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The matrix element for Rayleigh scattering by atomic K-shell electrons is evaluated in the limit of high
photon energies at finite momentum transfers h. The limiting form of the matrix element 5R is derived from
its relativistic expression at finite energies 5K in which the one-electron Green s function G is replaced by its
nonrelativistic approximation Go with adequately modified parameters. The expression obtained for ~ is exact
in 6 and the atomic number Z, and is equivalent to the one found by Goldberger and Low. The evaluation of
the matrix element is carried out in momentum space for the case of a Coulomb atomic field. Exact integral
representations are used for Go and the ground-state eigenspinors. The integration of 9R is carried out
analytically as far as possible and at one stage the high-energy limit is taken. For one K-shell electron, when
electron spin-flip is possible, 5R is expressed in terms of three real amplitudes H, K, and L, whereas the
matrix element for the closed K shell, 5K„, depends only on H. The amplitudes are obtained as one-
dimensional integrals over Appell functions F,. They simplify considerably in the case of forward scattering,
and the connection of their imaginary parts with absorption cross sections is discussed. Expansions of the
forward amplitudes in powers of a = aZ are also given. Further, a connection between H and the
nonrelativistic form factor is established, and the asymptotic behavior of H with respect to 6 is derived. Then,
a description is given of the numerical methods used. H is computed for 0 & blam & 15 and 1 & Z & a '. Of
the electron spin-flip amplitudes only K is computed for forward scattering (L vanishes in this case). The
numerical results are discussed and comparison is made with other works. The validity of the high-energy
result ~K at lower photon energies is considered. Finally, the magnitude of the Rayleigh matrix element QK is
compared with the one for Delbriick scattering.

I. INTRODUCTION

Several elementary processes contribute to the
elastic scattering of a photon by an atom: Ray-
leigh scattering by its bound electrons, nuclear
Thomson scattering, Delbruck scattering by the
electrostatic field of the nucleus, nuclear reso-
nance scattering, and higher-order processes.
The matrix elements of these processes have to be
added coherently in order to obtain the matrix ele-
ment for elastic scattering by the atom as a whole.

We are interested here in Rayleigh scattering at
high energies. In the independent-electron approx-
imation, in which all electrons are assumed to be
under the influence of the same central atomic
field, the matrix element for the whole system re-
duces to the coherent sum of their individual con-
tributions. This should be a good approximation
for the case of inner-shell electrons, even if the
atomic field is taken to be of Coulomb form.

The one-electron matrix element for relativistic
Rayleigh scattering was derived by Wailer. ' It
contains a summation over the complete set of
(positive and negative) energy eigenstates of the
electron in the atomic field. Because of its com-
plexity, the matrix element cannot be evaluated
analytically exactly even for a Coulomb field.
(This is contrary to what happens in the nonrelati-
vistic case, where the matrix element can be ex-

pressed in terms of known transcendental func-
tions. ") Consequently some simple analytic ap-
proximations have been sought, such as the rela-
tivistic form factor, ' along with small-angle cor-
rections to it, ' and a first-order Born approxima-
tion for the sum over intermediate states. '

Major progress was achieved when a numerical
computation of the matrix elements became fea-
sible. This was first done by G. E. Brown and
collaborators for the case of the K shell, in the
1950's.' The method is based on a partial-wave
analysis of the matrix element. Because of the
limited possibilities of the computers of the time,
angular distributions were obtained only for Z = 80
and photon energies elm=0. 32, 0.64, 1.28, 2.56.
The same method was subsequently applied to de-
rive the angular distribution for Z = 80 and zjm
= 5.12 by Cornille and Chapdelaine. ' Until recent-
ly, these were the only accurate results at rela-
tivistic energies which could be used for compari-
son. However, recently a new partial-wave cal-
culation has been completed by Lin, Cheng, and
Johnson. '

Other relativistic calculations have been carried
out for the special case of forward scattering' or
for evaluating the index of refraction, " a problem
which is directly related to forward scattering.

Some time ago Goldberger and Low considered
the case of Rayleigh scattering at high energies. "
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Practically all photons are then scattered close to
the forwaxd direction. The higher the energy of
the photon z, the smaller the relevant scattering
angles 8 will be. In this case it is convenient to
replace 8 by the photon momentum transfer 4 = 2z
sin&8. Thus, in the high-energy limit, the matrix
element will be nonvanishing only for finite mo-
mentum transfers 4. In the following we will
therefore express the matrix element% in terms
of the variables x, 0, Z (the nuclear charge).

The limit considered by Goldberger and Low is
x-, with 4 kept fixed. They obtained a finite
result of the form

lim SK(x, 4, Z) = SK (&, Z),
g ~00

(13

and gave a formula for SK(&, Z) which, however,
they did not evaluate. The consequences of the ap-
plication of dispersion relations to the problem
were also discussed.

In this connection, in earlier days there have
been some uncertainties and inaccuracies. For
example, Gell-Mann, Qoldberger, and Thirring"
suggested that in the high-energy limit and for for-
ward scattering, 4= 0, the matrix element% of
Eg. (1) would be independent of the binding of the
electron (i.e. , of Z) and would have the same value
as if it were free (SR= 1, in our notation). "" This
suggestion was questioned soon afterwards by Le-
vinger and Rustgi" who considered the specific
case of lead and found from a numerical evaluation
of the dispersion relation for a E-shell electron
that 5R was smaller than 1. The formula dexived
by Goldberger and Low for 3R clearly displays at
4= 0 the Z dependence and hence the inaccuracy
of the previous suggestion.

The relative magnitude of the matrix elements of
the processes contributing to the elastic scattering
of a photon by an atom depends on the energy of
the photon, on the scattering angle, on the nuclear
charge S, on the number of electrons and their
configuration, and, at higher energies, on the nu-
clear structure. At energies up to about 1 MeV,
Rayleigh scattering is dominant for all S. For
higher energies, especially for high-Z atoms and
lax ge angles, Delbruck scattering becomes in-
creasingly important and finally completely ob-
scures Rayleigh scattering. In the energy range
between 1 and 10 MeV there are interference ef-
fects between the two.

There has been considerable experimental in-
terest lately in the detection of the Delbruck ef-
fect, and a new theoretical calculation was made
by Papatzacos and Mork '6 The effect has finally
been established experimentally at energies higher
than 10 MeV and for angles where Rayleigh scat-
tering is negligible. However, the agreement be-

tween theory and experiment is rather poor in the
energy range 1-10 MeV and at small angles, whexe

both effects contribute. This is partly due to un-

certainties in the theoretical knowledge of Rayleigh
scattering, which has been estimated on the basis
of semiempirical formulas. Whereas the enexgies
in this range are low from the point of view of Del-
bruck scattering, we shall see that they may be
considered high for Rayleigh scattering. Conse-
quently, one will be able to use for the latter the
high-energy-limit matrix element SR(4, Z), per-
taining to the whole system of atomic electrons.
At not too small momentum transfers 4 this is
close to that of the E shell, as can be inferred
from the approximate form-factor calculations for
the higher shells.

In this paper we present the evaluation of the
high-energy-limit matrix element SR(4, Z) for the
case of a E-shell electron. The atomic field is as-
sumed to be of Coulomb form. The integration of
the matrix element is carried out in momentum

space by a relativistic extension of the Green's-
function method used previously by one of the au-
thors in the nonrelativistic case."We start from
the matrix element at finite energies SR(x, &, Z),
which we express in terms of the relativistic Cou-
lomb Green's function, the properties of which
were studied by Hostler. " Whereas in the nonrel-
ativistic case exact closed-form expressions are
known for the Coulomb Green's function, this does
not hold in the relativistic case. Nevertheless, we
show that in order to obtain the exact d and Z de-
pendence of SR(b,, Z) it is sufficient to use the non-
yelggjgjstie Green's function, with pax ameters
modified so as to take relativity into account. For
this we use the Schwinger integral representation
in momentum space. " Exact integral representa-
tions are used fox' the Dirac ground-state spinors.
Thus the matrix element involves integrals over
the momentum-space variables p, and p„over the
two auxiliary variables introduced by the repre-
sentations of the initial and final bound-state spin-
ors, and over the auxiliary variable of the repre-
sentation of the Green's function. After having
integrated over p, and p, we take the limit ~- ~,
with 6 kept fixed. The analytic calculation of the
remaining integrals is pursued as far as possible.
We are left in the end with a one-dimensional inte-
gral containing Appell functions E,. In order to
proceed further, numerical methods have to be
used.

Section II contains the derivation by our method
of the high-energy matrix element SK(4, Z). We
treat the one-electron case, when electron spin
flip is possible. The equivalence of our result
with that of Goldberger and Low is proved. In Sec.
III we give the decomposition of SK(4, Z) in terms
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of rotation-invariant amplitudes. Section IV con-
tains the analytic calculation of these amplitudes.
For forward scattering the results simplify con-
siderRMy Rnd the connection of their imaginary
parts with absorption cross sections is discussed
in Sec. V. Agreement is shown to exist with the
high-energy cross section of the photoeffect,
studied by Hall'9 Rnd Pratt. " Expansions in a= e Z
of the amplitudes for forward scattering a.re also
given. In Sec. VI it is shown that for sufficiently
small a and not too large 4 /am the matrix ele-
ment for the K shell, %«(b, S ), is closely approx-
imated by the nonrelatjejstgc form factor. The
asymptotic behavior of Kr(h, Z) with respect to
4 is di.scussed. The methods we have used in the
numerical computation are presented briefly in

Sec. VII. %8 give a discussion of our results in
Sec. VID. Comparison is made with other calcula. -
tions [result of Levinger and Rustgi, " and partial-
%ave 8XPRnslon calculations of Brown 8t Ql. ,
Cornille and Chapdelaine, ' and Johnson and Lin
(private communication) j. The interference with

Delb6ick scattering is also considered. Finally,
the paper contains two appendices of a mathema-
tic Rl nRture.

H. HIGH-ENERGY LIMIT OF MATRIX ELEMENT

%8 consider the initial state of the process to
consist of a E-shell electron of magnetic quantum

number m, =a& and a photon of momentum ~, and

polari2, ation vector s,. After the photon has under-
gone the elastic scattering, we consider the K-
shell electron to be in a state of magnetic quantum

number m, = + &, the photon having momentum x,
(«, = «, = «) and polarization vector s, . We thus al-
low for the possibility of electron spin flip in the
process (m, om, ). This can occur only for a hy-
drogenlike atom. %8 shall allow for this more
g8nerRl cRse becRuse of its theoretical interest.

The xelativistic matrix element of %aller can
be written as"'"

OPPl2 Q so8 2 S g Q 'Sg8
E„—(Eo+ «+ ia)

(Om, &s s,s""& &&vis s.s '*'iom,
&)E„—(E -x —j&)

positive quantities & in the denominators prevent
the occurrence of singularities for z&m -Eo in
the case of the first term, and for z&m+Eo in the
case of the second term.

The E-shell contribution to Raylelgh scattex'Ulg
is given in the independent-electron approximation
by the coherent sum

The matrix-element equation (2) can be expressed
in terms of the Green's-function matrix for the
Dirac Hamiltonian of the electron. This has the
following eigenspinor expansion:

(~ ~
Q)

$~(r2) at (r )&
2p jy g gft n

where the sum is extended over all positive and
negative energy eigenspinors. Taking this into
account Eq. (2) becomes

=-m u~, r, e'"2'2a s, G r2, r„A,

&(a s, )e'"&'~a (r, )dr, dr„

~ = —'Pl g r2 g 1 2 0's~ G r2yp~'Q2

x(a s )e '"2 "'a (r ) dr dr

A, =ED+ K+ f'fc, +2=ED -K -$E 0

Note that 3R"' can be obtained from%",', by
interchanging k, and s„«, and -«„and by re-
placing 0, with A, .

The Green's function G associated with the linear
Dirac equation can be expx"essed in terms of the
Green's function G, for the iterated (second-order)
Dirac equation as follows":

G(r„r,Q) = - (a p, +mP+ a/r, + Q)PGz(r„r, ; Q)P,

with c= aZ. GI satisfies the integral equation

Gz(r2& r, ; Q) = Go( r2, r|;Q)

Here, the initial- and final-state vectors of the
electron are denoted by iOm, ) and ~Om, ), respec-
tively, Rnd the summation is to be carried out over
the complete set of relativistic (positive and nega-
tive) energy eigenstates in). The infinitesimal W(~) = faa r/r'+ a'/r'. (10)

where Go is the nonrel. ativistic Green's function
with modified parameters and W(~) is the operator
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By iterating Eq. (9) one can express GE in the
form of an expansion in ascending powers of a.

We prefer to write the matrix elements (6) as
integrals in momentum space. In fact we need
consider only the case of %„'",because %"'

m2NI I& yg2751

can be derived simply from it. By introducing the
Fourier transforms of the quantities involved and

by using Eq. (8), we get

where we have introduced the photon momentum

transfer &= K1 K2.

G,(p„p„Q) appearing in Eq. (13) can be ex-
pressed by the Fourier transform of Eq. (9),

G&(p., p„. Q) = G.(pE, P„Q}

Go ppy p3 0 W

' (p, —«, )(a ~ s,) [n ~ p, + mP+ u(p, )+ Q,]

xPG, (p„p„Q,)P(n ~ s, )

xu (p, —«, )dp, dp, .

Here 'U(p, ) is the integral operator in momentum

space of the potential

(p, + 4)(n ~ s, )

x [a ~ (p, + «, )+ mP+ g(p2+ «, )+E,+ «]

x C3G, (p 2+ «p, + «Q, )p(a .s, )

x u„,(p, ) dp, dp, , (13)

21(p )E(p„P)=fV(p, -t))E(t(, p, )dt(, (12)

with V(p) the Fourier transform of a/z Equat. ion

(11) can be further written lim«GE(@2+ «, p, + «; Eo+ «+ ie), (16}

where p, and p, belong to a finite domain. We want
to prove that it is equal to the function

9"'(p„p,) =—lim«GO(p, + «, p, + «; Eo+ «+ it} . (17)

For this purpose we shall use the iteration expan-
sion of Eq. (14).

First we show that the limit defined by Eq. (17)
exists. This can be done by using the Schwinger
integral representation for G„given by'""

x G~(p, -q, p„Q)dp, dq. (14)

Here W(q) is the Fourier transform of W(r) of Eq.
(10)

We want to obtain the high-energy limit of Eq.
(13). As in Eq. (1), we denote

(18)

Here and in the following the symbol "lim" will
mean v-~, with 4 being kept constant. Then, to
lowest order in 1/«, we have «1= «2=«=Kv, where
v is the unit vector of z; also, v~=0, vs' vs, =0.

To begin, let us consider the limit

1 — 2

4«' dp p [X'(p, —p, }'+(P, + X')(P,'+X ')(I —p)'/4p]' (18)

where, in the present case,

X'= m' —Q' 7' = aQ/X, ReX&0.

If we replace Q in Eq. (19) with Q, of Eq. (7), we get in the high-energy limit

(19)

XI+ K 2EpK -ic, X1 sK &y ia

Hence by introducing Eq. (18) into Eq. (17), we find"

(20)

1
dp p ((p, p, )' (2, -p, + 'p)(E-p, p ~ 'p)(1 —p)'/, p]') (21)

This shows that 8"' is indeed well defined.
Next, we consider the contribution to the limit

(16) of the second term of the iteration expansion
of GE, Eq. (14):

T(p p )= ffG,(p~„Q,)W(q)—

From here it follows that we can write

T(p, + K p1+ K) = —ffG, (p, + «, p, + «; Q, )W(q)

x G,(p, +« —q, p, +«; Q, )

xdpsdq (23)

Go(pE -q, p» Q, ) dpEdq. (22) Therefore in the limit K-~ and with p„p, bounded,
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by taking into account Eq. (1V) we get the dominant
behavior

«r(p««, C«, «, I+=„ff—«"'(C«., t,&«'(I)

X 9 (ps qsp() Cfptdq '

(24)

This t81'Ill ls of ol'del' 1/K Rlld is VRlllshlllg with

respect to the term given by Eq. (1V), which is
finite. Similarly, one can show that the nth term
of the iteration expansion of G„Eq. (14), yields
a contribution of order 1/K™to the limit Eq. (16).
Hence, as stated,

lim KG I(p, + K, p, + 7K; E,+ K+ ic}= 9"'(p» p, ) .
(25}

This equation is exact in the atomic charge S.27

Let us now consider the limit (15) of the matrix
element (13). By noting that the spinors tt (P) are
rapidly decreasing functions of p,"it follows that
only an essentially finite domain of momentum
space will contribute to the integral of Eq. (18). In
Eqs. (15) Rnd (13) we cR11 invert tile illtegl'Rl wi'tll

the limit and use Eq. (25)." Also, the term ct p,
+ ttt p+ Eo in the square bracket of Eq. (13) should
be neglected. ~ Moreover, from Eqs. (12) and (25}
we find that for laxge values of z

%)(pt+ K}GI(pt+ Kept+ Kq AI)

ff P~ -q Z q+K8Pg+K q

(1/K)~(p. )9"'(p., p } (25)

which shows that the term is vanishing and should
be dropped.

We are finally left with

p2+ ~ Q s~ 1+a p a s

x 9" (pt, p, )tt (p, ) (fp, (fpt . (27}

The case of %„",' can be handled similarly. We
now define

9 (p»pt)= lilllKG0(pt Kept —Kq Eo —K —tf) ~

The expression of 9"' can be obtained from Eqs.
(18) Rlld (19) by I'eplaclllg 0 with Ot, glvell lly Eq.
(7). However, instead of Eq. (20), we now use

X', + K'=+ 2EOK -tK, X,= -tK, T, = -tCI . (29}

We thus find

9"'(p.,7,) = —[9"'(p.,p, )]*,
with 9"' defined by Eq. (21). Finally, we get

m g' p, +a a s, 1+a v 0. ~ s, 9{2' p„p, p, dp, p, . (31)

We will now show that the high-energy limit we derived for the Wailer matrix element, Eqs. (5), (15),
(27), and (81), agrees with the result of Goldberger and Low. To this end we need the expression of SR",'

Eq. (2V}, as a configuration-space integral,

=yg g r g 2 Q 'S2 1+0 'V Q 'S~ 1lmK8 2(GO r2yrjyA1 8 & Q~ rg dr1dr2 ~

This can also be written

gg"~ = N~ r g~ '' a s 1+@~ v 0. s, amp(.'e"'" Ho{'~-X, e~"'' I r (82)

and [H, -X'] ' is the operator form of the Green's
function {"0.~'

We then apply the operator equality'0

8'""[H(P+ K}—~] 'e '"'=[H($) —&o] ', (34)

where H (5}is a Hamiltonian and H(P+ K) is the
result when the momentum operator 5 is replaced
by p+ g; e is a constant which does not belong to
the spectrum of H.

By setting in Eq. (34) H = H,"' and &o =Xt, we get

8 '"' [H"' -X'] 'e'""= [ (P+ K}'+2ctO /r -X'] '

inserting Ulis lllto Eq. (38) and tRklllg the hlgll-ell-

ergy bmit, it follows [see also Eqs. (7) and (20)]
that

+ Qf'P8g"' =m tt' (r)e' '(a s ) (o s )
7Pg2lg 1

1

~l
E +——P p+tttt (r).(fr.0 ml

(35)

This represents the first term of the result of
Goldberger and Low, Ref. 12, Eq. (2.7). By pro
ceeding similarly with 5g"' one obtains also

2
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theix second term, and thexeby the desired equi-
valence is established. " N ~ )).(1+x)

a(p) { )
x

[ 2 2(1 )2]2
dx & (3V)

III. INVARIANT AMPLITUDES

In the following we analyze the high-energy limit
of the %'aller matxix element in terms of rotation-
invariant amplitudes and derive their analytical
form.

The exact K-shell eigenspinors in momentum
space have the following form:

a.(i)=[a(p)+-'5(p)a P]X .

2X a ~ 1
r(1 y) 1+), " [p'+)).'(1+x)']' "'

(38)

where N is the normalization constant

a=ng, )). =am, y=(1-a')'~'.
Here X is the constant spinor of a free particle
at rest. For m=-,', x is (1,0, 0, 0), and for m
=-~, y, „is (0, 1, 0, 0). The functions a(p) and

f)(p) can be expressed in terms of the integral
representations" "

The energy eigenvalue of the ground state is

Eo= my.

By inserting Eq. (36) into Eil. (2V) we get

(41)

AQ s2 Z's»+got's2 e'p Q'8» e 8, +~ Z 82 Z s2 g p a

+-,'Ps, (s s, ){s s, )s,Cs)S, , (42)

A=Pl 0 p2++ 0 p» 9 p2»p» dp»dp2»

B,=m p, a p2+4 5 p, 9"' p„p, dp, dp, ,

since v4 = O. Therefore

B,(- Z) = B,(d), C,i{-Z) = Ci, (Z),

from which Eils. (4V)-(49) readily follow.
After cax rying out the matx'ix algebra implied

by Eil. {42) and taking into account that s, ~ v = s, ~ v
= 0, v ~ a = 0, we find that R"' can be cast in the
general form

Q =ppg p2+6 Q p2+4 Q p» 9 p2»p» dp»dp2» where e"' is the matrix

(50)

C~=m p, & p»+&, b p, +& 5 p,

(45) su(i) ff&i)(S .S )+~(i)O. (S )& S )

+fL,")(s, ~ s,)a ~ (vx 5). (51)

QP p+ +Ptg

B,=B'v -8"5,
C,i = C6,i+ Dv, vi+ E(v, 6i —v)5, )+F5,5i.

(4V)

(48)

(49)

Here the 5, are the components of the unit vector
of the momentum transfer, 5= Z/4, whereas 6„.
is the Kronecker symbol. The special forro of
Eils. (4V)-(49) can be established by changing the
integx'ation variables according to p, -p, —~, p,
-p, —Z& and noting that from Eil. {21)we have

9"'(p, -&,P, -~)=9"'(p.,P,),

~9")(0 P)dP dP. .
The last three integrals must have the following
forms:

In the present case i = 1 and we get

II ' =A -8'+-C+-D+-'E»»»z"'=x -a' --,c+-,D --,S,
f &) ) (ff» + )E)

(52)

with

~m, Xm, » (56)

The case of gK",', immediately reduces to that
of 3g",),, if one considers Eqs. (28), (30), and (31).
We find that Eqs. (50) and (51) remain valid also
for i=2, and that

ff(2) H(1)&)s fr&2) ffil)&)& I {2) f i))» (55)

By summing the bvo contributions for i = 1 and
i=2, we get
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e=H(s, ~ s,)+ffo (s, x s,)+if (s, ~ s,)f (vx 6),

(5V)

where H, K, I. are given by

H=2ReH"', K= -2ImK"', 1.=2ReL, &».

5g« = 2H(s, s,}. (58)

H is therefore the physically important amplitude
and we shall be concerned mainly with it in what
follows.

We have thus achieved the decomposition of the
matrix element Eq. (56) in terms of three invari-
ant amplitudes. Note that all of them are real.

From Eqs. (56) and (5V) it is apparent that for
~2 al l amplitudes contribute, w hereas in the

case of electron spin flip, m, wm„only K and L
contribute.

The K-shell contribution to Rayleigh scattering
is given by [see Eq. (3)]

IV. ANALYTIC EXPRESSIONS FOR THE AMPLITUDES

We are now faced with the calculation of the
amplitudes (58) and (52)-(54}. Taking into account
Eqs. (43)-(46}, (21), (3V), and (38}, these are ex-
pressed in terms of three parametric integrals,
followed by momentum-space integrals. Many of
these can be carried out analytically, but not all.
We shall try to pursue the analytic calculation as
far as possible and only in the end apply numerical
methods.

For all of Eqs. (43)-(46) the first step will be to
change the order of integrations: perform first the
integrations in momentum space and leave the pa-
rametric integrals to the end. Further, instead of
using the integral representation Eq. (21) for 9"',
we prefer to consider it defined by Eq. (1V) in
terms of G„and use the integral representation
Eq. (18) for the latter. This is because we have
already calculated elsewhere the relevant momen-
tum-space integrals in terms of Go (for finite «)

Let us consider the case of A, Eq. (43). By in-
serting here the integral representations Eqs. (18)
and (3V} we can write

A=11m 2 1 Kxl dpp ' dx dy xy "d U (6(})

1.(l+ y)X(l+ x) dp, d p,
[(p, —«,)'+ X'(1+y)']'[X', (p, -p, )'+ o. (p', +X',)(P,'+X', )]'[(p, —«,)'+ 1.'(1+«)']' (61)

We have abbreviated

n = (1 —p)'/4p.

The momentum-space integral equation (61) can be expressed in terms of

(62)

dp, dp2

p, -I(.", '+p, ' X' p, -p, '+Q. P', +X' p', +X' ' p,--z, '+X' (63)

Indeed, we can write"

4 ' I' 1
dpp"" dxdy xy " limM', — — J (64)

where it is understood that after performing the derivatives contained in the curly brackets of Eq. (64), X

and p, should be replaced by X(1+«) and X(1+y), respectively.
The integral (63}was encountered and calculated in a previous work. We have calculated there [Ref. 3,

Eq. (23)] also the derivative

d 1-p' 16m' 1
dp p X c

with

c = [[(X+A}'+«'] —p [(X —2L}2+«']] [[(X+gl)'+ «'] —p [(X—gl)'+ «', ]]+4px'n'+ 4pX'(X —p)'.
From this it follows that

(66)
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S2 d 1 P2 ', X+~)(X+p)+2P(2X''-1p)+(X-~)(X- p}p' .[X+&+p(X-&)][X+u+p(X -p)]
= 64m' . 8pA

8%8/, dp p ~2X 2 C

«', [X+X+ p(X -X)]-«,'[X+ p, + p(X —p)j—Sp 1-p X —p 3 (67)

ln the high-energy limit, by taking X=X, and using Eq. (20), we get

s' d 1 —p' . 1+4p+ p' 6'(1+p)' - (X —p)'(1 —p}'
p p e" C

(68)

e'= lim(1/4«')e = [ED+i' p(EO —-iX)j [ED+ip—p(EO —i p}]—P[& + (& —I) ] ~ (69)

ln Eqs. (68) and (69) we now have to replace 1. and p, by A(1+x} and A.(1+y). When we insert the result
into Eq. (64), we get

jw' N ' „- "d d, , „1+4p+p'
2

&'(1+p)'-X'(x-y)'(1-p}'

e is obtained by making the aforementioned substitution in Eq. (69), which gives

e = e,e, —p&; e, = [Eo+6, p(EO —iX)]-+

ikey+

A py, e, = [Eo+ i& p(E, -—iA)]+ 9px+ iXy .

We shall consider next the case of B» Eq. (44). By using the integral representations (18), (3V), and

(38) we can write

m 2+ + 3 1 -faB,—lim -4m' 1+ I'(1 — )
«X', dpp drdy (xy)' —( v, ),

~(1+y)(pi —«i) dpi

dpi'

[(p, -«,)'+ X'(1+y)']'[X',(p, -p, )'+ n(p', +X',)(p,'+X', )]'[(p, —«,)'+ X'(1+x)']'

This also can be reduced to the evaluation of the integral Z, Eq. (63},"
g2 d j p2

(74)
0 0 4 Bp~K~dp p

Again, after having taken the derivatives in the large brackets of Eq. (74), one should replace X and p, by
X(1+x) and A. (l+y).

From Eq. (65) we find

1 P'
Z 64-„. (1 P)[X+ p+P-(X u)] 8P-(1 -P)(~ —p)((X+ p)'+«,' - p [(X—p)'+«,']j

~P, K1 dP P ~2X 2
C

8P(1 —p)IX+ u+ p(X —p)] [&'+ (& —p)']-
3 K~

+Bp
{[(X+p,)+p(X —p)] [(X+X)'+ «', —p[(X —X)'+ «,']}-4PX'(X —p, )]-

. (75)
C

With X=X„we get in high-energy limit

(1 p') fp(1 - p)-(& p)[E. fp +-p(E. fp)]--+~6 /3

(~ p}'p(1 p') —&'p(1 p-')-
13 8

—I3

p(1+ p)[E, + iX p(E, iZ)] —2ip(X———p)
l3

We next have to make the required substitutions for X and p and insert into Eq. (V4). By taking into a,c-
count the decomposition Eq. (47) we find"



ELASTIC SCATTERING OF PHOTONS BY E-SHELL. . .

1 oo ()o

dp p "(1—p') dx dy (xy) " —,+ 2S' —,
C C

dxdy (xy) "[E,+iX p(—E, i-X)+ jW(1+ p)] —,. (78)
C

(79)

m' 2g
4 1+y I"(1-y)

2a N C)C)8» = -m'mb dp p ""(1+p)1+y I'(1 —y)

Finally, we consider the integral C,.&
of E(I. (46). Proceeding as before, we get

C,&
= lim —, KX', dp p

" dxdy xy "— 8',
&

(p„-«~;)(&- —«») d p~ d p.
[(p, -«, )'+X'(I+y)']'[X', (p, -p, )'+n(P', +X', )(i)', +X',)]'[(p, —«, )'+X'(1+x)']''

Also, this can be expressed in terms of E(1. (63),"
i~

=
4~~ 1 Z

with the usual substitutions for A. and p, in the square brackets.
From E(I. (65) we find

s' d 1-p', i2p Bp(1-p)((X+ p)'+ «,'-p[(X —p)'+ «,'])+32p'X'
C

(1-p}' Bp(1 -p}'[&'+ (~ —p)'] Bp(1 p) ((X-+ &)'+ «,' —p[(X -&)'+ «,']j
CX C C3

Sp(1 —p)f(X + p )'+ «', p [(X p, )'+ «,']) 32p'X'
+

C
3 + 3 K~ K2g

C

Bp(1 —p)/(X+ X)'+ «', —p [(X —X)'+ «,']}+32p'X'
3 «2(«2~ . 82

32p'X'
+ 3 K2qKgy—

With X=X„and in the high-energy limit, E(1. (82) yields

, 1 s' d 1 —p' ip . (1 -p)' p(1 p)'[&'+ (&——p)'j 4ip' ~ g
4 ~KI] ~K2g dp p C C

. p(I p)[E.+i-l pÃ. -ip)]-
+ 2z p,.b,

&

—2i.p(1 —p)[E, + iX p(E, iX)j-
p 6

C

%e next perform the substitutions for A. and p, ,
insert into E(I. (81), and decompose the integral
according to Eq. (49). This yields

2 1+y I 1-y

E= —gm m4 dpp 1-p

dxdy (xy) "

dpp dxdy xy

4 1+y I' 1-y

(84}
„E,+ i~(I+y) -p[E, -iX(I+y)]

—3C

E= -2~~'m ~'

(SB}

dpp" 1 p'

-„„~~(„~)-. ' „~v( *~ *(*-v)*))
C

(85)

dpp " dxdy xy ~ c '. 8V
0 0 0

%'e have so far carried out the momentum-space
integrations contained in the integrals (52)-(54)
and (43)-(49). We are left with threefold integrals
over the parameters p,x, y. The integration can
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be carried out analytically one step further, there-
by reducing the threefold integrals to one -dimen-
sional integrals over hypergeometric functions of
two variables of Appell's type E,.36

Indeed, let us first define

I(p)=[p(( )] ff «R1) "(c) ~dy, (90)

I,(p) =
[ „(x- y)'(xy) "(c) 'dx dy .

()=[
( )] J f ~) "()

1 00

I,(p)=[
( )], (xy) "(c) 'dxdy,

(88)

(89)
We can then write Eqs. (VO), (VV), (V8), and
(84)- {SV}as follows:

~ 2 1

A = —"X'm p "[(1+4P+ p')Ii(p) +4P(l p}'(-i~)*i.(p)+2P{1+P}'I2(p)A']dp
4 0

(92)

2 1
i9' =-— N' m p "[(1—p')I, (p)+2P(l P2}I,(p)A2]dp

0

18"=- v' N'm& p' '(1+p){[E,+it —p{E,-A)]I,(p)+it(1+ p)I, (p)}dp,1 +y

C=-— N m p 'I, (p)dp,
liT 2Q

2 1+y (95)

im2 ag)=+— @2ppg p ~' 1-p 2I, -4p 1-p 2iX I~ p +2p 1 —p I2 p g2 dp,

2 1E=-'" i[I mA p' "{1-p){[E,+f1- p(E. -'li)]I.(p)'~(1+p)i. (p))dp,1+y

2Q 2 2Z=- 2iv' &'mA' p "I.{p}dp1+y (98)

E[luatjons (52) and (92)-(98) then give

1 2
II")=--,'in'II'm p-" (1+4p+p')+i (1 —p')- (1 —8p+p') Ii(p)1+y 1+y

+2P&' (1+p)'+i ' (1-p')- (1-8p+p } I2{ }1 +y 1+y
2

+4(ia)'p(l- p') 1+ I,(p) dp.1 +y

Similar expressions can be found for K"' and I "'
The integrals (88)-(91)are calculated in Appendix A. From E(ls. (A25)-(A2V} we find

(99}

Ii{P}= [1 {2+2y)/8(i~)' '"][i(l+P)]'" '{[Eo+i~-P(EO- i~}]'-P&'I ' "&i(1 y) 1+yi 3 i 2 -) x, fxm), {1o0)

I,(p) =[I"(4+2y)/120(iv)'-'"][-.'(1+p)]'"-'{[(E,+is) —p(E, —iX)]'- p&'l '-"Z, (l -y;2+y, —,'; —, z„z,), (lol)

I,(p) = [(1—y)F(3+ 2y)/120(iX)i 2"][ (1+p}] ~—'[ED+A —p(E —iX)]

x{[{E+iX) —p(E —iX)]2 —PA'l ' "E,(2 —y;2+y, —'; —;z„g), (102)

I,(p)=[(l —y)&(2+2y)/120(i[[)' '"][-'(1+p)]'" '{[E,+'X —p(E, AL)] —PA] ' "E,(2-—y;1+y, —,';—;„,),



with

g~ = ply /(pA —[E 0+iX —p(EO- fi(.)] ],
&~ = [{1- p)/(1+ p)]'. {104)

V. FOR%PARD SCATTERING

Equations (92)-(104}represent our ultimate ana-
lytic result for the amplitudes of Eqs. (58) and
(52)-(54}, which are expressed as integrals over
Appell functions E,. Note that H"', Eq. (99}, con-
tains three distinct such functions. From hex e on
we must continue by numerical computation. How-

ever, before doing so, in the following two sec-
tions we shall discuss various aspects of our ana-
lytic results.

E,(a; b„b, ; c; O, s~) =~E,(a, b„c;s,),
the Appell functions E, in Eqs. (100)-(103) reduce
to Gauss functions 2E, . %'8 then insert these into
Eqs. {92)-(96).

For Eq. (92) we find

&o= — p "(1+p)'" '(1-pL) ' '"2f
3

xol +4p+ p') ~F,{1 y, —,', —,'; zm)

+ 5(1-&)psst&, (2- x, —,
'

—,'; z,)]dp,

(106)

'a, =H, (I;gm) +Hoo. ('it, x if,), (105}

In the case of forward scattering the matrix 'L

occurring in the matrix element 3R Eqs. (56)-
fft2 )ltd P

(5V), reduces to and [see Eq. (39)]

f=- af(1+X)(1+2&)s'""e"'""(y+fo) '" '.

(107)

where subscript Zero x'efex's to +=O. Fx'ooi
Eqs. (54), (94), and (97) we have L„=O.

In this section we first write foxmulas fox Ho
and Xo. Next we discuss the connection of our re-
sults with the high-energy limit of the cross sec-
tions for photoeffect and pair production. Finally,
we give the first tex'ms of the expansions of Bo
and Ko in powex's of g.

The expressions of H for forward scattering are
simpler than in the general case. This is due to
the fact that the variable z, of Eq. (104) vanishes.

(108)

The two Gauss functions occurring in Ule curly
brackets of Eq. (106) can be reduced to a single
one by some transformations. '~ %8 find

(109)
%8 apply a ~~filar procedure to tran~for~ &0 of

Eq. (96}, obtaining

We now insert Eqs. (109) and (110), and Eqs. (93) and (95) {taken for A=O), into Eq. (52). The result is

H0 appearing in Eq. (105) follows from Eq. (58).
Equations (52) and (53}give

Eq. {2)it foQows that"

lm3}t,"'= —(a/4m r,)o", lm3g,")=+ (~/4vr, )o".

since F0 =0. K0 is then obtained from Eq. (58).
Next, we want to relate the result, of Eq. {111)

to the high-energy limit of the total ex"oss section
for the photoeffect from the K shell. Let us denote
by Slg,'" the matrix elements defined by Eqs. (2)
and (5), taken for forward scattering (Tc, =~, = ~),
with no change of photon polarization (s, =s, =%)
or electron-spin projection (m, =m, =m). From

Here o~ is the total cross section for the photoef-
feet involving the photon 1~. , s, and a bound K-sheD
electron in the magnetic state m; 0~~ is the total
cross section for pair production by the same pho-
ton, with the electxon left in the state m of the K
shell and the positron flying away; r, =e'/m is the
classical electron x adius.



222 V. FLORESCU AND M. GAV RI LA 14

In the high-energy limit we get from Eqs. (50)-
(52) and (55)

lyygg = Ima I'm = —ImH0 0 &
' 0 0

We thus find the limiting behavior"

o "=o~~ = —(8))'ro/tc) ImH(')

(114)

(115)

where o ~', 0~~~ are now cross sections for the whole

K shell. Equation (115) shows that the two cross
sections become equal at high energies, which is
a point of interest in connection with the applica-
tion of dispersion relations to our problem. '

Equations (115) and (ill) give a formula. ior cal-
culating the high-energy limit of the photoeffect
cross section. This limit was studied by Hall"
and subsequently in more detail by Pratt, "who

derived several equivalent expressions for 0'~'

in terms of double integrals. Let us now show that
our result agrees with his.

We first consider H,"'*, the complex conjugate
of Eq. (111), in which we change the integration
variable according to p' =1jp. We thus find

ImH"' = (1/2i)(H"' —H"'*)
$6

p "(1+p) "(1—pg)
' '"( }~p, (116)

2g
Q

which contains the same curly brackets ( ' }as
Eq. (111). In Eq. (116) we replace the Gauss func-
tions, E, by their standard integral representa-
tion, "written in terms of a variable t. By then

changing the variables of integration p and t ac-
cording to p = (1+x)/(1 —x) and f =y', we obta. in

Eqs. (47) and (48) of Ref. 20."
Finally, we give the first terms of the series

expansions of H, and K„Eqs. (105}and (58), in
powers of a. Although, in principle, the deriva-
tion is rather straightforward, in practice it turns
out to be extremely tedious. In the case of H, the
expansion was carried out to order a' (included),
whereas in the case of IC, only to order a (in-
cluded). The calculations are given in Appendix B.

Equations (B14) and (B20) yield

H, = 1 ——,
'- a'+;, a'+ O(a'), (117)

K, ———, a'a-' 'I exp(-2acos 'a)] [(I ——', ma+ O(a')].

(118)

In Eq. (118) we have kept some corrective terms
I

of order a' which are numerically important.
These quantities were calculated also in Ref. 12,

Eq. (3.4), to about the same order in a. However,
the results obtained there differ from ours in that
the coefficient of a' in Eq. (117) is found to be,
and the one of the leading term in a' of Eq. (118)
is found to be '-' (instead of —,)."~ 4' The numerical
computation we have carried out for H, (see Sec.
VII) favors at low a our results, Eqs. (117) and

(118) '4'"

VI. FORM FACTOR APPROXIMATION AND BEHAVIOR

FOR LARGE 6

As noted by Goldberger and Low, for small a
the high-energy-limit matrix element Eqs. (3),
(5), (15), and (35) [or, equivalently, (27)] reduces
to the form-factor approximation. Let us analyze
in some detail the small-a limit of our analytic
result, Eqs. (59), (58), and (99)-(104), for all A.

Equation (99) shows that H"' can be considered
to be a function of the two variables a and 4/X.
Consequently, from Eq. (58}, the same applies to H:

H=H(6/X, (2) .

We are interested in deriving the lowest-order
terms of the expansion of H in powers of a, for
fixed 6/l). . We write the expansion as

H —,a =ED —+aE, —+a'F, —+

(119)

This is only apparently an expansion in a, since
the variable &/X also depends on a. Neverthe-
less, for sufficiently small values of 6/X, the ex-
pansion is useful, since it successive terms de-
crease. This can be inferred from the fact that
for ~=0, H(0, a) reduces to Ho given in Eq. (117),
and, by comparison, the values of E,(0) are found
to be of order 1 while, on the other hand, a & 1.
For large values of 6/i). the expansion becomes
meaningless, as we shall see in the following.

In order to obtain Eo(h/1) we can neglect all
quantities of order a' in Eq. (99). Thus y can be
replaced by 1 and the Appell functions E, which
are needed in Eqs. (100)-(102)reduce to l. One
can also replace p

"by 1 in the integrand of Eq.
(99) (lowest-order Born approximation of the
Green's function, free-particle intermediate
states) and neglect some terms of order a, to get"

1+4p+p' L ' p(I+ p)

((& ~ -P(&- )I'-~(&/ ))* {(&+ -p((-( )I*-p(~/ ))')H (I ) ~~ ~ 2 1I~
0

~

I ~ ~ I ~~ ~
2

~
2 2 ~ 2

FNa -=&.(&/l() =
I. 1+ (&/») ] ' (120)

After integrating and dropping some more terms
of order a, we find

In order to obtain E,(A/A) of Eq. (119)we can
aga. in set, y= 1 in Eq. (99), but we must now retain
all terms of order a (including those contributed
by p "). The derivation '.s somewhat involved and
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The coefficient II((I) can be calculated exactly; we
give only the result

II(u) + 22)' )p 'Me ill(1 'Y ) u27+ 2[ (I + y)F(j + 2y)] )

x I'(1 —ia)(l+ y+ ia) [ I'(y+ ia)]'
x (I"(I+ia)(y+ ia)2""*']-' .

To lowest order in a we find

ff") = —2a'(~/m)--'

Let us denote by H"' the contribution of the in-
terval (r/((, 1). On this interval we can neglect
finite quantities with respect to p4'. Thus the
variable z, reduces to 1 and again the E, func-
tions become +,.~' By expanding the integrand
in powers of p one finds upon integrating that the
contribution of the dominant term in ~ is of order

(123)

ff(I) 0(g-I-)'+ is 1 ~) (124)

By comparing Eqs. (121) and (124) we see that

we shall omit it. The result is I', (6/X) =0.
E„a of Eq. (120) represents the nonrelati()istic

form factor. 4' Since the corrective terms in Eq.
(119) are of order a2, it is expected to approximate
quite well H(S/), a) for very-low-Z atoms, like
hydrogen, and not too large A/A. . However, as
stated before, the form-factor approximation is
not uniform with respect to h/A. . For large values
of this variable, the approximation breaks down,
whRtever the VRlue of Z Rnd tile asymptotic be-
havior of H(h/A. , a) with respect to 6 is different
from the one given by Eq. (120).

In order to find the correct asymptotic behavior
we have to start from tbe integral of Eq. (99). For4- ~ it is only the neighborhood of p= 0 which con-

tributess.

Tllls is becRuse foI' any p &0 the fRctors
in curly brackets, L. ' j, in Eqs. (100)-(103) tend
to zero, whereas for p=0 they remain finite (The
functions E, stay finite for all p and &). Hence it
is convenient to divide the integration interval
(0, 1) into two parts by a point )'/6, where )' is
some constant. On the interval (0, rlr)) we can
neglect powers of p with respect to 1. Therefore
the variable z, becomes equal to 1 and the func-
tions E, reduce to +1.48 However, the term pa'
appearing in the curly brackets of Eqs. (100)-
(103) must be kept, since it can be large. We
next change the integration variable to u= pa'/r
and consequently the integration interval becomes
(0, h). Besides, the integrand becomes indepen-
dent of 6, while the power 6 "'"factors out.
Since the integral can be extended to the interval
(0) ~) wl'tllout pel't(II'i)ing 'tile dollllllR11't RsyIIlptotlc
behavior, the latter will be given by 4 "'".49

Thus we get the following contribution to Il"':
ff(l) I (a)(g/I) "2+ 2(a (121)

for & & 1 lt &S II Which dOm&nateS fOI' 6~ cc Rnd
therefore

0=2 ReH ' =2 ReH '1

This shows that asymtotically H is negative, in
disagreement with E» Eq. (120), and besides, it
decreases Inore slowly than the latter. However,
it should be kept in mind that Eq. (125) is valid
only for extremely large ~. Note also that, to cow-
es't 01'del' in(I tbe Rsylllpto'tlc 'tel'Ill Eqs. (125) (123)
would belong to the term a F,(h, )() of Eq. (119).

In order to understand what happens for mod-
erately large values of b, (»& )() we note that E»
and the asymptotic term Eq. (123) are both of
order O'. In order that E» be still a good ap-
proximation to H, & should be such that Eq. (120)
ls 1RI ge wltll 1espect to Eq. (125), tllRt is,

(a'/4z') "»4a'(a/)II) ' or (a'/))I')«4 .

In terms of the variable L/A. , this becomes (0/
)()'«0(a '). This shows that the smaller tbe Z,
the larger the interval of agreeInent between E„„
and II, when both are represented in terms of 4,/
A. (as we shall do later; see Table I).

For reasonably large values of 4, I"» and the
asymptotic term of Eqs. (121) and (125), both con-
tained in H [consider Eq. (119)], are not very dif-
ferent in magnitude. Besides, they are of oppos-
ite sign. Therefore it is expected that the ampli-
tude H will pa. ss from positive values (which are
below those predicted by E„„)to negative values,
tending to zero afterwards). ' '"

The evaluation of the basic integral II"', Eqs.
(99)-(104), was done in two stages: first, the
computation of the Appell functions I', contained
in the integrand, and then the integration over p.

The most accurate and fastest way of computing
the functions E, is to sum their series expansions.
%hen possible, we have adopted this approach.
The expansion' of E,(z„z,) converges for ~zi ~&1

but z, can be smaller or larger than 1 in Inodulus
depending on p, z(', and a. When the modulus ~z, ~

became larger than 0.8, we have switched over
to the computation of the I", functions from their
integral representation. "

In what concerns the integration over p in Eq.
(99), one problem here is the fact that p"
= cos(a lnp) —i sin(a lnp) in the integrand has an
infinite number of oscillations for p-0. Conse-
quently, we have isolated an interval (0, a) in which
we have approximated the rest of the integrand by
a polynomial, the integration then being per-
formed analytically. On the interval (~, 1) the in-
tegration was carried out by Simpson's rule. '~
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For n, /X& 7, the estimated relative error on
H"' is less than 10 '. For n,/X&7, when the com-
putation becomes more difficult and time con-
suming, the relative error is about 10 '.

H"' was computed for values of Z such that 6
- Z ~137. For small Z, such as Z&6, one is

faced with severe problems in the p integration. "
However, already for Z = 6 the n/X dependence of
H, obtained from Eq. (58), nearly coincides for
n, /A. &15 (the range we consider) with E» of Eq.
(120).

Our results for H, Eq. (58), are contained in
Table I. We have considered only values of 6/X
& 15, because beyond this H becomes very small
and Rayleigh scattering is negligible with respect
to the other competing scattering processes. The
values of Z chosen are distributed rather uni-
formly from 1 to 92. For the reason explained
above, for Z= 1 we give the values of E», Eq.
(120).

Table I also contains results for Z= a ' (a =1).
This case represents the high-Z limit of any rela-
tivistic quantum-mechanical calculation based on
the Dirac equation for a point nucleus. Although
nonphysical, we have considered it because it
sheds additional insight into our problem. Be-
sides, in this case the general analytic expres-
sions obtained for H"' become simpler" and have
been calculated numerically independently of the
main computation. %e thus had the possibility of
checking the latter.

The computation of K,"', given by Eqs. (112) and

(111), proceeds along the same lines as for H"'
but is simpler because instead of Appell functions,
in the integrand we now have Gauss functions and,
besides, 4=0. The results for E, of Eq. (58) are
presented in TaMe II. For Z=1 we encountered
difficulties in the computation, similar to the ones
described above for H"', so that we have used
instead the expansion Eq. (118), which is quite ac-
curate in this case.4'

Besides the checks on the analytical part of the
calculations we have mentioned already, we have
also made some checks on the computation. These
refer mainly to the case 4=0 which, however, is
a special case of the general program for 4&0.
For example, we checked the Z dependence of
ImHO"' by using Eq. (115) and the existing results
for oE; the agreement was excellent. " Also, we
compared the numerical results for Ho, Ko at
small a with the values obtained from the series
expansions (11V) and (118) and found good agree-
ment. ~~'~~ For 4 4 0, a qualitative check is of-
fered by the dependence of H on a/X at values of
Z which are either small or very large (nearly
equal to n '). In the former case H nearly co-
incides with EN+, whereas in the latter (e.g. , for

Z= 126) we found that its behavior becomes close
to the one derived for Z= a ' by independent cal-
culation.

TABLE H. Electron spin-flip amplitude Eo for forward
scattering and various Z Isee Eqs. (56) and (105)].

18
3
6
13
29
42
50

0.662xiO "
0.148 xiO 8

0.422 x10
0.149 x 10-'
0.388 x 10 '
0.105 xiO '
0.100 x10 3

60
73
80
82
92

120
0

-0.109 x 10 3

—0.118x 10
-0.242 x 10
-0.290 x 10 '
-0.636 x 10
—0.328xi0 '
—0.808x10 '

' Evaluated with Eq. (118).

VIII. MSCUSSION

The Rayleigh-matrix element at high energies
for a single K-sheD electron is given by Eqs.
(56)-(58) in terms of the three amplitudes H, E,
and L. The result for the full E sheD is ex-
pressed in terms of H only [see Eq. (59)]. We
now want to comment on the numerical values
obtained for the latter in Table I.

Let us first study the 6/X dependence of H, for
fixed Z. For Z=1, H practically coincides with
the nonrelativistic form factor E» given by Eq.
(120),"which is a monotonically decreasing func-
tion of h/X. For not too large values of Z (e.g. ,
Z ~ 50) and moderate a/a (e.g. , a/x ~2), H is not
very different from E». The agreement is better
for small Z and 6/A. . In fact, the reason we have
chosen to represent H as a function of 6/A, [rather
than of 6/m or 6/Z'6l] is to illustrate that E»
is the underlying structure of H and to display the
Z dependence of the corrections. For large 6/X
and Z these are quite important.

H remains monotonically decreasing with respect
to h/a over the entire range 0 —a/~ ~15, for all
Z~29. However, for 42 ~Z~82, H has a negative
minimum, which occurs for n/X larger than 8.
For Z=92 the minimum still exists, but the cor-
responding value of H is then positive and small.
In the limiting case of Z= n ' the minimum has
disappeared and H is again monotonically de-
creasing. This behavior agrees with the quali-
tative description given in Sec. VI, based on the
interference of E» with the term in H which is
dominant for asymptotic 6/X.

Let us also consider the variation of H when d/X
is kept fixed and Z is increased. For forward scat-
tering (L=O), H decreases monotonically with Z,
starting from a value H=1. The decrease is
rather slow for Z~92, but then as Z approaches
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the critical value n ', H becomes appreciably
smaller than 1.

The decrease of H with Z is maintained for all
'/'up to 2.1. However, beginning with ~/X=2. 25

a minimum appears in our table for Z= 92. The
minimum shifts to smaller Z as ~/' increases.
For ~/X=8, the minimum of H is negative but
becomes shallower. The nzinimunz minimorum
in our table occurs for Z=60 and 4/X=10.

The preceding discussion referred to the de-
pendence of H on Z for a fixed value of the vari-
able ~/X, whichdepends itself on Z. It canbe
easily seen that one does not obtain in general a
monotonic variation of H with Z, even if b, is taken
to be the other variable.

The electron spin-flip amplitudes of Eqs. (56)-
(58}were considered by us only in the case of
forward scattering. The dependence of ED on Z
is given in Table II, while I;=0. X, has a re-
markable behavior. It starts by being very small
and positive for small values of Z such as Z= 1 ~

It then increases many orders of magnitude when
Z grows up to 50. Between Z=50 and Z=60 it
drops to zero and becomes negative. The values
for Z=50 and Z=60 are nearly the same in abso-
lute value. Beyond Z= 60, Ko becomes more and
more negative until it attains its lowest value for
Z=- n '. We cannot offer a physical explanation of
why the probability of electron spin flip should
vanish when the strength of the Coulomb field
varies from Z = 50 to Z= 60 ~

We shall now compare our results with previous
ones. Levinger and Rustgi" have computed the
high-energy-limit matrix element K(~; Z) for lead
and forward scattering from the Kramers-Kronig
dispersion relation (the generalized Thomas-
Reiche-Kuhn sum rule). "'" The result they found
was —,'Kr (0;82) =0.86. As noted in Sec. I this
cast doubt on the suggestion in Ref. 13, according
to which —,'Kr(0;Z) should have been equal to l.
The good agreement with our value 0.8552 given
in Table I is somewhat fortuitous, because some
of the input data they used have been meanwhile
recognized as incorrect. "

Our result for Kr(h; Z) was derived in the limit
of high photon energies (mathematically, K "}
and finite momentum transfers A. A natural ques-
tion is to what extent the result can be applied to
the case of finite K. In order to discuss this ques-
tion we need to digress regarding the general form
of the Rayleigh matrix element K~.

Rotation invariance requires that in the case of
a closed shell or an atom with closed shells, the
matrix element should have the following form:

K=M(s, sf)+N(s, .v,)(s,* v,), (126)

where v, and v, are the unit vectors of Ky and K2.

The amplitudes M and N are in general complex.
When the matrix element for one electron is de-

fined as in Eq. (2), the differential cross section
for polarized initial and final photons is

d;=r,'~K~'dn, (127)

with r, =e'/m. By averaging over the initial and

summing over the final photon polarizations, we

get

do=-,'r,'[~K, ~'+ ~K„~2] dn

=r,'[ /K„„/'+ fm, r/'] da,
where"

It:, =M, K„=Mcos8-N sin'8;

~r ———,
' [M(cos8 —1) —Nein'8],

K„„=-,'[M(cos8+1) Nsin'8) .-

(128)

(129)

(130}

3R~ =2H, 9/i, =2Hcos8 . (131}

We can now discuss the conditions under which
Eq. (131) should be a valid approximation to Eq.
(129). A significant fact is that the high energy-
limit result H reduces for small a and sufficiently
small ~/'to E», Eq. (120), which is a nonrela-
tivisticapproximation (see Sec. VI). The assump-
tions made in nonrelativistic theory in deriving
the form factor are that orders a and v/m can be
neglected, but that K is large enough with respect
to the binding energy of the electron f(Z) [in the
relativistic Coulomb case we have I(Z) =m(1 —y)].
Combining this with our results one can expect
that Eq. (131)will give a uniform approximation
in K from nonrelativistic energies K»I up to ex-
tremely high relativistic energies, at least for
small a and n/A. not too large. ~ Moreover, the
statement seems to be true also for large values
of a. It is hard to prove this directly by analyzing
the magnitude of the terms neglected in deriving
Eq. (59), becauseof their multitudeandcomplexity.
However, a qualitative analysis we have made indi-
cates that this is the case. We also find that in
order to have the agreement of the matrix ele-
ments K~ and K~, 6 should be limited by a condi-
tion of the form na/A2«O(tc/m)

Therefore the process can be described either by
the amplitudes (129}, or (130). The existing
numerical calculations have used both alter-
natives.

In the high-energy limit and for finite momentum
transfers n it is only the first term of Eq. (126)
which survives [see Eq. (59)].~ If we want to
apply Eq. (59) at lower photon energies and finite
scattering angles, this suggests the following ap-
proximate forms for the amplitudes Eq. (129) for
the E shell:



14 ELASTIC SCATTERING OF PHOTONS BY K-SHELL. . . 227

However, it is more conclusive to compare our
numerical results with the existing computations
at higher energies (Brown and Mayers, ' Cornille
and Chapdelaine, ' Johnson and Lin~). 65 The com-
parison is presented in Table III.

For Z=13 and ~=0.08m=17.7I, —,Re%, is very
well approximated by —,'%, and F». By comparing
& K„with —,

' Re%„one sees that the difference is
small, except about 90, but there it is irrelevant
since 2 Re%, is small anyway with respect to
—,
' Re3R, . The imaginary parts of —,'5R, and —,'%,
are small and give a totally negligible contribu-
tion when entered in the cross section, Eq. (128).
Thus in the present case, the exact amplitudes
SRj and Kii are well approximated by using 3R,
and K„with H or FN„ in Eq. (131). This was to
be expected from what has been said before, since
both a (=0.095} and g/m (=0.08} are small.

For Z= 50 and It. = m = 14.5I, the agreement de-

pends on 8 (or b). For tt ~40, —,
' ReK~ agrees well

with —,R„better than with F», the effect of the
imaginary parts of 2%, and 2%„ is negligible. For
8 &40 the agreement with —,

' K, rapidly deteriorates
and the difference becomes orders of magnitude,
whereas F» remains closer to —'Re%~. Because
of this we have omitted the results for larger an-
gles. However, in these cases the matrix element
is relatively small.

In the case of Z =80, ~ =2.56m = 13.6I and w

=5.12m =27.2I, for smaller angles 2 K, is a better
approximation to —,Re%, than F». But then, be-
ginning with about 60', both are in error by orders
of magnitude.

Thus 'Table III indicates that for ~ » I our high-
energy approximation is good when the matrix ele-
ment is not too small, even if v is not large with
respect to m. The case of Z=80 also seems to
indicate that the agreement extends to larger

TABLE III. Comparison of OR~, and OR~~, Eq.
for OR~, OR

~~
at higher energies.

(131), with the results of other calculations

& (deg. ) 2ReOR~ —,
' rm OR„

Z=13,
FNR

v = 0.08~
2 ReOR () 2 ImOR/t

0
30
60
90

120
150
180

1.0055
0.9165
0.7260
0.5495
0.4306
0.3667
0.3469

-0.0042
-0.0041
-0.0039
-0.0037
-0.0035
-0.0033
-0.0033

0.9955
0.9071
0.7178
0.5418
0.4234
0.3596
0.3398

1.0000
0.9111
0.7209
0.5442
0.4253
0.3614
0.3415

1..0055
0.7925
0.3603

-0.0032
-0.2174
—0.3180
-0.3469

-0.0042
-0.0034
-0.0016

0.0005
0.0021
0.0030
0.0033

0.9955
0.7856
0.3589
0.0000

-0.2117
-0.3114
-0.3398

Z= 50, v= m~

0
10
20
30
40
60
90

0
15
30
45
60

0
10
20
30
40

0.9495
0.8520
0.6355
0.4242
0.2721
0.1162
0.0447

0.8494
0.4963
0.1640
0.0541
0.0213

0.8655
0.3546
0.0736
0.0162
0.0040

—0.0099
-0.0095
—0.0085
-0.0072
-0.0059
—0.0039
-0.0023

—0.0237
—0.0182
—0.0106
-0.0077
-0.0060

-0.0123
-0.0079
-0.0051
-0.0044
-0.0039

0.9401
0.8428
0.6280
0.4180
0.2657
0.1086
0.0352

Z= 80,

0.8614
0.5008
0.1658
0.0524
0.0178

Z= 80,

0.8614
0.3534
0.0728
0.0151
0.0028

1.0000
0.8950
0.6648
0.4426
0.2833
0.1207
0.0442

it;= 2.56 m

1.0000
0.5674
0.1910
0.0687
0.0297

K= 5.12 mc

1.0000
0.3984
0.0908
0.0264
0.0100

0.9495
0.8375
0.5910
0.3571
0.1952
o.o431

-0.0115

0.8494
0.4730
0.1265
0.0199

-0 ~ 0080

0.8655
0.3465
0.0650
0.0099

-0.0008

—0.0099
-0.0089
-0.0064
-0.0035
—0.0010

0.0014
0.0016

—0.0237
—0.0138
-0.0027
—0.0011
-0.0010

—0.0123
-0.0068
—0.0018
—0.0014
-0.0013

0.9401
0.8300
0.5901
0.3620
0.2035
0.0 543
0.0000

0.8614
0.4837
0.1436
0.0371
0.0089

0.8614
0.3480
0.0684
0.0131
0.0021

ORj and OR
~~

taken from W. R . Johnson and Chi en-ping Lin (private communication) .
"OR~ and OR

~~
taken from G. E. Brown and D. F. Mayers [(Ref. 7(d) J.

'OR~ andOR
~~

taken from H. Cornille and M. Chapdelaine (Ref. 8).
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values of 6/X as z increases.
We finally consider the interference of Rayleigh

scattering by the E-shell electrons and Delbruck
scattering, in the energy range where the Rayleigh
matrix element can be approximated by our Eq.
(131). The results for the Delbruck matrix ele-
ment will be taken from the recent work of
Papatzacos and Mork, "'"where it is denoted
by (aZ)2s. Since the two matrix elements have
to be added coherently in the total matrix element
for the elastic scattering by the atom, it is im-
portant to know their relative phases. The most
natural way of finding these is by referring to the
8 matrix, from which both matrix elements are
derived. " By doing so, we find that the two ma-
trix elements have been defined in a way such that,
in order to be consistent, they have to be sub-
tracted so as to get their contribution to the
atomic matrix element, K= (aZ)'a —II+.67 In
the present case the atomic differential cross
section is also given by Eqs. (127)-(13O}.""~

The amplitudes (131) corresponding to the ma-
trix element a were calculated in Ref. 16(a) for
several photon energies, in the lowest-order Born
approximation (a is then Z independent). We con-
sider here the angular distribution for ~= 10.83
MeV=21. 18m and Z=73. This is presented in
Table IV, together with our results for Eq. (131).
Since II, =138I, we expect our approximation, Eq.
(131), to be quite good.

From Table IV we see that fox Ta and angles up
to 5', Rayleigh scattering plays a significant role
in the interference with Delbruck scattering. How-
ever, beyond 5' the Rayleigh amplitudes tend to
become negligibly small.

The Delbruck amplitudes are proportional to
Z (in the Born approximation} and have a rather
slow decrease with the angle, '0 whereas the K-
shell Rayleigh amplitudes decrease rapidly with
the angle at high energies, deer easing faster with
smaller Z. Taking this into account, it is Rayleigh
scattering which is predominant for ~= 10.83 MeV
and Z& 73 at small angles, whereas for Z&73

even at small angles it will give a minor contribu-
tion (see, however, Ref. 69). As the photon ener-
gy increases, the Rayleigh effect will play a role
only for decreasing Z and scattering angles.
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APPENDIX A: EVALUATION OF SOME INTEGRALS

We shall now show that all integrals f(p}, Eqs.
(88)-(91), can be evaluated analytically and that
they can be derived from the following one:

(xx) "
[(I+sx+ ty)(1+ tx+ sy)+ u]"

1 —n& Rey& 1 . (A2)

However, in order that the integral be meaning-
ful, its parameters s, t, and u also need tobe
such that the denominator of the integrand does
not vanish. This is certainly true if s, t, and u
are positive numbers. We shall consider this
case first.

Here y, s, I;, and u are complex numbers and n
is a positive integer. In order that the integral
be meaningful these quantities must satisfy cer-
tain conditions.

To find them, we change the variables x and y
in Eq. (Al) to polar coordinates. It is then easily
seen that in order that the integral be convergent
near the origin we must have Re@& 1. For it to be
convergent at infinity one must have 1 —n & Re@.
Combining these conditions we get

TABLE IV. Comparison of Rayleigh X-shell amplitudes, Eq. (131), with Delbruck ampli-
tudes of Papatzacos and Mork faef. 16(a)] for Z= 73 and x=10.83 MeV.

8 (deg. ) (aZ)2 Reg~

0.01

(eZ)2 Ima~

1.850 1.764

(AZ) RGQ()

1.856

(eZ) Imaj)

1.850

0.5
1
1.5
2
3
5

10

1.342
1.007
0.769
0.610
0.429
0.227
0.074

1.711
1.461
1.229
1.033
0.735
0.394
0.116

1.667
1.418
1.110
0.820
0.409
0.094
0.001

1.416
1.101
0.863
0.698
0.508
0.2S9
0.116

1.751
1.555
1.356
1.183
0.908
0.568
0.241

1.667
1.418
1.110
0.819
0,408
0.094
0.001
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p (n), (-u)'@
(1)p

(A3)

The denominator of the integral can be expanded
in powers of [u/(1+ sz+ ty) (1+ tv+ sy) ] . The series
ts (uniformly) convergent if 0 «u & 1, whenever

s, t~0 and s,y~0; in the foQowing we shall con-
sider I to be restricted by this condition. We
therefore can interchange the order of the summa-
tion and integration to find

We decompose this integral into two parts, one
corresponding to the interval (0, —,'), the other to
(—,', 1), and make in each of them the change of
variable $ =4z(l —z). This gives

D = [ F(1 —y)] 2 F(2n+ 2p+ 2y —2) 21 2„2P
[I'(n+ p)]'

1 y 1
x In+ P 1(1 I) 1/2 st+ (s t}2

with

(zy) "(c,c,) " ~dzdy, (A4)

By using now the standard integral representation
of a Gauss function +„~we find

( )], I'(-,')I'(2n+ 2p+ 2y —2), ,„»(I'(n+ p)I'(n+ p+ —,')
c, = 1+sr+ ty, c, = 1+tv+ sy . (A5)

In order to calculate the integral Eq. (A4) we
start from

x+,(n+p, 1 —y, n+p+ 2, —{s—t)'/4st) .
(A10)

dz

c,c2, [c,z+ c,(1 —z)]' ' (AS)
The coefficient in Eq. (A10) can be written as
follows:

By differentiating this with respect to cy and cg
we get

1 j 82~ 2 j
(c,c,)" [I'(m)]' bc~™1ec, 'c,c,

1(2m} ' z '{1—z)
[I'(m)]~ o [c,z+ c,(1 —z)]'

AV

We then insert Eq. (AV) into Eq. (A4) and inter
change the order of integrations:

I'(2 +2p)
[I'(n+ p) j'

(zy) "
y [c,z+c,(1 -z)]'" » '

(AS}

I'(—,')I'(2n+ 2p+ 2y —2)
r(n+ p) I'(n+ p+ —,')

,„,», I'(2n+ 2y —2) (n+ y —l)~(n+ y ——,
' ),

I'(2n} (n+ k), (n),

where (a)~ = I'(a+p)/I'(a). ~ Putting this back into
Eq. (A10} and using one of the transformation
formulas for +, we get

[~(i y)] 2 F(2n+ 2y —2)
r(2n)

(n+y —1)~(n+y —-,')~ s+t '" '(st) '~'

(n),(n+ —.
* ), 2

1 (s —t)'
XoF& o, n+p+y —z, n+p+ 2,. 4st

(All�}

The double integral over x and y now has a de-
nominator which is linear in these variables [ see
Eq. (A5}]. According to a known formula, ~' we
find

dhdy {zy) "[c,z+c, (l —z)] '" »
0 0

[I'(1 —y}T I'(2n+2p+2y —2)
I'(2n+ 2P)

We now insert Eq. (All) into Eq. (A3) to obtain

r(2n)
z =[r(1- )j' " ' '

( t)-'"

(n+y —1)~(n+y ——,')~
( )~

p=o (n+ a)~(1)~

Therefore

&[(s —t)z+t]" '[s —(s-t)z]" ' . (A9)
(A12)

}]2 I'(2n+ 2p+2y- 2)
[r(n+ p}]'

1
x [z(1 —z)]"'~ '[(s —t)'z(1 —z)+st]" 'dz .

0

If 0 —u& 1, which we have already assumed, the
series occurring here can be summed to give a
hypergeometric function of two variables, of
Appell's type, E,(a; b „b„c;z,z2)." 'Equation
(A12) thus becomes
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&„=[ r(l —y)]'[r(2n+2y- 2)/r(2n)] (st) '~'[ —,'(s+ t)] " ' E,(n+ y —-'; n+ y —1, —.'; n+ —,'; —u, —(s —t)2/4st) .
(A13)

This can be written in an alternative way, by using a transformation property of the E, functionv '.

8' =[I'(1 —y)] [I'(2n+2y —2)/1"(2n)][ —'(s+t)] " (1+u) " "E (I-y n+y —1, —';n+ —', ;u/(u+1), [(s —t)/(s+t)] ) .
(A14)

We have derived Eqs. (A13) and (A14) under the
assumption that s, t ~0 and O~u &1. These re-
strictions can be relaxed by looking at the ana-
lyticity properties of the integral Eq. (Al) with
respect to its parameters s, t, and u. This is
simpler to do after first performing in Eq. (Al)
a change of integration variables of the form sx
-x, ty-y, which yields

s„=(s()' fj'(x)) '[((+@+))((+vx+ 'y)

+u] "dxdy,
where v = t/s. The preceding integral is analytic
with respect to its parameters v, u in the vicinity
of any point 5 Q fol which the denominator of
the integrand does not vanish. The domain of
analyticity can be obtained by analytic continu-
ation. We shall not attempt to study the general
case here. Instead we shall consider what hap-
pens when v, is fixed and positive. It is then
easily seen that the domain of analyticity of the
integral with respect to u coincides with the com-
plex plane of this variable, cut along the real neg-
ative axis from —~ to —1.

On the other hand, by dividing the right-hand
side of Eq. (A14) by (st)" ', we get a function
which depends only on v = t/s and which is analytic
with respect to u. Since the equality (A14) holds
for g &0 and 0~m &1, by analytic continuation with
respect to u it will remain true for any u in the
complex plane cut along (- ~, —1)."

The integral Eq. (Al) can be expressed in an
alternative manner. By changing the variables
according to

4„=[1 (1-y) ]'[I (2n+ 2y —2) /I'(2n) ] (-,
'

q)
-'

x E,(1 —y; n+ y —1, ,'; n+ —,';—
1 —( p'/q), 1 —(4r/q)) . (A19)

I,et us consider also the integrals

x(xy) "
[1+p(x+ y) + qxy+ r(x —y)2]"

(A20)
(x-X)'(xS) "

2, , [I +p( x+y)+ qyx+r( x y)']"-
(A21)

(A22)

For J„,occurring here we shall use the expres-
sion Eq. (A19). The parameters p and r, with
respect to which we have to take the derivatives,
are contained only in the variables of the function
E, in Eq. (A19). By using the appropriate dif-
ferentM. tlon formula fol Eiy we find

X„=(l—y)[I'(1 —y)]'[I'(2n+2y —3)/2I'(2n)] p(-,'q)" ""

& E,(2 —y; n+ y —1, —,'; n+ 2,'

1 (p2/q), 1 —(4r/q)), (A23)

&.=(I -y)[F(1-y)l'[F(»+2y-4)/F(2n)](l q)" ' .

&& E,(2 —y; n+ y —2, —,'; n+ —,';
1 —(p'/q), 1 —(4r/q)) (A24)

x-x(1+u)' ", y -y(1+ u)' t',
we can write

8 (1 + u)a- y-

(xy) "
[1+p(x+ y) + qxy+ r(x -y)']"

(A16)

(A17)

We can now apply the general formulas Eqs.
(A14), (A23), and (A24) to calculate our integrals
f(p) of Sec. IV. From Eqs. (88) and (89) we have

f,(t))=[F(l-y)] '[(&.+i&)- p(&. -i&)l '8. ,

f,(p)=[F(l-y)]'[(E.+i&)- p(&. -i&)] 't[, ,
(A25)

with 8„given by Eq. (Al) and

The connection between s, t, g and p, q, x is given
by

p=(s+t)(1+u) '~, q=(s+t)', r=st . (A18)

From Eqs. (A14)-(A1V) we get

s=ia/[(y+ta) -p(y- ta)],
t= tat)/[(y+ ia) —p(y- ia)],

p(L/ m)'
[y+ ia —p(y —ia)]

(A26)
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Taking into account Eq. (A14) we get Eqs. (100)
and (101)."

Further, if in Eqs. (90) and (91) we change the
integration variables according to Eq. (A15), we
can write

I~(P) = [I'(1 —r)] [Eo+il —P(EO —iX)]

x(l+n) " '~'X, ,

x(I+u) " '2, , (A21)

where X„Z, are the integrals Eqs. (A20) and

(A21) with p, q, r calculated from Eq. (A18) in
terms of Eq. (A26).77 By inserting in Eq. (A27)
the results Eqs. (A23) and (A24) we find Eqs. (102)
and (103).

APPENDIX 8: EXPANSIONS IN a FOR FORWARD

SCATTERING

In the following we derive the first terms of the
expansions in powers of a of H, and K„defined in
Eqs. (105) and (58).

%e consider first the case of Ho, whose expan-
sion we want to determine to order a (included).
We illustrate our procedure on Ao, Eq. (109),
which is the first term of H,"' [see Eqs. (58) and

(52)] .
Since for 0~ p~ 1, one has 0~@,~ 1 [see Eq.

(104)]; we can expand the Gauss function +, in
the integrand of Eq. (109) in a power series in g2.
This series is uniformly convergent on the in-
terval 0 ~ p —1, so that one can interchange the
order of the summation and integration. There-
fore the result can be expressed as

&4=+f&(I —fn) ',"
1

"
F 2 2

. &,(I —4a; 2n-2y, 2+2y; 2n+2 —4a; —l, p),
(-.')„(-y)„r(2n+ 1)

n=o 2 n 1
n F 2n+2 —'s (Bl)

with g and f given by Eqs. {10V)and (108).
9fe next try to expand the function E, in powers of a.7' For this purpose we use the formula of analytic

continuation, 7'

F (&. b b ~ c ~ x y) — 2 (I x)4~ &(I y)-c -4- bp(y x)1- b~- b2y-e+ b~+ 42
I'(c)I'(a+ b, —c)

x Eg 1 $2y 1 —a, c —b, —b„c—a —b, + 1;. 1-y x(1 -y)
'1 —x ' y(1 —x

+ (1 —x) &y 2 G2 b~, b2, b2 —c+'1, c —a —b2; 1

By applying this formula to the function E, in Eq. {Bl)and using some of the properties of the I' func-
tions, Ao can be decomposed according to

Ao =A~+ Ao",

' y+ia '
y —ia (B4)

I

fF(1, )2,„],„,~ (-.)„(-r)„(2 r )2—,„-
(-,')„(I)„ I'(2n —fa —2y)

xone

2' 2yy 2+ 2yy 2y+pa+ 1 2+% 2g 2y 1t ~y ~

2/a

y —ga

The first quantity A,' is real. The successive
terms of its series, Eq. (B4), contain ascending
powers of a'. Furthermore, the functions I', in the
coefficients can be expanded in double series in
their variables, both of order a."Because of the
power (ia/y)4", when n increases less terms have
to be retained in the expansion of the corresponding
E, in order to get Ao to the desired order a . How-
ever, it should be kept in mind that also the pa-

n=0: E, =1 —5a'+'-,'a4+0(a'),
n= 1: E =7 —'-'a'+O(a4)

2

n=2: F, =1+0(a') .

(B6)

Inserting these in Eq. {B4)and expanding also the

rameters of E, depend on a, through y=(1 —a')'~,
and have to be expanded. Proceeding thus, we get,
to the order of magnitude needed,
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other quantities involved we get

A,'=-,' —,a*+r4NIa'+ o{a') . (BV)

The calculation of A,", Eq. (85), is more in-
volved. This is due to the fact that only one of the
variables of G~ is of order a while the other one is
independent of a. %'e start from the series expan-
sion

Om(a»a. » bI» &s»»y}

(a) (b2)
( ).~. (1 —5,).(1).

x~,(a„5, m, 1-5,-m; -y} . (88)

By using this for the function G2 in Eq. (85), wIth
z= 2fa/(y —ja) s,nd y = ——,', and interchanging the
order of summations, we get

X,"=-fl"(1-fa)2" '

sinw(2y+ ia) I'(1+ 2y+ ia)
sin(2wy) I'(2+ 2y)

such as

2FI(i —Ia» -P —Ia» 0 —2y —fa» z)»

with P =0, 1, 2 and q = 0, + 1, + 2. The difficulty here
lies in the fact that for a -0 we have c =q —2y
—ja =q —2, a nonpositive integex', and therefore
+, becomes singular. However, this can be
avoided by applying a number of times the equa-
tions among contiguous functions g„so as to
raise the parameter e to become positive for a
-0. After having done this we expand the func-
tions 2E, in power series of &. Because of the
structure of their pax'ameters only a few terms
need be kept. %e thus get the expansions of T0,
T„T,which, inserted in Eq. {89), give finally

a,"= —,-', a'+ O(a') . (Bll)
Hence from Eqs. (83), (BV), and (811)

A, = —,
' ——' a'+ '-' a'+ O(a') . (812)0 $4 g6

Now, A, is only the first term of Ho"' [ see Eqs.
(53), (52), and (109)-(111)].Proceeding similarly
for the othex' terms, we find

(1+2y+ ia)„2ia(1)„y—ia (89)
B,' = -', a'+, a'+ O(a'), C, = -', a'+ aa'+ O(a'),

D, = pa'+ O(a'} . (813)

By IIlsel"ting Eqs. (812) alld (813) hlto Eq. (52)
we flXld

( z).(-y}.(-y —-' —
~z }.(-y - ~a).

(-').(1)„(-y—~2a —
~2 }.{-y—~a+ z —~2).~ ~

x2FI(1 —ta» —RI —»n» 2n —2y —Ea —m» g')

The terms of the series in Eq. (89) contain as-
cending powers of a. However, the series of co-
efficients T do not have this property. There-
fore no systematic simple procedure can be ap-
phed zn order to get the expansion of A.o'. Never
theless, we now show that it is possible to extract
all terms to order a (included).

The coefficient in front of the sum of Eq. (89)
is of order a'. Therefore we need take into ac-
count only the first terms (m =0, 1, 2) of the series
in Eq. (89). On the other hand, for each of these
values of I only a finite number of terms need be
considered in the corresponding T . This is be-
cause (-y)„, for n~2, contains the factor (l-y),
which is of order a2. However, we also have
factors like [(-y- —,'I'a- p)„] ' in the coefficients
(p~ 0 is an integer); these become of order a '
fox' n~ p+ 2. By taking such factors into account
one concludes that fox' m =0, 2 one needs two
terms (n=0, 1) in the expansions Eq. (810), where-
as for m =1 one needs three (n=0, 1,2). One is
then faced with the expansion in a of functions

H(II » [1»as+Iaaf+ O(as)] (814)

FIIlally fl'OIII Eq. (58) we ge't Eq. (11V).
To the order considered in Eq. (814), H,"' is

1eal. Indeedy its imaginary part starts with order
a', as can be seen from Eq. (115}by noting tnat
o~z' is of order a(aZ)'. The first terms of the
expansion in a of o ~z' were obtained in Ref. 20.
By combining this with our Eq. (115)we find

ImHDII' = —-', a'a'" ' exp(- 2a cos 'a)

x [1—,wa+ O(a')]. (815)

e have included here only some terms of ordex'
a', which are numerically important.

%e next consider the amplitude K0, which is ob-
tained from the imaginary part of Ko"' [see Eq.
{58)]. We want to use Eq. (112), since we already
know Eq. (815). However, we still have to find
ImC0.

From Eq. (95}we have

4& 2a
C = —'

p
I»»» 1(1+ p)27 2(1 pI) 2»' w

3 1+@

x,F,(—,', 1 —y, —,;z,) dp,

with f defined in Eq. (108). I et us take the eom-
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plex conjugate of this and then change the integra-
tion variable according to p'= I/p. We end up with
the expression in Eq. (816) with a minus sign in
front and the integration interval changed to (1, ~).
Therefore

ImC, = 2. (C, —Coe)
1

2 2c g" ia (I+ p)sr s(I pg) sr s
si 1+y

x.~,(-', 1-~, —:;s.)dp,
(817)

with the same, E, function as in Eq. (816). The
factor in front of the integral is of order a', @which

is also the lowest order in Eq. (815). On the other
hand, the integral is of order 1. Therefore by
setting y = 1 in the integrand of Eq. (81'I}we
neglect terms of order a . By doing so the, E,
function reduces to 1, and the integral Eq. (817)
can be expressed in terms of a beta function, "

ImC, = (818i)(al(1+ ) })'f

x[(-l')" 'B(2 —ta, 2+t'a)+O(a')] .
(818)

This can be simplified by taking into account some
properties of the I" functions" and the definition of

f, Eq. (108):

La2r+Ss-regia [1+O(~)]shia

= ——,
' a'""exp(- 2a cos 'a) [1+ O(a'}] .

(819)

In conjunction with Eq. (815) this gtves

ImK"'= ——'a'a'" '[exp(-2acos 'a)]

" [1- -'«+ O(+)]. (820)

We can now combine Eqs. (58) and (820) to get Eq.
(118).
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into aeeount the whole Coulomb potential a/r. If Co
does not contain ita contribution (or some part of it},
Eq. (14) will still hold with 8' modified to include the
term 2ag/r (ox part of it). However, Eq. (24) will
no longer be true because this texm will give a finite
contribution in the limit ~

To lowest order (in the Pauli approxixnation) they con-
tain the factor (p2+a2m2) 2.

~SFrom this it would aeexn that & ~ xneans physically that
~~m. This is not so in the case of the total E'-shell
matrix element Kz, given by Kq. (3). Indeed, by xe-
taining in Eq. (13) only that part of 61 which gives the
leading contribution for small a at high energies [i.e.,
(2 ml() ~6(p2 —p&)], the terms mP+Eo contained in %'"
cancel with the corresponding ones of %~2 when one
sums over the xnagnetie quantum number m )see Eqa.
(30) and (31)]. Thus the terms neglected are not of
order m/e but rather of order a2m/&.

30Sinee H(P) is a polynomial in the components of P, if
we denote its eigenvalues and eigenfunctions by E~ and
s„(r), the eigenvaiues and eigenfunctions of H(P+i~&

will be E„adas„(r)s '"''. The equality Eq. (34) then
follows by applying both sides to an arbitrary function
P(r) =8, c„s„(r)and taking into account the way that
the resolvent [H(P) —~] ~ acta on it.

"Our matrix element (2) is related to theirs by f 't
=-r0% (see Hef. 12, Eq. (2.7)].

3~Equations (36)-(38) are obtained by taking the Fourier
transforms of the E-shell spinors in eoordhmte space
and by using an integral xepresentation for the power
&& ' they contain. This is taken from Bef. 33, Eq.
(5}, p. 1, withs =1-p and s=&. The pxocedure was
used previously by Boyer, Bef. 34.

33A. Erdelyi, %. Magnus, F. Oberhettinger, and F. G.
Tricomi, HiI, Acr TranscendentaL I'unetions (McGraw-
Hill, New York, 1953), Vol. I. This will be referxed
to in the following by HTF.

34R. H. Boyer, Phys. Hev. 117, 475 (1960).
35Some terms cancel because of a~retry propexties of

the integrand with respect to x and y.
36The most compxehensive treatment of hypergeometric

functions of several variables is found in P. Appell and
J. Kampe de Feriet, Eonetions Hypergeometxiques et
HyPersPA&iques (Gauthier-Villars, Paris, 1926).

37%e first apply the last equation on p. 21 of Bef. 36,
taken for y=0 and + 1—y, P ~, and y 2. There-
fore the terms in the curly brackets in Eq. (106) be-
come (1-~)'2&g(1-v 2 2' &2)+6~2+&(1-v, 2, 2'&2)-
Further, by using Ref. 33, Eq. (43), p. 104, witha
= &, L) = 1-y, and c = 23, we get Eq. (109).

38Equations (113) can be proved by using in Eq. (2) the
equality Imp„-Eo + x+ ie) =+ x6(E„-Eow x}. By add-
ing Eqs. (113) one obtains the optical theorem fox
Hayleigh scattering by a bound electron f, see Hef. 15,
Eq. (12.1)].

39The right-hand sides in Eqs. (114) are independent of
the magnetic state m. Coxnbining with Eq. (113) it

follows that for the E shell the high-energy cross sec-
tions 0"' and o P~ axe themselves independent of m
and oI =20. (This ean be proved directly and is valid
for any energy x.)

4 Indeed, the difference a& —o& will thexefore behave
like 1/x2 at high energies, which ensures the con-
vergence of the integral in the dispersion relation
(1.1a) of Bef. 15, or in the second equation on p. 1778
of Hef. 12.

4'HTF (Ref. 33), p. 114, Eq. (1).
42The factor (-2( +3) contained in Eq. (47) of Hef. 20

should read -(2k +3).
43No indication is given in Bef. 12 as to how the authors

derived their Kq. (3.4}.
44For Ho the numerical computation gives kf& =0.995 54

for Z=13 and Ho= 0.97851 for Z=29. The corre-
sponding values given by Eq. (117) are 0.99554 and
0.978 69, whereas the ones given by Eq. (3.4} of Hef.
12 axe 0.99551 and 0.97803.

45For Eo the computation gives Eo ——0.1482 X10 ~ for
Z=3 and 0.4224&10 for Z=6. The corresponding
values given by Kq. (118) are 0.1483 x10 8 and 0.4202
X10-, whex'eas the ones given by Eq. (3.4) of Bef. 12
are 0.2304 x10 8 and 0.7376 &10"8.

46%e cannot neglect the A. in the deno~~»tora of the
integrand because the integral would beeoxne singular.

~See Hef. 3, Eq. (11), where it was denoted by 8.
48See Hef. 36, p. 22, Eq. (23).
490ur proceduxe cannot be used in the limiting case a =1

(y =0) because the integral mould become divergent.
50This conclusion does not apply to the case of a =1

(see Bef. 49).
~~In fact, for extremely large 6 (which is not of physical

xnterest because then K& becomes too small. in com-
parison with the matrix elements of the other competing
processes) Kqs, (125) and (121) predict oscillations in
sign.

52Befex'ence 36, p. 15, Eq. (15).
HTF (Bef. 33)» p 231~ Eq (5) ~ The condition Bec
&Hea &0 is fulfilled in our eases.

~4The number of points used for the integration and their
distribution were chosen ao as to take into account
the peculiar behaviox of the integrand.

~5These are caused by the factox in curly brackets in
Eqs. (100)-(103), which becomes singulax on the real
axis for Z 0, whatever the value of A. (However,
~(t) stays finite because of the factor N2 in front of
the integral, which is proportional to Z3.)

56Setting a =1, y=0 in Eqs. (99)-(104}, one obtains func-
tions E& which reduce to combinations of rational and
logarithmic functions.

~TThe values of oz wex e obtained from B. H. Px att,
A. Bon, and H. K. Tseng, Bev. Mod. Phys. 45, 273
(1973), Table 6.1, and private communication. For
29 ~Z ~135 the agreexnent waa comp1ete to four sig-
nificant figures. For Z=13 and Z =6 the difference
was of three units in the fourth significant figure.
(The accuracy on HeHO~~ ~ is, however, much higher. )

~SThis is true for all the values of 4/A, in Table I. For
larger 6/A. deviations will occur (see Sec. VI).

~SThe "Hall factor, " equal to 1/2.2 =0.454 for lead, was
used to correct the cross sections at high energies
for Coulomb effects, instead of using the correct value,
0.223 (see Bef. 57, Table 6.1). Our attention was
drawn to this by Dr. R. H. Pratt.
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@We allow here the vectors s& and s2 to be complex in
order to be able to account for circular polarization.
The amplitudes OR~ and OR~~ represent the values of
the matrix element when the photon polarizations are
linear and both perpendicular or both parallel to the
scattering plane. The amplitudes 9R SF and BRz~p cor-
respond to the cases when the photons are circularly
polarized and there is a change in the sense of polar-
ization (a photon spin lip) or there is none (no photon
spin flip).
Equation (126) can be rewritten as OR=M(s& s2)
—(NA/~ )(s& Z)(s2 6), with 6 =6/Lk By comparing
this with Eq. (59) we find limgVrh/w ) =0. Note that
this does not imply limN =0, as might be erroneously
inferred from the comparison of Eqs. (59) and (126).
For example, see Ref. 29.
The results of Johnson and Lin in Table III (private
communication) were calculated for a purely Coulomb
field and no electron correlation, in contrast to those
of Ref. 9.

@We have transformed the results of Brown and Mayers
and Cornille and Chapdelaine, which were given in
terms of 5KNSF and 9R&&, into 5K~ and 9K~~. The results
of Johnson and Lin were given directly in terms of the
latter.
An alternative method of fixing the relative phases via
optical theorms and Kramers-Kronig dispersion rela-
tions has also been used.
The matrix element (0.'Z) a of Papatzacos and Mork,
[see also Ref. 16(b), Sec. 3.4], is related to the cor-
responding S-matrix element by the equation SMi
=2mi5(Kg —K2) (2&rp/&) (~)a. By comparing this with
Six&i given in Ref. 22 we see that indeed 5Rx and (uZ) u
have to be added with opposite signs.
Because of spherical symmetry the matrix element a
also has the general form of Eq. (126).
The contribution of the higher shells to Rayleigh scat-

tering is rather small if the momentum transfer is not
very sm~31 [see M. Schumacher, F. Smend and
I. Borchert, Nucl. Phys. A 206, 531 (1973), Figs. 3-5].
(However, right at 4=0 the total Rayleigh matrix ele-
ment is roughly equal to Z, whereas K~~ 2).

7 However, Coulomb corrections to Delbruck scattering
in the Born approximation probably become large at
large b, , as is indicated by the high-energy result of

Cheng and T. T. Wu, Phys. Rev. D 5, 3077 (1972).
~~I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals,

Series and Products (Academic, New York, 1967), p.
636, Eq. (4.638.2).

~2HTF (Ref. 33), p. 114, Eq. (1).
~3We have used also HTF (Ref. 33), p. 5, Eq. (15).
74HTF (Ref. 33), p. 239, Eq. (1).
7~In the case we are interested in, v =t/x is indeed

positive and real [see Eq. (A26)], so that we can
apply Eq. (A14).

~6Reference 36, p. 19, Eq. (19).
77Because Eq. (A19) is valid for the values ofp, q, and

r derived from Eqs. (A26) and (A18), Eqs. (A23) and
(A24) wQ1 also be valid.

Ao cannot be expanded in popover series in a because of
lna contributions ste~~ing from quantities such as
aha

~9We have combined Eq. (15) of P. O. M. Olsson, J.
Math. Phys. 5, 420 (1964), with HTF (Ref. 33), p. 240,
Eq. (4). The first reference contains the definition of
the functions G2(p&, a2, b&, b2.,x, y). The principal
branches of the complex powers appearing in Eq. (B2)
should be taken.
The double series of the I'

&
functions converge if the

modulus of their variables is smaller than 1, which
happens for all physical a, since a &1.
See M. Gavrila, Phys. Rev. A 6, 1360 (1972), Eq. (22).
HTF (Ref. 33), p. 10, Eq. (12).
HTF (Ref. 33), p. 9, Eq. (5), and p. 4, Eq. (8).


