
+ ZxZ T P + P

8p(1 —pH(X + )2+ k2 —p[(X - p)+3]}  32p°X2
+ P tTa KyiKaj
32p%x? 8p(1 — (X +2)?+ k2 — p[(X = 2)*+ k?]}+ 32p°X 2

+ KoKy — KoK . (82
c3 2i™1j ca 24 2]] ( )

With X=X, and in the high-energy limit, Eq. (82) yields

. I ip .((1 -pf  p(L-p)[a%+(n - u)2]> 4ip?
3 —_— — = " — :
limk X 3 1 5%, 9%, dp ( 5 J> 211“,:?2-6,, i\Togrz+ =73 ViVt = A4,

1-p)E,+ip —p(E, —i
L 2;2 p)l °+§,‘§ p(E, Z“)]V{

Ay

_ 9P =p)[Eqy+ szs - P(E, —iN)] Vin]' (83)

—

We next perform the substitutions for X and u, . 2a \? N 2 Led
insert into Eq. (81), and decompose the integral E==izma (1+‘y> (r(l -'y)) [ dpp'*(1 - p)
according to Eq. (49). This yields

c:_ﬁ,,,( 2a )2(_1\’_)2 X [w[mdxdy(xy)"

2 "\I+y/) \T(T =)
/1 w o e « Eo+iX(1+y) —;)3[E° —-ix(1+y)] (86)
x [ dpp™t dxdy (xy) 7 ()2, (84) 3 ’
.20 {[ 2 F= _2%mmA? 2a \? N)z
o (2 () e ) e
x [apprie(1 - pp? x oo™t [T [T axay G)7ier?. 67)
0

o 1 20[8%12%(x —y)7 We have so far carried out the momentum -space
X f f dx dy (xy)"(_—2+ ____3__3)_) s integrations contained in the integrals (52)—(54)

o %0 ¢ ¢ and (43)-(49). We are left with threefold integrals
(85) over the parameters p,x,y. The integration can
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be carried out analytically one step further, there- - 1 f T~ (= 8
by reducing the threefold integrals to one-dimen- L(p) [TaA-9)F ofo *oy)T@)y dxdy,  (90)
sional integrals over hypergeometric functions of
two variables of Appell’s type F,.%¢ 1 wno0
. . _— — )2 -7 (=)= 3
Indeed, let \is first ief:ne I,(p) 2[1-.(1_7)]21)‘]0 & =3V xy)7 (@) axay .
L(p)= f f *(c)2dxdy, (88
1(p) TA-NEL J, (xy)"(©) dy (88) (91)
1 ©aw s We can then write Egs. (70), (77), (78), and
12(p)=ﬁ,—(1_—y)]2 fo [ (ey)y"(@) *dxdy , (89) (84)-(87) as follows:
J
. 5 1
A=- %Nz m f pte[(1 +4p+ ), (p) +4p(1 = p)* (N1, (p) + 2p(1 + p)*L,(p)A%] dp , (92)
o]
Br=- T 2y [ 01— P, (0)+ 2001 - P (8] (93)
114y A 1(0)+2p(1 - p*)L(p)A%]dp
2 1 . . .
B"=- ﬂ"I:a;szA _£ Pt +p){[E, +ix - p(Ey - i) (p) +iM(1 +p);5(p)}dp , (94)
_ im?f 2a \% , o
C=- 2 <1+'}’> N m'/(; p aIl(P)dP, (95)
ir?( 2a \? to 203 \2 2
D=+2(22) N2y f p (1 - p)I, (p) = 4p(1 = p)* (1)L, (p) +2p(1 - p)*L,(p)A%]dp , (96)
4 \1+y o
. of 2a \? o . , .
E=- w2<—1—f_-;) NmA A P11 = pH{[E, +ix = p(Ey = i0) ), () +ix(1 + p)L,(p)} dp , (97)
F=-2i 2( 2a >2N2mA2fl 2iep (p)d (98)
= am\y +y A p Ay p-
Equations (52) and (92)-(98) then give
1 ‘ 2a a \? }
)= _ L;-2n2 - 2) 4 (1 = p2) = [ —— - 2
H TN m’/; o “{[(1+4p+p )+zl+_y(1 ) <1+7> (1-8p+p*|1,(p)
2 A"’[(1+ Pri28 (1o ) - (—2-Y(1-6p+ 2)]1 ©)
p p 1 +7 p 1+,y p p 2
. a \?
+4(iap(t - ) 1+(75) ]14(;»} dp. (99)
Similar expressions can be found for K’ and L,
The integrals (88)-(91) are calculated in Appendix A. From Egs. (A25)-(A27) we find
Li(p) =[T(2+2y)/8(N)* 2 ][3(1 + p) P *{[Eq +iX = p(Eo— iN)]* = pA} Y "F (1 - y; 149,555 52,,2,) (100)
L(p) = [T(4+2y)/12060 " 2][3(1 + p) P 2{[(Eo +iX) = p(Eq = i) |2 = pA?} 2 7F (1 =y ; 2+y,3 3 3:2,,2,) , (101)
L(p)=[(1 = y)T (3 +2y)/1206\)* 2 ][3(1 + p) P~ 3[Ey +iX = p(E, - iN)]
x{[(Eo"'i)\) - p(Ey - i\)f - pa?) 2 "Fi(2-v;2 +7,%; % 321522) 5 (102)

L(p)=[(1 = y)T'(2+2y)/120GN)* #*][5(1 + p) PY~{[E+iX = p(Eo— iN) P = pAR} 1 "F (2 =y 31+y,3 ;532,,25) ,

(103)
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with
2,=p0/{p&? - [Ey+ix - p(E - i)},
z,=[(1-p)/A+p)].

Equations (92)-(104) represent our ultimate ana-
lytic result for the amplitudes of Eqs. (58) and
(52)-(54), which are expressed as integrals over
Appell functions F,. Note that H'®), Eq. (99), con-
tains three distinct such functions. From here on
we must continue by numerical computation. How-
ever, before doing so, in the following two sec-
tions we shall discuss various aspects of our ana-
lytic results.

(104)

V. FORWARD SCATTERING

In the case of forward scattering the matrix U

occurring in the matrix element sm,,, - Egs. (56)-
(57), reduces to
Uo=Hy(8,-8,) +K,5-(5, % §,), (105)

where subscript zero refers to A=0. From
Egs. (54), (94), and (97) we have L,=0.

In this section we first write formulas for H,
and K,. Next we discuss the connection of our re-
sults with the high-energy limit of the cross sec-
tions for photoeffect and pair production. Finally,
we give the first terms of the expansions of H,,
and K, in powers of a.

The expressions of H for forward scattering are
simpler than in the general case. This is due to
the fact that the variable z, of Eq. (104) vanishes.

J

Therefore by using the general formula
Fi(a; by,by;5¢50,2,)=,F (a,b,,c; 2,),

the Appell functions F, in Eqgs. (100)-(103) reduce
to Gauss functions ,F,. We then insert these into
Eqgs. (92)-(96).

For Eq. (92) we find

2f

1
4= 2 [* gt s g2 ppy oo
0
X{(l +4P+Pz) 2F1(1 - 7)%’% ; Z2)
+ %(1 - 7)pzzzF1(2- Y %’%9 22)}110 s
(106)
with

£=(Ey-iN)/(Ey+ir) = (y - ia)/(y+ia) , (107)
and [see Eq. (39)]
F==Li(1+y)(1 +2y)a?* e i1 (y +4q)"27"2
(108)

The two Gauss functions occurring in the curly
brackets of Eq. (106) can be reduced to a single
one by some transformations.? We find

1
Ao=ff0 P71 +p)?"(1 - p&) 272 ,F,(-v,3,%; 2,)dp .

(109)

We apply a similar procedure to transform D, of
Eq. (96), obtaining

41 1
- (%) S e o - poy- (2 L v ia) Al b ) d. (10)

We now insert Eqs. (109) and (110), and Egs. (93) and (95) (taken for A=0), into Eq. (52). The result is

Hu)—ff P-‘u(l‘*P)zy(l pg)-2-21{ F(—Y, 2’2’2 )

4.
3 1+ zélz F1(1_7;%,%;22)

(1+7> [F(- 7,2:2,32)_‘222F 1-7,2,352 )]}dp (111)

H, appearing in Eq. (105) follows from Eq. (58).
Equations (52) and (53) give

KM =H - C,, (112)

since F,=0. K, is then obtained from Eq. (58).
Next, we want to relate the result of Eq. (111)

to the high-energy limit of the total cross section

for the photoeffect from the K shell. Let us denote

by P the matrix elements defined by Egs. (2)

and (5), taken for forward scattering (K1 =Ky = rc)

with no change of photon polarization (s1 =5,=9)

or electron-spin projection (m, =m,=m). From

Eq. (2) it follows that®®

ImIMY = - (k/4mry)o™, ImIMNP =+ (k/4mryo™ .

(113)

Here o* is the total cross section for the photoef-
fect involving the photon ¥, S, and a bound K- shell
electron in the magnetic state m; o™ is the total
cross section for pair production by the same pho-
ton, with the electron left in the state m of the K
shell and the positron flying away; 7,=e%/m is the
classical electron radius.
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In the high-energy limit we get from Egs. (50)-
(52) and (55)

ImINSY =ImAHS" , Imi$® =-ImH® . (114)
We thus find the limiting behavior3®
GRe=5=— (877,/k) ImHS"), (115)

where 6%, 2 are now cross sections for the whole
K shell. Equation (115) shows that the two cross
sections become equal at high energies, which is
a point of interest in connection with the applica-
tion of dispersion relations to our problem.*

Equations (115) and (111) give a formula for cal-
culating the high-energy limit of the photoeffect
cross section. This limit was studied by Hall*®
and subsequently in more detail by Pratt,** who
derived several equivalent expressions for 0}°
in terms of double integrals. Let us now show that
our result agrees with his.

We first consider H{"*, the complex conjugate
of Eq. (111), in which we change the integration
variable according to p’ =1/p. We thus find

ImHM = (1/2i)(HE - H*)
1 r® -2-
=5 [ e = pey e dp, (16)
0

which contains the same curly brackets {***} as
Eq. (111). In Eq. (116) we replace the Gauss func-
tions ,F, by their standard integral representa-
tion,* written in terms of a variable . By then
changing the variables of integration p and ¢ ac-
cording to p=(1+x)/(1 - x) and ¢ =y2, we obtain
Eqs. (47) and (48) of Ref. 20.*

Finally, we give the first terms of the series
expansions of H, and K,, Egs. (105) and (58), in
powers of a. Although, in principle, the deriva-
tion is rather straightforward, in practice it turns
out to be extremely tedious. In the case of H, the
expansion was carried out to order a* (included),
whereas in the case of K only to order a (in-
cluded). The calculations are given in Appendix B.

Equations (B14) and (B20) yield

Hy=1-}a+5 a*+ O(@) , (8L
K,=%a%a* "% exp(-2acos™ta)][ (1 - 2 ma+ O(a?)].

(118)

il

In Eq. (118) we have kept some corrective terms
-

1+4p+p°

R NS errerier v

After integrating and dropping some more terms
of order a, we find

Fyr=F,(A/N)=[1+(a/20)2]2 . (120)

of order a® which are numerically important.

These quantities were calculated also in Ref. 12,
Eq. (3.4), to about the same order in a. However,
the results obtained there differ from ours in that
the coefficient of a* in Eq. (117) is found to be 214
and the one of the leading term in a® of Eq. (118)
is found to be ¥ (instead of 3).3** The numerical
computation we have carried out for H, (see Sec.
VII) favors at low a@ our results, Egs. (117) and
(118).44:45

V1. FORM FACTOR APPROXIMATION AND BEHAVIOR
FOR LARGE A

As noted by Goldberger and Low, for small a
the high-energy-limit matrix element Egs. (3),
(5), (15), and (35) [or, equivalently, (27)] reduces
to the form-factor approximation. Let us analyze
in some detail the small-a limit of our analytic
result, Egs. (59), (568), and (99)-(104), for all A.

Equation (99) shows that H*) can be considered
to be a function of the two variables a@ and A/A.
Consequently, from Eq. (58), the same applies toH:

H=H(A/X\, a) .

We are interested in deriving the lowest-order
terms of the expansion of H in powers of a, for
fixed A/Xx. We write the expansion as

H(%,a):Fo(%>+uFl<%)+a2F2(%)+° s
(119)

This is only apparently an expansion in a, since
the variable A/X also depends on a. Neverthe-
less, for sufficiently small values of A/X, the ex-
pansion is useful, since it successive terms de-
crease. This can be inferred from the fact that
for A=0, H(0, a) reduces to H, given in Eq. (117),
and, by comparison, the values of F (0) are found
to be of order 1 while, on the other hand, a<1.
For large values of A/ the expansion becomes
meaningless, as we shall see in the following.

In order to obtain FO(A/x) we can neglect all
quantities of order @® in Eq. (99). Thus y can be
replaced by 1 and the Appell functions £, which
are needed in Egs. (100)-(102) reduce to 1. One
can also replace p~® by 1 in the integrand of Eq.
(99) (lowest-order Born approximation of the
Green’s function, free-particle intermediate
states) and neglect some terms of order a, to get®®

p(1+p)? ) .

*> {[1+ia-p(1 -ia)P - p(a/m)P

—

In order to obtain F,(A/)) of Eq. (119) we can
again set y=1 in Eq. (99), but we must now retain
all terms of order a (including those contributed
by p~#?). The derivation is somewhat involved and
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we shall omit it. The result is F,(A/2)=0.

Fyp of Eq. (120) represents the nonrelativistic
form factor.*” Since the corrective terms in Eq.
(119) are of order a2, it is expected to approximate
quite well H(A/), a) for very-low-Z atoms, like
hydrogen, and not too large A/A. However, as
stated before, the form-factor approximation is
not uniform with respect to A/x. For large values
of this variable, the approximation breaks down,
whatever the value of Z, and the asymptotic be-
havior of H(A/, a) with respect to A is different
from the one given by Eq. (120).

In order to find the correct asymptotic behavior
we have to start from the integral of Eq. (99). For
A~ it is only the neighborhood of p=0 which con-
tributes. This is because for any p#0 the factors
in curly brackets, {* * *}, in Egs. (100)-(103) tend
to zero, whereas for p=0 they remain finite. (The
functions F, stay finite for all p and A). Hence it
is convenient to divide the integration interval
(0, 1) into two parts by a point »/A, where ¥ is
some constant. On the interval (0,7/A) we can
neglect powers of p with respect to 1. Therefore
the variable z, becomes equal to 1 and the func-
tions F, reduce to ,F,.** However, the term pA?
appearing in the curly brackets of Egs. (100)-
(103) must be kept, since it can be large. We
next change the integration variable to u = pa2/»
and consequently the integration interval becomes
(0, A). Besides, the integrand becomes indepen-
dent of A, while the power A~2*2i¢ factors out.
Since the integral can be extended to the interval
(0, ©) without perturbing the dominant asymptotic
behavior, the latter will be given by A~2*2ie 49
Thus we get the following contribution to H’:

HY = _ p(a)(a/m)"2 2ia (121)
The coefficient k(a) can be calculated exactly; we
give only the result

h((l)=+ 227-18-1rae-i1r(1-y )(127+2'L (1 +7)F(1+ 2.),)]-1

X T(1 —ia)(1 + 7y +ia)?[ T(y+ia)]?
X{F(1+ia)(y+ia)2“2"“}" . (122)
To lowest order in a we find
HV =~ _2¢4(Aa/m)"2 . (123)

Let us denote by H® the contribution of the in-
terval (¥/4,1). On this interval we can neglect
finite quantities with respect to pA%. Thus the
variable z, reduces to 1 and again the F; func-
tions become F,.** By expanding the integrand
in powers of p one finds upon integrating that the
contribution of the dominant term in A is of order

HY =~ p(a-2-7+ie]pa) | (124)
By comparing Eqs. (121) and (124) we see that

for a<1 it is H® which dominates for A - % and
therefore

H=2ReH™ ~2 ReH™ . (125)

This shows that asymtotically H is negative, in
disagreement with Fyy Eq. (120), and besides, it
decreases more slowly than the latter. However,
it should be kept in mind that Eq. (125) is valid
only for extremely large A. Note also that, to low-
estorder ina, the asymptotic term Eqs. (125), (123)
would belong to the term @®F,(A, 1) of Eq. (119).

In order to understand what happens for mod-
erately large values of A (A>> 1)) we note that Fyy
and the asymptotic term Eq. (123) are both of
order a*. In order that Fyg be still a good ap-
proximation to H, A should be such that Eq. (120)
is large with respect to Eq. (125), that is,

(A%/4X2)"2>> 4a*(A/m)™2 or (A%/mP)<4 .

In terms of the variable A/X, this becomes (A/
A)2<< O(a"?). This shows that the smaller the Z,
the larger the interval of agreement between Fyq
and H, when both are represented in terms of A/
A (as we shall do later; see Table I).

For reasonably large values of A, Fyy and the
asymptotic term of Egs. (121) and (125), both con-
tained in H [consider Eq. (119)], are not very dif-
ferent in magnitude. Besides, they are of oppos-
ite sign. Therefore it is expected that the ampli-
tude H will pass from positive values (which are
below those predicted by Fyg) to negative values,
tending to zero afterwards).?® !

VII. NUMERICAL METHODS

The evaluation of the basic integral HY’, Eqs.
(99)-(104), was done in two stages: first, the
computation of the Appell functions F, contained
in the integrand, and then the integration over p.

The most accurate and fastest way of computing
the functions F, is to sum their series expansions.
When possible, we have adopted this approach.
The expansion®® of F,(z,, z,) converges for |z, |<1
and |z,{<1. In our case we indeed have 0< 2,<1,
but z, can be smaller or larger than 1 in modulus
depending on p, A% and a. When the modulus |z, |
became larger than 0.8, we have switched over
to the computation of the F, functions from their
integral representation,®

In what concerns the integration over p in Eq.
(99), one problem here is the fact that p~i@
=cos(a lnp) - i sin(alnp) in the integrand has an
infinite number of oscillations for p—~0. Conse-
quently, we have isolated an interval (0, €) in which
we have approximated the rest of the integrand by
a polynomial, the integration then being per-
formed analytically. On the interval (e, 1) the in-
tegration was carried out by Simpson’s rule.%*
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For A/A<1, the estimated relative error on
HY is less than 1075, For A/A>7, when the com-
putation becomes more difficult and time con-
suming, the relative error is about 1073,

HY was computed for values of Z such that 6
<Z<137. For small Z, such as Z<6, one is
faced with severe problems in the p integration.5®
However, already for Z=6 the A/ dependence of
H, obtained from Eq. (58), nearly coincides for
A/x<15 (the range we consider) with Fy of Eq.
(120).

Our results for H, Eq. (58), are contained in
Table I. We have considered only values of A/
<15, because beyond this H becomes very small
and Rayleigh scattering is negligible with respect
to the other competing scattering processes. The
values of Z chosen are distributed rather uni-
formly from 1 to 92. For the reason explained
above, for Z=1 we give the values of Fy, Eq.
(120).

Table I also contains results for Z=a"! (a=1).
This case represents the high-Z limit of any rela-
tivistic quantum-mechanical calculation based on
the Dirac equation for a point nucleus. Although
nonphysical, we have considered it because it
sheds additional insight into our problem. Be-
sides, in this case the general analytic expres-
sions obtained for H*’ become simpler?®® and have
been calculated numerically independently of the
main computation. We thus had the possibility of
checking the latter.

The computation of K{*’, given by Egs. (112) and
(111), proceeds along the same lines as for H'
but is simpler because instead of Appell functions,
in the integrand we now have Gauss functions and,
besides, A=0. The results for K, of Eq. (58) are
presented in Table II. For Z=1 we encountered
difficulties in the computation, similar to the ones
described above for H*?, so that we have used
instead the expansion Eq. (118), which is quite ac-
curate in this case.*®

Besides the checks on the analytical part of the
calculations we have mentioned already, we have
also made some checks on the computation. These
refer mainly to the case A=0 which, however, is
a special case of the general program for A#0.
For example, we checked the Z dependence of
ImH" by using Eq. (115) and the existing results
for 0% the agreement was excellent.’” Also, we
compared the numerical results for H,, K, at
small a with the values obtained from the series
expansions (117) and (118) and found good agree-
ment.*** For A+ 0, a qualitative check is of-
fered by the dependence of H on A/ at values of
Z which are either small or very large (nearly
equal to a”!). In the former case H nearly co-
incides with Fyg, whereas in the latter (e.g., for

Z =136) we found that its behavior becomes close
to the one derived for Z=a"! by independent cal-
culation.

VIII. DISCUSSION

The Rayleigh-matrix element at high energies
for a single K-shell electron is given by Egs.
(56)-(58) in terms of the three amplitudes H, K,
and L. The result for the full K shell is ex-
pressed in terms of H only [ see Eq. (59)]. We
now want to comment on the numerical values
obtained for the latter in Table I.

Let us first study the A/x dependence of H, for
fixed Z. For Z=1, H practically coincides with
the nonrelativistic form factor Fyy given by Eq.
(120),5® which is a monotonically decreasing func-
tion of A/x. For not too large values of Z (e.g.,

Z =50) and moderate A/ (e.g., A/A=3), H is not
very different from Fyp. The agreement is better
for small Z and A/A. In fact, the reason we have
chosen to represent H as a function of A/x [rather
than of A/m or A/Z?®] is to illustrate that Fyp

is the underlying structure of H and to display the
Z dependence of the corrections. For large A/
and Z these are quite important.

H remains monotonically decreasing with respect
to A/ over the entire range 0 =A/x=15, for all
Z=29. However, for 42=Z=82, H has a negative
minimum, which occurs for A/x larger than 8.
For Z =92 the minimum still exists, but the cor-
responding value of H is then positive and small.
In the limiting case of Z=a"! the minimum has
disappeared and H is again monotonically de-
creasing. This behavior agrees with the quali-
tative description given in Sec. VI, based on the
interference of Fyy with the term in H which is
dominant for asymptotic A/A.

Let us also consider the variation of H when A/x
is kept fixed and Z is increased. For forward scat-
tering (A=0), H decreases monotonically with Z,
starting from a value H=1. The decrease is
rather slow for Z =92, but then as Z approaches

TABLE II. Electron spin-flip amplitude K, for forward
scattering and various Z [see Eqgs. (56) and (105)].

z K, z K,
12 0.662x10 711 60 —0.109x1073
3 0.148 x1078 73 -0.118x107?
6 0.422 1077 80 —0.242 x107?
13 0.149 x107° 82 -0.290x107?
29 0.388 x10™* 92 —0.636 %1072
42 0.105x1073 120 —0.328 x10"1
50 0.100 x107® a™t —0.808x107!

2 Evaluated with Eq. (118).
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the critical value a™*

smaller than 1.

The decrease of H with Z is maintained for all
A/x up to 2.1. However, beginning with A/A=2.25
a minimum appears in our table for Z=92. The
minimum shifts to smaller Z as A/X increases.
For A/A=8, the minimum of H is negative but
becomes shallower. The minimum minimorvum
in our table occurs for Z=60 and A/x=10,

The preceding discussion referred to the de-
pendence of H on Z for a fixed value of the vari-
able A/), which depends itself on Z. It can be
easily seen that one does not obtain in general a
monotonic variation of H with Z, even if A is taken
to be the other variable.

The electron spin-flip amplitudes of Egs. (56)-
(58) were considered by us only in the case of
forward scattering. The dependence of K, on Z
is given in Table II, while L,=0. K, has a re-
markable behavior. It starts by being very small
and positive for small values of Z such as Z=1.
It then increases many orders of magnitude when
Z grows up to 50. Between Z=50 and Z=60 it
drops to zero and becomes negative. The values
for Z=50 and Z =60 are nearly the same in abso-
lute value. Beyond Z=60, K, becomes more and
more negative until it attains its lowest value for
Z=a"'. We cannot offer a physical explanation of
why the probability of electron spin flip should
vanish when the strength of the Coulomb field
varies from Z=50 to Z=60.

We shall now compare our results with previous
ones. Levinger and Rustgi'® have computed the
high-energy-limit matrix element EITZ(A; Z) for lead
and forward scattering from the Kramers-Kronig
dispersion relation (the generalized Thomas-
Reiche-Kuhn sum rule).’®'? The result they found
was 391, (0;82)=0.86. As noted in Sec. I this
cast doubt on the suggestion in Ref. 13, according
to which 391 ,(0; Z) should have been equal to 1.
The good agreement with our value 0.8552 given
in Table I is somewhat fortuitous, because some
of the input data they used have been meanwhile
recognized as incorrect.%®

Our result for 9M,(A; Z) was derived in the limit
of high photon energies (mathematically, «-)
and finite momentum transfers A. A natural ques-
tion is to what extent the result can be applied to
the case of finite k. In order to discuss this ques-
tion we need to digress regarding the general form
of the Rayleigh matrix element (.

Rotation invariance requires that in the case of
a closed shell or an atom with closed shells, the
matrix element should have the following form:

M=M(3, 35+ N(5, - B,)(5F P , (126)

, H becomes appreciably

where 7, and 7, are the unit vectors of k, and k,.®

The amplitudes M and N are in general complex.

When the matrix element for one electron is de-
fined as in Eq. (2), the differential cross section
for polarized initial and final photons is

do,=7rf|am|2dq , (127)

with 7,=e?/m. By averaging over the initial and
summing over the final photon polarizations, we
get

do=%7r2[ |9, |2+ |om, [2] de
=rel lmNSFlz+ Ifmsplz] aq , (128)
where®
M, =M, IM,=M cosd - Nsin?9 ; (129)
Msp=12[M(cosf-1) - Nsin?6] ,

(130)
IMysr=12 [ M(cosf+1) - Nsin?0] .
Therefore the process can be described either by
the amplitudes (129), or (130). The existing
numerical calculations have used both alter-
natives.

In the high-energy limit and for finite momentum
transfers A it is only the first term of Eq. (126)
which survives [see Eq. (59)] .2 If we want to
apply Eq. (59) at lower photon energies and finite
scattering angles, this suggests the following ap-
proximate forms for the amplitudes Eq. (129) for
the K shell:

9, =2H, 9N, =2H cos6 . (131)

We can now discuss the conditions under which
Eq. (131) should be a valid approximation to Eq.
(129). A significant fact is that the high-energy-
limit result H reduces for small a and sufficiently
small A/X to Fyg, Eq. (120), which is a nonrela-
tivistic approximation (see Sec. VI). The assump-
tions made in nonrelativistic theory in deriving
the form factor are that orders a® and k/m can be
neglected, but that « is large enough with respect
to the binding energy of the electron I(Z) [ in the
relativistic Coulomb case we have I(Z) =m(1 -7)].
Combining this with our results one can expect
that Eq. (131) will give a uniform approximation
in « from nonrelativistic energies k>I up to ex-
tremely high relativistic energies, at least for
small @ and A/X not too large.®® Moreover, the
statement seems to be true also for large values
of a. It is hard to prove this directly by analyzing
the magnitude of the terms neglected in deriving
Eq. (59), because of their multitude and complexity.
However, aqualitative analysis we have made indi-
cates that this is the case. We also find that in
order to have the agreement of the matrix ele-
ments 91, and 9M,, A should be limited by a condi-
tion of the form A2%/A2<< O(k/m).
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However, it is more conclusive to compare our
numerical results with the existing computations
at higher energies (Brown and Mayers,” Cornille
and Chapdelaine,® Johnson and Lin®).%® The com-
parison is presented in Table III.

For Z=13 and k=0.08m=17.71, $Redl, is very
well approximated by éfﬁll and Fyg. By comparing
391, with 3 RedN, one sees that the difference is
small, except about 90°, but there it is irrelevant
since 3 Redll, is small anyway with respect to
$Redl, . The imaginary parts of 391, and 39,
are small and give a totally negligible contribu-
tion when entered in the cross section, Eq. (128).
Thus in the present case, the exact amplitudes
9, and M, are well approximated by using 9,
and 91, with H or Fyg in Eq. (131). This was to
be expected from what has been said before, since
both a (=0.095) and k/m (=0.08) are small.

For Z=50 and k=m =14.5I, the agreement de-

pends on 8 (or A). For §=40°, 3 Red, agrees well
with %S-HL, better than with Fyg; the effect of the
imaginary parts of 391, and 391, is negligible. For
6>40° the agreement with 3 91, rapidly deteriorates
and the difference becomes orders of magnitude,
whereas Fyy remains closer to 3 Redl,. Because
of this we have omitted the results for larger an-
gles. However, in these cases the matrix element
is relatively small.

In the case of Z=80, k=2.56m=13.6] and «
=5.12m =27.2I, for smaller angles 3 9, is a better
approximation to 3 Redll, than Fyy. But then, be-
ginning with about 60°, both are in error by orders
of magnitude.

Thus Table III indicates that for k> I our high-
energy approximation is good when the matrix ele-
ment is not too small, even if « is not large with
respect to m. The case of Z=80 also seems to
indicate that the agreement extends to larger

TABLE III. Comparison offﬁll, and iﬁl”, Eq. (131), with the results of other calculations

for M, M, at higher energies.

0 (deg.) iRedIN, imow, 19w, Fyr 1ReIM, 1Im9n, 191,
Z=13, k=0.08m?

0 1.0055 —0.0042 0.9955 1.0000 1.0055 —0.0042 0.9955
30 0.9165 —0.0041 0.9071 0.9111 0.7925 —0.0034 0.7856
60 0.7260 —0.0039 0.7178 0.7209 0.3603 —0.0016 0.3589
90 0.5495 —0.0037 0.5418 0.5442 ~0.0032 0.0005 0.0000

120 0.4306 —0.0035 0.4234 0.4253 —0.2174 0.0021 -0.2117

150 0.3667 —0.0033 0.3596 0.3614 —0.3180 0.0030 —0.3114

180 0.3469 —0.0033 0.3398 0.3415 —0.3469 0.0033 —-0.3398
Z=50, k=m?

0 0.9495 —0.0099 0.9401 1.0000 0.9495 —0.0099 0.9401
10 0.8520 —0.0095 0.8428 0.8950 0.8375 —0.0089 0.8300
20 0.6355 —0.0085 0.6280 0.6648 0.5910 —0.0064 0.5901
30 0.4242 —0.0072 0.4180 0.4426 0.3571 —0.0035 0.3620
40 0.2721 —0.0059 0.2657 0.2833 0.1952 —0.0010 0.2035
60 0.1162 —0.0039 0.1086 0.1207 0.0431 0.0014 0.0543
90 0.0447 —0.0023 0.0352 0.0442 —-0.0115 0.0016 0.0000

Z=80, k=2.56mP

0 0.8494 —0.0237 0.8614 1.0000 0.8494 -0.0237 0.8614
15 0.4963 —0.0182 0.5008 0.5674 0.4730 —-0.0138 0.4837
30 0.1640 —0.0106 0.1658 0.1910 0.1265 —0.0027 0.1436
45 0.0541 -0.0077 0.0524 0.0687 0.0199 —0.0011 0.0371
60 0.0213 —0.0060 0.0178 0.0297 —0.0080 —0.0010 0.0089

Z=80, k=5.12m°¢

0 0.8655 —0.0123 0.8614 1.0000 0.8655 —0.0123 0.8614
10 0.3546 —0.0079 0.3534 0.3984 0.3465 ~0.0068 0.3480
20 0.0736 —0.0051 0.0728 0.0908 0.0650 —0.0018 0.0684
30 0.0162 —0.0044 0.0151 0.0264 0.0099 —0.0014 0.0131
40 0.0040 —0.0039 0.0028 0.0100 —0.0008 —0.0013 0.0021

291, and9N , taken from W. R. Johnson and Chien-ping Lin (private communication).
hSITlJ_ and 917, taken from G. E. Brown and D. F. Mayers [(Ref. 7(d)].
€I, and M, taken from H. Cornille and M. Chapdelaine (Ref. 8).
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values of A/ as k increases.

We finally consider the interference of Rayleigh
scattering by the K-shell electrons and Delbriick
scattering, in the energy range where the Rayleigh
matrix element can be approximated by our Eq.
(131). The results for the Delbriick matrix ele-
ment will be taken from the recent work of
Papatzacos and Mork,!5® where it is denoted
by (aZ)%a. Since the two matrix elements have
to be added coherently in the total matrix element
for the elastic scattering by the atom, it is im-
portant to know their relative phases. The most
natural way of finding these is by referring to the
S matrix, from which both matrix elements are
derived.®® By doing so, we find that the two ma-
trix elements have been defined in a way such that,
in order to be consistent, they have to be sub-
tracted so as to get their contribution to the
atomic matrix element, M= (aZ)%a - M,.5 In
the present case the atomic differential cross
section is also given by Eqs. (127)-(130).%%8°

The amplitudes (131) corresponding to the ma-
trix element a were calculated in Ref. 16(a) for
several photon energies, in the lowest-order Born
approximation (e is then Z independent). We con-
sider here the angular distribution for x=10.83
MeV =21.18m and Z="73. This is presented in
Table IV, together with our results for Eq. (131).
Since «k=138I, we expect our approximation, Eq.
(131), to be quite good.

From Table IV we see that for Ta and angles up
to 5°, Rayleigh scattering plays a significant role
in the interference with Delbriick scattering. How-
ever, beyond 5° the Rayleigh amplitudes tend to
become negligibly small.

The Delbriick amplitudes are proportional to
Z? (in the Born approximation) and have a rather
slow decrease with the angle,” whereas the K-
shell Rayleigh amplitudes decrease rapidly with
the angle at high energies, decreasing faster with
smaller Z. Taking this into account, it is Rayleigh
scattering which is predominant for «=10.83 MeV
and Z< 73 at small angles, whereas for Z>73

even at small angles it will give a minor contribu-
tion (see, however, Ref. 69). As the photon ener-
gy increases, the Rayleigh effect will play a role
only for decreasing Z and scattering angles.
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APPENDIX A: EVALUATION OF SOME INTEGRALS

We shall now show that all integrals I(p), Egs.
(88)-(91), can be evaluated analytically and that
they can be derived from the following one:

- (x9)""
g"—/ofo [ +sx+ty)(L+ix+sy)+ul’ dxdy .

(A1)

Here v, s, t, and u are complex numbers and »
is a positive integer. In order that the integral

be meaningful these quantities must satisfy cer-
tain conditions.

To find them, we change the variables x and y
in Eq. (A1) to polar coordinates. It is then easily
seen that in order that the integral be convergent
near the origin we must have Rey< 1. For it to be
convergent at infinity one must have 1 —» < Rey.
Combining these conditions we get

1-n<Rey<l1. (A2)

However, in order that the integral be meaning-
ful, its parameters s, #, and « also need to be
such that the denominator of the integrand does
not vanish. This is certainly true if s, #, and »
are positive numbers. We shall consider this
case first.

TABLE IV. Comparison of Rayleigh K-shell amplitudes, Eq. (131), with Delbriick ampli-
tudes of Papatzacos and Mork [Ref. 16(a)] for Z=73 and k=10.83 MeV.

0 (deg.) (@Z)’Rea, (@Z) Ima, 9L, (aZ)* Reg, (@2)? Ima, m,
0.01 1.856 1.850 1.764 1.856 1.850 1.764
0.5 1.342 1.711 1.667 1.416 1.751 1.667
1 1.007 1.461 1.418 1.101 1.555 1.418
1.5 0.769 1.229 1.110 0.863 1.356 1.110
2 0.610 1.033 0.820 0.698 1.183 0.819
3 0.429 0.735 0.409 0.508 0.908 0.408
5 0.227 0.394 0.094 0.289 0.568 0.094

10 0.074 0.116 0.001 0.116 0.241 0.001
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The denominator of the integral can be expanded We decompose this integral into two parts, one
in powers of [u/(1+sx+ty)(1+¢x+sy)]. The series corresponding to the interval (0, 3), the other to
is (uniformly) convergent if 0 <u# <1, whenever (%, 1), and make in each of them the change of
s,t=0 and #,y=0; in the following we shall con- variable ¢ =4z(1 - z). This gives
sider u to be restricted by this condition. We
therefore can interchange the order of the summa- g2 =[T(1-7)]2 1"(2?;(7211? )2 ]);— 2) 21-2n -2
tion and integration to find p

1 =1
«© _ X n+p=1 1-— -1/2 ( - £ .
o I (A3) [oerra-oma(stes-tr g )
$=0 ?
with By using now the standard integral representation
of a Gauss function ,F,,” we find
o= [ ) 7ieie) "t axdy (A4) T'()T@n+ 2p+2y - 2)
n 1%2 ’ b _ - 2 1=2n=2p r=-1
1] o Sn - [ r(l 7)] r(n+p)r(n+p+ _%) 2 (St)
c;=1+sx+ty, c,=1+ix+sy. (A5)

X - 1. _ — )2
In order to calculate the integral Eq. (A4) we 2.1“1(n+p, L-v,n+p+2; - (s-1)"/4st) .

start from (A10)
1 f‘ dz (A6) The coefficient in Eq. (A10) can be written as
€6, Jo [€rz+c,(1-2)F° follows:
By differentiating this with respect to ¢, and c, T()T(2n+2p+ 2y - 2)
we get Tn+p)Ln+p+3)
1 1 g%m-2 1 1
- - I'2n+2y-2) m+y-1),(n+y-3)
7] =1 me —92n+2p-1 D 2.
(cic))™  [T(m)F 8cT™"dcp~t ey, 2 T'(2n) (n+3),0n), ’
1 m=1 me=1
- 11:((2";)2 [ 2 a 3 2) o 42 - where (a),=[(a+p)/T'(a).® Putting this back into
[T ) [eiz+c,(1 -2)F (AT) Eq. (A10) and using one of the transformation
formulas for ,F, we get
We then insert Eq. (A7) into Eq. (A4) and inter- . T@n+2y-2)
change the order of integrations: g5 =T -] T T@n)
0 =TGRt [ g grererayeo L ey =1, (nry =), (ser)7HsHH
[T+ Js n)n+3), 2

[ s s (bomepert mopels - 62
0 /c: Y [ciz+c,(1 -2)Fn** " 4st

(a8) (A11)
The double integral over x and y now has a de-

nominator which is linear in these variables [ see
Eq. (A5)]. According to a known formula,” we

find s =[T( -)]? F(Z’”ZY‘Z)(s”)zm(st)-x/z

© '(2n) 2
ff dxdy (xy)"" [ciz+c,(1 - 2)] "2 -2

We now insert Eq. (A11) into Eq. (A3) to obtain

= (n+y-1),n+v-3)
L TG hm,
_[rQ-»P r@n+2p+2y-2)
- T'(2n+ 2p)

1 1 1
X2F1<5,”+P+Y—§:"+P+E; -

(s‘l—si)2 ) _

X[ (s -t)z+t]" s - (s -)z]”" . (A9)

Therefore (a12)

+2p+2y = 2) If 0=<u<1, which we have already assumed, the
r[Lr( p+ )Yz_ series occurring here can be summed to give a
n+p)] hypergeometric function of two variables, of

1 Appell’s type, F,(a; b ,, b,;c; 2,2,).52 Equation
n+pe=1 2 - y -1 ppe S yp ’ 1\*%y 1y Y25 Ly 2142 q
Xj; [2(1 -2)] [(s -8)%2(1 - 2)+st]"tdz . (A12) thus becomes

g2=[r(t -y L&
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9,=[ T =) [T@n+2y -2)/T@n)] (st)"*?[3(s +1)]?""* Fy(n+v—3;n+y=1, 3;n+3; —u, - (s —1)%/4st) .

(A13)

This can be written in an alternative way, by using a transformation property of the F, function™:

9,= [T =N]2[T@n+2y -2)/TCn)][2(s+1)]* 2 +u)"" ""F (L =v;n+v -1, 530+ 55u/lw+1),[(s - /(s +D]?) .

We have derived Egs. (A13) and (A14) under the
assumption that s,# =0 and 0= <1. These re-
strictions can be relaxed by looking at the ana-
lyticity properties of the integral Eq. (Al) with
respect to its parameters s, #, and 4. This is
simpler to do after first performing in Eq. (Al)
a change of integration variables of the form sx
—x, ty-v, which yields

5,,=(st)*"f:f0w (x9) "7 [(L+x+9)1+vx+071y)

+ul "dxdy ,
where v=1/s. The preceding integral is analytic
with respect to its parameters v, « in the vicinity
of any point v,, #, for which the denominator of
the integrand does not vanish. The domain of
analyticity can be obtained by analytic continu-
ation. We shall not attempt to study the general
case here. Instead we shall consider what hap-
pens when v, is fixed and positive. It is then
easily seen that the domain of analyticity of the
integral with respect to « coincides with the com-
plex plane of this variable, cut along the real neg-
ative axis from — ©to - 1.

On the other hand, by dividing the right-hand
side of Eq. (A14) by (sf)*~!, we get a function
which depends only on »=¢/s and which is analytic
with respect to «. Since the equality (A14) holds
for v>0 and 0=u<1, by analytic continuation with
respect to # it will remain true for any « in the
complex plane cut along (- <, —1).7

The integral Eq. (Al) can be expressed in an
alternative manner. By changing the variables
according to

x—=x(1+u)t’? y-—y(1+u)1/2, (A15)
we can write
9,=1+u)-7""g,, (A16)

. _ 00 L3 (xy)-y
In —fo -/(; [1+p(x+y)+qay+7(x —y)*] dxdy .

(A17)

The connection between s, {,u« and p, ¢, v is given
by

p=(s+)A+u)"*?, g=(s+1)?, r=st. (AlS8)
From Eqgs. (Al14)-(A17) we get

(A14)

~

9,=[TA-»P[T@n+2y-2)/T2n)](: q)"*
XF(l-y;n+y=1, 3;n+%;
1-(p*/q),1-4r/q)). (A19)

Let us consider also the integrals

e x(xy)””
x =f f dxdy
"o Jo TaplerNtaxy+rx—yT ">
(A20)
1 o (x =) (xy)””

£ =—ff Ldxdy .
"2 J0 ), [1+plx+y)+gay+r(x—y)?] *ay
(A21)

These can be expressed in terms of J, by

1 9 1 2]
¥on=- 2(n-1)3£‘g"'1’ "?”'—'2(11—1)a_r‘g”'1 :
(A22)

For g, _, occurring here we shall use the expres-
sion Eq. (A19). The parameters p and 7, with
respect to which we have to take the derivatives,
are contained only in the variables of the function
F, in Eq. (A19). By using the appropriate dif-
ferentiation formula for F;, we find

X, =(1 - N[ TQ1 -7)]2[T(@2n+2y-3)/2T(2n)] p(iq)"*
XF@2-vn+y=-1,55n+3;
1-(p*/q),1-(4r/q)), (A23)
£,=(1-N[TA -] [T@n+2y-4)/TEn](Gq) 2.
XF@2-v;n+y=-2,5;n+7%;
1-(p*/q),1-(4r/q). (A24)

We can now apply the general formulas Eqgs.
(A14), (A23), and (A24) to calculate our integrals
I(p) of Sec. IV. From Egs. (88) and (89) we have

L(p)=[T( =N]2[(Eo+2N) - p(E, —iN)] ™5, ,
Iz(p) = [ ra- 7)]-2[(Eo+ ix) - p(Eo - 27‘)] - 693 )

(A25)
with 9, given by Eq. (Al) and
s=ia/[ (y+ia) - p(v - ia)] ,
t=iap/[ (y+ia) - p(y - ia)] , (A26)

_ p(Aa/ m)?
[y+ia-p(y-ia)]® ~
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Taking into account Eq. (A14) we get Egs. (100)
and (101).™

Further, if in Egs. (90) and (91) we change the
integration variables according to Eq. (A15), we
can write

Is(P) = [ ra-yJ-
x(L+u)"7-3/2%, ,

[Ej+in-p(Ey,-iN)]"°

L) =[TQ =] ?[Es+ix - p(E, - iN)]"°
X1 +u)T7ie, (A27)

where &,, £, are the integrals Egs. (A20) and
(A21) with p, q, 7 calculated from Eq. (A18) in
terms of Eq. (A26).”7 By inserting in Eq. (A27)
the results Eqgs. (A23) and (A24) we find Eqgs. (102)
and (103).

) (=), TE@n+1)
Ay=+fT'(1 -ia) Z (3),1), T(@nr+2-ia)

with ¢ and f given by Eqgs. (107) and (108).

APPENDIX B: EXPANSIONS IN « FOR FORWARD
SCATTERING

In the following we derive the first terms of the
expansions in powers of a of H, and K,, defined in
Eqgs. (105) and (58).

We consider first the case of H;,, whose expan-
sion we want to determine to order a* (included).
We illustrate our procedure on 4,, Eq. (109),
which is the first term of H{"’ [ see Egs. (58) and
(52)].

Since for 0=p=1, one has 0=z,=1 [ see Eq.
(104)]; we can expand the Gauss function ,F, in
the integrand of Eq. (109) in a power series in z,.
This series is uniformly convergent on the in-
terval 0=p=1, so that one can interchange the
order of the summation and integration. There-
fore the result can be expressed as

F (1 -4a; 2n-2y, 2+2v; 2n+2 -ia; -1,%), (B1)

We next try to expand the function F, in powers of a.™ For this purpose we use the formula of analytic

continuation,™

T'(c)T'(a+b,-c)

Fyla; by, b ¢5%,9) = =103 F (o)

(1 —2)%27 11 —y)° =7 02(y - x)' P17 Py et huv B

1-
xFl(l-bZ;l-a,c-—bl—bz;c—a—b2+1 1oy x(- y)>

T(c)I'(c~a- b2
* I'(c - a)T(c -

’1-x"y(1-%)

(1 =2)"%y7%G,( by, by by —c+1,c—a —by; = e A )
b,) y

2]y

By applying this formula to the function F, in Eq. (B1) and using some of the properties of the I" func-

tions, A, can be decomposed according to

A0=A6+A61 5 (B3)
where
147 s _ B0y (2 \* o
r_ T 7 cia —_—crmren 7 - - -
A=, ¢ ,,z;, ) (= 7+ D), ) F( 1 - 2v;ia, - ia; 2n - 2y’7+w Y—ia>’ By
()(=7), T@n-2y-1)
’_ _ 2y p=2r=2
Al =+fT(1 -ia)2?"¢ HZO $),(1), T@nrn-ia- 2)/)2
] , 2ia
sz<2n—2~/,2+2Y;27+w+1-2",2"‘27"1;‘5’7/ ia)' (B9)

The first quantity A is real. The successive
terms of its series, Eq. (B4), contain ascending
powers of @®°. Furthermore, the functions F, in the
coefficients can be expanded in double series in
their variables, both of order ¢.%° Because of the
power (ia/y)?", when n increases less terms have
to be retained in the expansion of the corresponding
F, in order to get A} to the desired order a*. How-
ever, it should be kept in mind that also the pa-

rameters of F, depend on a, through y = (1 —a?)*/2,
and have to be expanded. Proceeding thus, we get,
to the order of magnitude needed,

n=0: F,=1-5a+%a"+0(a’) ,
n=1: F =7-Ya%+0(a*) , (B6)
n=2: F,=1+0(a?) .

Inserting these in Eq. (B4) and expanding also the
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other quantities involved we get
Aé:%-:-aa2+i‘;—;a4+0(a°) . (B7)

The calculation of A}/, Eq. (B5), is more in-
volved. This is due to the fact that only one of the
variables of G, is of order a while the other one is
independent of a. We start from the series expan-
sion®

G,lay, ay; by, by; %, )

=i: (a1)m(bg)m (- 2)™
m=0 (1 - bl)m(l)m

X oFy(ay by = m, 1= b, —m; —y) . (B8)
By using this for the function G, in Eq. (B5), with
x=2ia/(y - ia) and y= -3, and interchanging the
order of summations, we get

Al ==fT'(1 - ia)2%e"?

sinm(2y + ia) T'(1+ 2y +ia)

C- 27 =2
sin(27y) T'(2+2y)

T,, (B9)

y =~ (1+2y+ia), [ Zia' >"’
=t 1), v -ia

where

-

)y

_—ém)n

T = > (%ln(_y)n(_y—%-%m)n =Y -
" ; B~y = 3a = 3m),(—y - Ha+

t
(S

X,F,(1 -ia, - ia-m,2n -2y —ia—m;3) .

(B10)

The terms of the series in Eq. (B9) contain as-
cending powers of a. However, the series of co-
efficients T, do not have this property. There-
fore no systematic simple procedure can be ap-
plied in order to get the expansion of A{’. Never-
theless, we now show that it is possible to extract
all terms to order &* (included).

The coefficient in front of the sum of Eq. (B9)
is of order a®. Therefore we need take into ac-
count only the first terms (m =0, 1, 2) of the series
in Eq. (B9). On the other hand, for each of these
values of m only a finite number of terms need be
considered in the corresponding T,. This is be-
cause (- 7),, for n=2, contains the factor (1 -7),
which is of order a®. However, we also have
factors like [ (- y— Lia—p),] ! in the coefficients
(p=0 is an integer); these become of order a~*
for n=p+ 2. By taking such factors into account
one concludes that for m =0, 2 one needs two
terms (2=0,1) in the expansions Eq. (B10), where-
as for m =1 one needs three (=0,1,2). One is
then faced with the expansion in a of functions

such as

zFl(l "ia)-p°ia’q-2‘y_ia;%) ’
withp=0,1,2 and ¢=0, +1, +2. The difficulty here
lies in the fact that for a -0 we have c =4 -2y
—-ia~q -2, anonpositive integer, and therefore
.F', becomes singular. However, this can be
avoided by applying a number of times the equa-
tions among contiguous functions ,F,, so as to
raise the parameter c to become positive for a
-0. After having done this we expand the func-
tions , F, in power series of 3. Because of the
structure of their parameters only a few terms
need be kept. We thus get the expansions of T,
T,, T, which, inserted in Eq. (B9), give finally

Ay'=-Ead*+ 0(a) . (B11)
Hence from Egs. (B3), (B7), and (B11)
Ay=% = 5 a%+ 5 a*+0(a) . (B12)

Now, A, is only the first term of H®’ [ see Egs.
(53), (52), and (109)-(111)]. Proceeding similarly
for the other terms, we find

Bi=1d+Lad+0(d), C,=1%a+3a*+0(a%),
D,=3d"+0(a) . (B13)

By inserting Eqgs. (B12) and (B13) into Eq. (52)
we find

HP=1[1-1a*+Ba'+0(@)] . (B14)

Finally, from Eq. (58) we get Eq. (117).

To the order considered in Eq. (B14), H{! is
real. Indeed, its imaginary part starts with order
a%, as can be seen from Eq. (115) by noting tnat
0% is of order a(aZ)®. The first terms of the
expansion in @ of ¢3° were obtained in Ref. 20.

By combining this with our Eq. (115) we find

ImH®Y = - 4 a®a®" -2 exp(- 2a cos™'a)

x [1- & ma+0(a?)]. (B15)

We have included here only some terms of order
a?, which are numerically important.

We next consider the amplitude K,, which is ob-
tained from the imaginary part of K{*’ [ see Eq.
(58)]. We want to use Eq. (112), since we already
know Eq. (B15). However, we still have to find
ImC,.

From Eq. (95) we have

_4f 2a 2 ' -ig+l 2y =2 -2y =2
CO—T(“y) j; p (I+p)?"=3(1 - p&)~2"

X,Fi(3,1-7,3;2,)dp, (B16)
with f defined in Eq. (108). Let us take the com-
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plex conjugate of this and then change the integra-
tion variable according to p’=1/p. We end up with
the expression in Eq. (B16) with a minus sign in
front and the integration interval changed to (1, ).
Therefore

1
ImC, = 5= (Co - C3)

-% f(liay)z ];w P e (L p)" "3(1 - pg)"27 =

X2F1(%; 1 - 7’, %;zz)dp ’
(B17)

with the same , F, function as in Eq. (B16). The
factor in front of the integral is of order a° which
is also the lowest order in Eq. (B15). On the other
hand, the integral is of order 1. Therefore by
setting ¥ =1 in the integrand of Eq. (B17) we
neglect terms of order a’. By doing so the , F,
function reduces to 1, and the integral Eq. (B17)
can be expressed in terms of a beta function,®?

ImC,=(8/3i)(a/(1 +y)Pf

%[ (- )" -2B(2 - ia, 2+ ia) + O(a?)] .
(B18)

This can be simplified by taking into account some
properties of the I" functions® and the definition of
f, Eq. (108):

ma

_ 1 _2y+3 _-masia
ImC,=~3a e
0 ¢ shma

[1+0(a%]

=—ta®*3exp(~- 2acos 'a)[ 1+ 0(a?)] .

(B19)
In conjunction with Eq. (B15) this gives
ImK§" = - L a®a® "*[ exp(- 2a cos™a)]
% [1 = 2ra+ 0(a®)]. (B20)

We can now combine Eqs. (58) and (B20) to get Eq.
(118).
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Eq. (12.1)].

3The right-hand sides in Egs. (114) are independent of
the magnetic state m. Combining with Eq. (113) it

follows that for the K shell the high-energy cross sec-
tions GP° and GPP are themselves independent of m
and 0x=20. (This can be proved directly and is valid
for any energy «.)

“Indeed, the difference of° — & will therefore behave
like 1/«2 at high energies, which ensures the con-
vergence of the integral in the dispersion relation
(1.1a) of Ref. 15, or in the second equation on p. 1778
of Ref. 12.

Y“UHTF (Ref. 33), p. 114, Eq. (1).

#The factor (-2 +3) contained in Eq. (47) of Ref. 20
should read —(2¢ +3).

43No indication is given in Ref. 12 as to how the authors
derived their Eq. (3.4).

#For H, the numerical computation gives Hy=0.995 54
for Z=13 and Hy= 0.97851 for Z =29. The corre-
sponding values given by Eq. (117) are 0.99554 and
0.978 69, whereas the ones given by Eq. (3.4) of Ref.
12 are 0.99551 and 0.97803.

“For K, the computation gives K,=0.1482x107% for
Z =3 and 0.4224 X10~7 for Z=6. The corresponding
values given by Eq. (118) are 0.1483 X108 and 0.4202
x10~7, whereas the ones given by Eq. (3.4) of Ref. 12
are 0.2304 X108 and 0.7376 1078,

4We cannot neglect the A in the denominators of the
integrand because the integral would become singular.

“1See Ref. 3, Eq. (11), where it was denoted by O.

483ee Ref. 36, p. 22, Eq. (23).

“0ur procedure cannot be used in the limiting casea =1
(y=0) because the integral would become divergent.

%0This conclusion does not apply to the case ofa =1
(see Ref. 49).

SiIn fact, for extremely large A (which is not of physical
interest because then M becomes too small in com-
parison with the matrix elements of the other competing
processes) Egs. (125) and (121) predict oscillations in
sign.

52Reference 36, p. 15, Eq. (15).

5HTF (Ref. 33), p. 231, Eq. (5). The condition Rec
>Rea >0 is fulfilled in our cases.

54The number of points used for the integration and their
distribution were chosen so as to take into account
the peculiar behavior of the integrand.

%These are caused by the factor in curly brackets in
Egs. (100)—(103), which becomes singular on the real
axis for Z -0, whatever the value of A. (However,
H stays finite because of the factor N? in front of
the integral, which is proportional to Z3.)

56Setting @ =1, y=0 in Egs. (99)—(104), one obtains func-
tions F; which reduce to combinations of rational and
logarithmic functions.

51The values of o) were obtained from R. H. Pratt,

A. Ron, and H. K. Tseng, Rev. Mod. Phys. 45, 273
(1973), Table 6.1, and private communication. For
29 =Z =135 the agreement was complete to four sig-
nificant figures. For Z=13 and Z =6 the difference
was of three units in the fourth significant figure.
(The accuracy on ReH{!’ is, however, much higher.)
58This is true for all the values of A/A in Table I. For
larger A/ deviations will occur (see Sec. VI).

%The “Hall factor,” equal to 1/2.2=0.454 for lead, was
used to correct the cross sections at high energies
for Coulomb effects, instead of using the correct value,
0.223 (see Ref. 57, Table 6.1). Our attention was
drawn to this by Dr. R. H. Pratt.
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%we allow here the vectors §; and 8, to be complex in
order to be able to account for circular polarization.

®'The amplitudes 9, and I, represent the values of
the matrix element when the photon polarizations are
linear and both perpendicular or both parallel to the
scattering plane. The amplitudes N sp and Mygp cor-
respond to the cases when the photons are circularly
polarized and there is a change in the sense of polar-
ization (a photon spin flip) or there is none (no photon
spin flip).

2Equation (126) can be rewritten as M =M, * §5)
—(NAY/K?) (S, -8)(BF +5), with §=A/A. By comparing
this with Eq. (59) we find lim VA% k%) =0. Note that
this does not imply limN =0, as might be erroneously
inferred from the comparison of Egs. (59) and (126).

8For example, see Ref. 29.

#The results of Johnson and Lin in Table ITI (private
communication) were calculated for a purely Coulomb
field and no electron correlation, in contrast to those
of Ref. 9.

5We have transformed the results of Brown and Mayers
and Cornille and Chapdelaine, which were given in
terms of Mygp and Mg, into I, and M. The results
of Johnson and Lin were given directly in terms of the
latter.

8An alternative method of fixing the relative phases via
optical theorms and Kramers-Kronig dispersion rela-
tions has also been used.

87The matrix element (@Z)% of Papatzacos and Mork,
[see also Ref. 16(b), Sec. 3.4], is related to the cor-
responding S-matrix element by the equation S
=2Ti6 (K —K,) (277y/k) (¢Z)%. By comparing this with
S given in Ref. 22 we see that indeed My and (a2)%
have to be added with opposite signs.

% Because of spherical symmetry the matrix element a
also has the general form of Eq. (126).

®The contribution of the higher shells to Rayleigh scat-

tering is rather small if the momentum transfer is not
very small [see M. Schumacher, F. Smend, and

1. Borchert, Nucl. Phys. A 206, 531 (1973), Figs. 3-5].
(However, right at A=0 the total Rayleigh matrix ele-

ment is roughly equal to Z, whereas My=2).

“However, Coulomb corrections to Delbruck scattering
in the Born approximation probably become large at
large A, as is indicated by the high-energy result of
H. Cheng and T. T. Wu, Phys. Rev. D 5, 3077 (1972).

"y, 8. Gradshteyn and 1. M. Ryzhik, Tables of Integrals,
Series and Products (Academic, New York, 1967), p.
636, Eq. (4.638.2).

HTF (Ref. 33), p. 114, Eq. (1).

BWe have used also HTF (Ref. 33), p. 5, Eq. (15).

“HTF (Ref. 33), p. 239, Eq. (1).

In the case we are interested in, v =¢/x is indeed
positive and real [see Eq. (A26)], so that we can
apply Eq. (Al14).

"5Reference 36, p. 19, Eq. (19).

""Because Eq. (A19) is valid for the values of p, ¢, and
r derived from Eqgs. (A26) and (A18), Egs. (A23) and
(A24) will also be valid.

4, cannot be expanded in power series in a because of
Ina contributions stemming from quantities such as
e,

We have combined Eq. (15) of P. O. M. Olsson, J.
Math. Phys. 5, 420 (1964), with HTF (Ref. 33), p. 240,
Eq. (4). The first reference contains the definition of
the functions G,@,a,;by,by;%,y). The principal
branches of the complex powers appearing in Eq. (B2)
should be taken.

8The double series of the F, functions converge if the
modulus of their variables is smaller than 1, which
happens for all physical a, sincea <1.

81See M. Gavrila, Phys. Rev. A 6, 1360 (1972), Eq. 22).

2HTF (Ref. 33), p. 10, Eq. (12).

BHTF (Ref. 33), p. 9, Eq. (5), and p. 4, Eq. (8).



