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Exact summation of higher-order terms in multiphoton processes
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The summation of all the higher-order contributions to multiphoton absorption in atoms is presented. The
nonperturbative expressions for the transition amplitudes are expressed in terms of continued fractions. They
account for the whole perturbation originated by the radiation field on the atom but do not exhibit explicit
expression for the level shift. In the case of radiation fields of high intensity the only reliable determination of
the level shift involves a careful location of the poles of the resolvent operator. The theory has been tested in

considering a two-level atom. An extremely rapid convergence of the continued fractions has been observed,
and accurate results concerning high-order resonance shifts have been obtained. The expressions for the
transition amplitudes being nonperturbative with regard to the field strength, they can be considered as
analytic continuations of the perturbation series. This provides a useful approach to the problem of ultra-
intense fields.

I. INTRODUCTION

The domain of physics concerned with the inter-
action of high-intensity radiation fields with atomic
systems has provided a great amount of theoreti-
cal works, ' "principally during the past decade.
Such a renewal of interest finds its origin in the
recent advent of high-power lasers which make
it possible to observe highly nonlinear absorption
processes.

Most of quantitative analysis of the phenomena
originated by this interaction make intensive use
of perturbation techniques. One usually considers
the situation where the dominant contribution to a
determined process is provided by the lowest-
order nonvanishing term of the perturbation series.
In this case a rapid convergence of the series is
needed. Such a requirement implies the small-
ness of the interaction energy compared to the
total energy of the system. Within this approxi-
mation the higher-order terms of the perturbation
series are neglected.

For an Nth-order process, these terms are ob-
tained in considering all possible combinations of
arbitrary number of absorption and emission of
photons in such a way that the net number of ab-
sorptions remains equal to N. There are two cir-
cumstances where the higher-order terms must
not be ignored. First, there is the possibility of
resonances in the intermediate states. In that
case, even for low-intensity radiation field, the
lowest-order term is not sufficient to reproduce
the experimental results. Such a problem was
investigated in calculating a renormalized Green's
function through a Schwinger-Dyson equation. "'
The mass operator appearing in this equation was
chosen in order to account for single or multiple
forward scattering of photons of the radiation
beam. This method, which finds its inspiration

in the quantum electrodynamics method of Low, "
is not satisfactory when real photons are involved.
For example, diagrammatically, it is straight-
forward to see that the presence of two such ad-
jacent (on both sides of a vertex) renormalized
internal electron lines gives rise to multiple
counting of diagrams. On the other hand, there is
undercounting, i.e., certain classes of diagrams
never appear. Nevertheless, the merit of such
calculations was to point out the central role played
by the higher-order terms in resonant process.

Secondly, with the increase of laser intensity,
physicists will be faced, in the near future, with
the problem of handling radiation fields whose
electric component will be comparable to or larger
than the interatomic Coulomb field. This situation
outlines the other case for which the use of the
lowest-order term of the perturbation series can-
not give a reliable description of absorption phe-
nomena since the perturbation series may not con-
verge rapidly or even diverges.

As the amplitude of the external field increases
the contribution of the higher-order terms be-
comes less and less negligible. With ultrastrong
fields one may reside outside the radius of con-
vergence of the series and a transition amplitude
cannot be expressed in terms of such a series.

The aim of this paper is to propose a solution to
this problem. To this end we present a method
used to obtain the exact expression of the transi-
tion amplitudes. This method is based on the exact
summation of the whole series of the higher-order
terms in a region where the convergence is good
(low intensity). This permits analytic continuation
to the domain of very intense fields where the
series is not convergent. This would be another
approach to the problem of ionization of atoms by
very intense fields. The idea of analytic continua-
tion of transition amplitudes via the summation of
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II. THEORETICAL PRELIMINARIES

A. General considerations

Some of the definitions adopted throughout this
paper have been already employed in the case of
free electrons. " Therefore, we shall avoid an
unnecessary dispersion of notations concerning
the problem of interaction of an electron (bound or
free) with a radiation field.

Since we deal with radiation fields of optical fre-
quencies the dipole approximation is made. In
addition we suppose that the optical electron of the
atom is spinless and is described by the Schro-
dinger equation in the presence of an external
field

l.f4+&E -E (t) ' rl k(t) = ii(t), (2.1)

where H„and H~ are the Hamiltonians of the free
atom and of the field, respectively, and E(t) is the
electric field. We note in passing that the inter-
action Hamiltonians nA(t) ~ P + ,' a'A'-(t) and-

the series of higher-order terms was proposed
few years ago for the investigation of t. ompton
scattering in intense field. ""

The problem of bound electrons we consider is
somewhat more complicated and requires a more-
general treatment. The reason is that, in con-
trast to the free-electron case, the sums over the
intermediate atomic states occur. The continued
fractions representing the transition amplitudes
are expressed in terms of noncommuting opera-
tors. This precludes a simple representation of
these fractions in terms of transcendental func-
tions.

On the other hand, for absorption processes
involving more than two photons the use of the
exact electron renormalized Green's function, '4

which takes into account all orders of forward
scattering of real photons is not suitable. The
reason can be found from the reading of this paper.
One of the salient features of the work presented
here is that the renormalized propagation function
to be considered in a N-photon absorption (N&2),
is different from the one which could be deter-
mined through a Schwinger-Dyson equation in-
volving the exact mass operator, i.e., the mass
operator representing the sum of all proper dia-
grams of forward scattering.

No numerical result concerning atoms with
more than two levels are presented here, firstly,
to keep the paper focused to the technique utilized,
and secondly, to have ample space and opportunity
to discuss numerical results in future publications.
Some idea of the numerical results, however,
may be sampled in the previously published ac-
counts. "

-E(t) r differ, in the dipole approximation, by a
gauge transformation. The radiation field is a
single-mode field and has an occupation-number
representation.

Since the problem of summation we consider has
been handled by the use of the resolvent operator,
Sec. II B is devoted to a brief summary of some
properties regarding this operator.

V = —E(0) r,
where E(0}the electric field, can be written

E (0}= i [(2v/L') E~] '~ (e a —e *a ) .

(2.2)

(2.3)

In Eq. (2.3), E~ is the photon energy, e is the com-
plex polarization vector of the field, a and a are
the creation and destruction operators for photons,
respectively, and L' is the quantization volume.

It is convenient to write V as

V=V +V (2.4)

where V' and V account, respectively, for the
emission and the absorption of a photon. These
operators can be determined from Eqs. (2.2) and

(2.3). At the time origin, the interaction of the
radiation field with the atom is supposed to be
switched off. The state of the system is then eigen-
state of FP and can be written

(2.5)

where lg) is the atomic state and ln) is the state
of the field characterized by the presence of n

photons in the single mode under consideration.
At a later time, when the interaction is switched

on, the state of the system is determined from the
evolution operator U(t}. From the matrix element
of this operator, one determines the transition
amplitude through the equation

&~ (t) = (fl U(i)l i &, (2.6)

where l i) and l f ), the initial and final states of
the system, are the eigenstates of H shown in
Eq. (2.5).

The problem concerning the calculation of this
time-evolution operator can be formulated by the
use of the resolvent. '6 The resolvent G(E) of the
total Hamiltonian H is by definition

(2.7)

It can be shown that the following simple relation-
ship exists between the time-evolution operator

B. Resolvent

Let H =8 + V be the total Hamiltonian in the
Schrodinger picture. H is the sum of Hamil-
tonians of the free field and the atom, and V is the
time- independent interaction Hamiltonian, given
by
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of the Schrodinger picture and the resolvent:

(2.8)

Eq. (2.11) reduces to

G(E) =G'V-G'+G'V'G'V-G'V-G' G'V-G'V'G'V-G'

+GV GV GV'6+ (2.12}

G(E) = G'(E) + G'(E)V G(E), (2.9)

Go(E) =1/(E -IP). (2.10)

From Eq. (2.9) it is clear that G(E) can be ex-
pressed on the form of an infinite series in V, the
interaction,

G(E) = G'(E) + G'(E)V G'(E)

+ Go(E)V Go (E)VGo(E) + (2.11)

Taking the inner product of both sides of Eq.
(2.11) one obtains the probability amplitude for a
transition which takes place between the states
~a) and ~&). For well-defined initial and final
states, only a certain class of terms contained in
the series shown in Eq. (2.11) is relevant. The
energy conservation in Eq. (2.8) implies such a
selection among the terms. Starting from a defi-
nite state of the field, only the terms leading to
the correct final state do not vanish, i.e., only
channels accounting for a definite depletion of
photons of the beam do not vanish. For example,
in the case of one-photon ionization the series of

The contours of integration for positive and nega-
tive time are shown in Fig. 1.

From Eqs. (2.'1) and (2.8} it seems to be straight
forward to calculate a matrix element of U(&). To
this end one has to perform the inversion of the
matrix (E —H). Unfortunately, even for low-in-
tensity radiation fields, the prohibitive size of the
matrix to be inverted precludes such a procedure.
The aim of this paper is to present a feasible
method for the exact calculations of the matrix
elements of G(E) This. method is based on the
summation of all the contributions to a definite ion-
ization process. First we write the resolvent
operator in the equivalent form

The first term in the right-hand side of Eq.
(2.12) is the lowest-order term, the others are the
higher-order terms previously mentioned.

The tractability of the problem we consider is
greatly impx oved by a diagrammatic representa-
tion. Since intensive use of such representation
will be made throughout this paper, Sec. IIC is
devoted to the notations we use.

C. Diagrammatic representation

Even for a one-photon absorption, Eq. (2.12)
shows that as the perturbation order increases the
number and the size of the terms of the series
representing G(E) increase. Therefore, a graphi-
cal representation of the terms of this series will
be very useful for a better understanding of our
method of summation. In the diagx'ammatic rep-
resentation we utilize, the electron line is verti-
cal. Absorbed and emitted photons are represented
by horizontal lines on the left- and right-hand side
of the electron line, respectively.

The equivalence between a diagram and an ana-
lytic expression holds if the former is read from
bottom upwards while the latter is read from
right to left. The part of the electron line lying on
both sides of any vertex represents the operator
O'. Utilizing these notations the four terms
in the right-hand side of Eq. (2.12) can be
represented by the diagrams shown in Fig. 2.
A diagram is proper if it cannot be divided into
two parts, one of them showing a net number of
absorbed (or emitted) photons equals to zero;
otherwise it is called improper. The ~&«0& dia-
gram of a diagram is obtained in replacing the in-
coming photon lines by outgoing photon lines and
vice versa. "

For the sake of convenience the following opera-
tors will be intensively used:

FIG. 1. Contours of integration for the integral of
Kq. {2.8).

FIG. 2. Diagrammatic representation of the first four
terms of the series of Eq. (2.12). The electron is de-
scribed by vertical line, whereas absorbed and emitted
photons are represented by horizontal lines on the left-
hand side and on the right-hand side of the electron,
respectively.
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A=6 V

B=G t/'

(2.13a)

(2.13b)

A and 8 describe the absorption and the emission
of a photon, respectively. In analogy with the case
of a free electron they are called pxopagation-
vertex operators. To end this subsection me give
nom the practical rules for writing domn the ana-
lytic expression, in atomic units, for the transition
amplitude related to a diagram. This amplitude

can be obtained in considering the following fac-
tors: (a} a factor (FE~/Fo)"~'r e for each absorp-
tion vertex; (b} a factor (EE~/E~} *r Z* for each
emission vertex; for convenience E is the photon

flux in cgs units, E, =c/(2','}, a, being the Bohr
radius and c is the light velocity; E~ is the photon

energy (in a.u. ), and e is the polarization vector
of the field; (c) a factor

lt&(il
E, +nE~ —E,

for each internal line. E~ is the energy of the ini-
tial atomic state and n is the net number of ab-
sorbed (or emitted) photons up to this line. The
summation runs over the whole spectrum of the
atom, discrete plus continuum; (d) finally, the

inner product with the initial and the final atomic
states of the expression so obtained is to be taken.

III. SUMMATION OF DIAGRAMS

In this section the method used for the summa-
tion of all the higher-order terms of the perturba-
tion series is presented. It is based firstly on a
systematic search of these terms and secondly on

a suitable association of them which makes ap-
parent the form of the generating function from
which they can be derived up to an axbitrary order.

We begin by discussing the summation. procedure
for formard-scattering diagrams. Later it mill be
shown hom the results of formard scattering can
be incorporated into the scheme of calculation of
photon-absorbing processes.

A. Forward-scattering diagrams

The forward-scattering diagrams can be divided
into tmo classes: proper diagrams and improper
diagrams(see Figs. 3and4). All of them are obtained
in considering all possible combinations of ax'bi-

trary number of Rbsoxptions Rnd emlss1ons of
photons in such a may that the number of absorp-
tions and emissions are equal. In analogy with the
free-electron case these diagrams mill be also
called self-energy diagrams.

Combining Eqs. (2.9) and (2.13) we find that the
resolvent operator can be mritten

FIG. 3. Lowest-order proper forward-scattering
dlagl ams.

G(Z) = G'(Z) + (A + B)G(Z) . (3.1)

The iteration of this equation shows that G(E)
can. be expressed on the form of an infinite series
I.n terms of A RQd B,

G(E) = Go(E) + (A + B)GOE

+ (A+B)(A+B)G'(E) + ~ ~ ~ .

Since G(E) must account for no net absorption or
emission of photons, the only relevant terms in

thi8 series are those that show an equal number of
A. and B operators. Thus G(E) reduces to

G(z) = G'(E) +[AB+BA]G'(E)

+[AABB +ABAB+ABBA +BAAB

+BABA +BBAA] G0(E) + (3.3)

On the other hand, most of the terms of this series
represent improper diagrams. For example, only
the first and the last term in the second square
bracket on the right-hand side of Eq. (3.3) repre-
sent proper diagrams; the other four are im-
proper. This is illustrated in Fig. 4 where it is
shomn that four of the six fourth-order diagrams
can be cut into tmo lower-order self-energy dia-
grams.

It is a simple matter to show that all the (proper
and improper) terms of the series of Eq. (3.3) can
be obtained from the operator

by expansion.
In analogy mith the mell-knomn theory of renor-

malization of quantum electrodynamics, "M "(E)
is the sum of all the proper self-energy diagrams.
For example, up to the fourth order all the terms

FIG. 4. Fourth-order forward-scattering diagrams.
In each improper diagram the slash indicates where the
cut must be made to obtain lower-order pmper diagrams.
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of the series of Eq. (3.3}are given by substituting
in Eq. (3.4) the operator

TABLE I. Terms beginning by a photon absorption
contributing to forward scattering up to fourteenth order.

M'4'(E) = AB+BA +AABB+BBAA . (3.5) Order 2 Order 14

To have all the terms of Eq. (3.3) up to the sixth
order, one must consider the additional contribu-
tions provided by the sixth-order proper self-
energy diagrams symbolically represented by the
four terms AAABBB, AABABB, BBABAA, and
BBBAAA. Thus, in Eq. (3.4} the following opera-
tor is to be considered:

M(e) AB+BA +AABB+BBAA

+ AAABBB + AABABB +BBBAAA+ BBABAA .

(3.8)
In principle, the process can be continued up to
arbitrary order. In practice, a serious limitation
due to the increasing complexity of the operator
M"'(E) arises. The crux of the problem now is
to determine the sum of all the proper self-energy
diagrams. From the knowledge of M "(E) an ex-
pression for the electron propagator in the pres-
ence of the electromagnetic field can be found.
Thus from Eqs. (3.3) and (3.4) one has

G(E) =(1/[1 —M (E}])G(E) =7~(E)G (E).

(3.7)

AB

Order 4

XY

Order 6

XTY

Order 8

XT Y
XXYY

Order 10

XT Y
XTXYY
XXTYY
XXYTY

Order 12

XT Y
XT XYY
XTXTYY
XTXYTY
XXT YY
XXTYTY
XXYT Y
XXXYYY
XXYXYY

XT Y
XT XYY
XT XTYY
XT XYTY
XTXT YY
XTXTYTY
XTXYT Y
XXT YY
XXT YTY
XXTYT Y
XXYT Y
XTXXYYY
XXTXYYY
XXXTYYY
XXXYT YY
XXXYYTY
XTXYXYY
XXTYXYY
XXYTXYY
XXYXTYY
XXYXYTY

With a slight change in the notation, i.e. , M" (E)
= Go(E}Z(E), this expression for G(E) becomes
more familiar. It is widely encountered in the
literature.

Now we focus our attention on the elaboration
of a method which enables one to find in a con-
venient way all the proper self-energy diagrams.
The labor is somewhat reduced by noting that there
are two classes of such diagrams. One of them
contains all the diagrams for which the first ver-
tex depicts a photon absorption the other is con-
cerned with all the diagrams whose first vertex
depicts a photon emission. These two classes of
diagrams can be investigated separately. It is
straightforward to show that for each diagram
belonging to a definite class, one can find the cor-
responding mirror diagram in the other class.

In the following, we consider only the proper
diagrams of the first class, i.e. , diagrams begin-
ning with a photon absorption. All the terms of
the perturbation series of Eq. (3.3) representing
the proper self-energy diagrams up to the four-
teenth-order are written in Table I. The sixteenth-
order terms are shown on Table II in order to
supply enough information for the elaboration of
the general law from which these terms can be
determined and then summed.

The three operators T, X, and Y are defined by

T =AB+BA,

X =AA,

Y =BB ~

(3.8a)

(3.8b)

(3.8c)

this reduced notation and principally the use of the
operator T enables one to write all the contribu-
tions up to arbitrary order without a prohibitive
use of space. Apart from the order two which is
expressed only in terms of A and B, all the con-
tributions are special combinations of the three
operators defined in Eqs. (3.8). X, &, and T are
quadratic operators in the electric field and all
the terms begin with an X and end in a Y. For
each order the term containing the largest power
of T is first considered. For example the highest
power for T admissible for the sixth order is 1,
that for the eighth order is 2, etc. In the next
step, the power of T is decreased by two units and
a couple of operators XY or YX is inserted. The
remaining operators T are combined in all possi-
ble ways with the inner X and Y operators. This
process is continued as many times as necessary
in order to reach the lowest non-negative power
of T. The last point to be examined is the way
by which the couples of operators XY or YX ap-
pear as the power of T is decreased.
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TABLE II. Sixteenth-order terms beginning by a
photon absorption contributing to forward scattering.

XT Y
XT XYY
XT'XT YY
XT XYTY
XT XT YY
XT XTYTY
XT XYT Y
XTXT YY
XTXT YTY
XTXTYT Y
XTXYT Y
XXT YY
XXT YTY
XXT YT Y
XXTYT Y
XXYT Y
XT XXYYY
XTXTXYYY
XTXXTYYY
XTXXYTYY
XTXXYYTY
XXT XYYY
XXTXTYYY
XXTXYTYY
XXTXYYTY
XXXT YYY

Order 16

XXXTYTYY
XXXTYYTY
XXXYT YY
XXXYTYTY
XXXYYT Y
XT XYXYY
XTXTYXYY
XTXYTXYY
XTXYXTYY
XTXYXYTY
XXT2YXYY
XXTYTXYY
XXTYXTYY
XXTYXYTY
XXYT X'YY
XX'YTX'T YY
XX'YTXYTY
XXYXT YY
XXYXTYTY
XXYXYT Y
XXYXXYYY
XXXYXYYY
XXXXYYYY
XXXYYXYY
XXYXYXYY

It is easy to see that all the terms of order
2P (P =1, 2, . . .) with nonvanishing power of T are
deduced from the terms of order 2(P —1) in con-
sidering all the permutations of the inner X and
~ operators occurring in the terms of order
2(P —1) with a number of operators T increased
by one unit. For example, tenth-order terms are
obtained in considering all the inner permutations
of T' with X~ and of T with XXY~. This gives
Xr'~ and XTX», and XXT» and XX~X~.

From this last remark it is straightforward to
see how the couples of operators X~ and ~X occur
in the T-dependent terms.

The remaining terms containing only the X and &

operators are easily determined if we define the
following operators:

the substitutions 7.' —t, X—&, and ~ —X.
The above rules allow one to write down all the

terms of arbitrary order. The last part of the
work is concerned with the summation of these
terms. The sum of all the proper forward-scat-
tering diagrams is found from the observation of
the structure of the terms shown in Tables I and
II. It is clear that the sum of the terms up to
fourth order is

~&'& =aa+Xr. (3.10a)

M"' =Aa+X[I - (T+XI')]-'& (3.10c)

where the expansion of the fraction is performed
up to eighth order. Continuing in this fashion, we
find that the sum of all the proper forward-scat-
tering diagrams, beginning with a photon absorp-
tion, up to the tenth order is

M &"' =As+ X(1 [T + X(1 ——T)-'F]}-'F

(3.10d)

The sum of such diagrams up to the twelfth order
is given by

~~&'& =ga+X
1 —(T +X[1 —(T + XI')] 'I'}

(3.10e)
and for the fourteenth order one has

M (r4)

1
1 —(T+X(1 —[T+X(1—T) '&]} 'Y)

(3.10f)
From Eqs. (3.10), the expression for M" can be

derived by noting a periodicity as the successive
order of M are considered. One finds that

The sum of the terms up to sixth order is given by

M"' =AB+ X[I/(I —T)] 1', (3.10b)

where an expansion of the fraction is to be made
and only the terms of order less than or equal to
six are retained. In considering the next order we
find that the sum of the terms up to the eighth
order is given by

t=XY+ IX,
x =XX,

y=YF.

(3.9a)

(3.9b)

(3.9c)

where

II = [1 —(T +XII I')]

(3.11a)

(3.12a)

VFe observe that the twelfth-order and the six-
teenth-order terms of this kind can be written «Y
and xt 'Y+xxpY, respectively. Comparing these
contributions to those of the sixth- and eighth-
order we see in a simple way that the terms of
order 2N containing no operator T can be deter-
mined from the terms of order N by performing 11' =[1 —(T+FII'X)]-', (3.12b)

The class of forward-scattering diagrams begin-
ning with a photon emission can be treated by the
same procedure. The sum of such diagrams is

(3.11b)

with
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and M" is given by

M" = M" + M+ . (3.13)

It must be pointed out that the expression for M"
can be written on an alternative form which per-
mits a comparison with previous results con-
cerning free electrons. As it is shown in the
Appendix, M" can be written

M" = A70B+BTgA,

where

~, =(1 —A~, B) '

and

(3.14}

(3.15a)

(3.15b}

x0 xl

2
~ ~ ~

A -1
x ~ $ x

1—x-2x-3
] 0 ~ ~

A comparison with the results obtained in Ref.
12 can be done if in each denominator the A and B
operators are replaced by x„' ' and x„' ', respec-
tively. The value of the index n corresponding to a
particular denominator is determined in con-
sidering that the A (B) operator increases (de-
creases} by one unit the number of photons in-
volved up to this denominator. For example, with
these notations, the operator M" for a free elec-
tron is

B. One-photon ionization

The procedure previously used for the summa-
tion of the self-energy diagrams naturally holds
for the determination of the multiphoton ionization
amplitudes. As before we could search and asso-
ciate in a suitable way the relevant terms of the
perturbation series but this method is not the
most suitable in the present case. The reason is
that no reliable expression for the sum can be ob-
tained without considering sufficient number of
forward-scatttering processes in each internal
electron line. This implies handling more and
more terms of increasing orders as the number
of absorbed photons increases. We would be rapid-
ly faced with a tedious problem of diagram clas-
sification. Here it is instructive to note that for
a net absorption of N photons the number of dia-
grams of order N+2& is given by the binomial
coefficient (";").

The alternate method we discuss now makes in-
tensive use of the results of Sec. IIIA. It is first
applied to one-photon ionization. Later it will be
generalized to multiphoton absorption. The basic
idea is that the operator G(E) of Eq. (3.7}, sym-
bolically represented in Fig. 5(b) by a square
inserted into an electron line, accounts for all the
proper and improper forward-scattering diagrams.
Next we assume that such an operator acts on both
sides of the single absorption operator A.

The corresponding transition amplitude can be
written

(3.16)

where use has been made of the fact that x„' '

=7("'=—7„. From Eq. (3.16) it is clear that the
self-energy of a free electron calculated in Ref.
12 and the one deduced by our method are identical
(remember that & = G' M ). This agreement was
expected since our derivation is general and holds
for bound and for free electrons.

If we note that the number of proper forward-
scattering diagrams of order 2& is (2,, )/(2& —1},
it is clear that the list of the 264 terms of the
fourteenth order, that of the 858 terms of the
sixteenth order, etc. , is considerably shortened
by the use of the operators X, ~, and T. In addi-
tion this reduced notation has permitted to find in
a simple manner the laws for the determination
of all the proper self-energy diagrams. The last
remark we can formulate regarding the use of
such a notation is that the direct determination of
M" on the form shown in Eq. (3.14) is not straight-
forward. For these reasons the operators X, ~,
and T will be used throughout this paper in spite of
the fact that the resulting formulas can be reduced
to a more compact form.

(b(l" (z)= . $e '*'(
l &A &G,lb)ed,

(3.17)

where it is understood that all the operators in the
integrand depend on E.

The asterisk in the left-hand side of Eq. (3.17}
indicates that the transition amplitude so defined
contains multiple contributions of the same dia-
gram. It is straightforward to check that this
multiple counting occurs in the third-order con-
tributions where the term (a~ABAGJb) is counted
twice.

Our aim now is to deduce from Eq. (3.17) the
exact transition amplitude by eliminating in 8"'*
all the extra contributions to the one-photon pro-
cess. To this end we consider the following opera-
tor occurring in Eq. (3.17):

(3.18)

For convenience we keep one of the T& operators
unchanged in Eq. (3.18}and eliminate from the
other one the processes giving rise to multiple
counting. This can be done without any loss of
generality. The operator && located on the left-
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The important point to be noted is that the last
term in the right-hand side of E&i. (3.19}contains
all the additional multiple contributions. There-
fore, it is cleax that its elimination leads to the
correct operator 0"' to be used for the calcula-
tion of the transition amplitude.

As a general rule, the terms of && to be elimi-
nated are the ones which ean be partially or com-
pletely crossed from left to right by the operator
A. This criterion can be easily derived by ex-
panding the operators r& in E&1. (3.18). One ob-
tains

n&»* = (1 +AB+BA + ~ ~ ~ )A(1 +AB+BA + ~ ")
(3.20)

n&»*=r (Ar+r, .Ar ),Q 3 j
A7' + T'A, (3.19)

ere 7, ~', ~„and 7; x'epresent particular sets
of forward scattering and &, excludes the identity
operator (i.e., no absorbed and emitted photons).

FlG. 5. (a) Diagrammatic representation of the opera-
tors A, 8, 7'~, vo, and ~+. The operator Go(E) appears
everywhere on the form of a vertical line. (b) Graphical
representation of G(E) for multiple-photon absorption.
(c) Graphical representation of identities of Eqs. (3.29a)
and (3.29b), respectively.

hand side of A is chosen to be unchanged (in other
words, the expression of Q"'* will show, on the
left-hand side of A. the full expansion of r&).

Our elimination procedure involves the knowl-

edge of all the terms appearing multiple times in
0"'*. The search of such terms is a difficult
task. In contrast to what was encountered for the
summation of the self-energy diagrams, it is not
straightforward to derive a law which enables one

to find all the processes under consideration. For
this reason another point of view has been adopted.
Our approach to this problem is based on the use
of a cx'itex'ion for multiple counting. This cri-
terion is easily derived by noting that in Eq.
(3.18}, multiple counting occurs every time the
operator Q"'* can be written in the form

ft(&'*=T A[1 —(I"+M")]-' (3.22)

By 'the use of the Feynman identity, Eq. (3.22)
yields

n(»*=7 Z ' ( —(M"+or, ))

Owing to the obvious relations

lif ", =B[1/(1 —l&f ",)]A,
M" = A[1,/(1 —M")]B,

E&1. (3.23) becomes

(3.23)

(3.24a)

(3.24b)

(3.25)

where only the terms up to second order have
been retained. Remembering our previous conven-
tion regarding the invariance of the operator ~Lj

on the left-hand side of A, a little rearrangement
of the terms can be done in E&i. (3.20) to give

&«'* —(1+AB+BA + )

X[A(1 +AB+ ~ )+ (AB+' ' ')A(1+' ' ' )+' ' ']

(3.21)

which is a particular case of E&l. (3.19). One ob-
serves that A&A, the only third-order term which

is counted twice, can be written

A(BA) =—(AB)A .
This illustrates what is meant by crossing:

within the same term the operator A, which ac-
counts for the net absorption of a photon, can be
considered as acting prior or in succession to
forward-scattering operators. It must be pointed
out that only the terms giving rise to multiple
counting possess this property.

More generally, from E&ls. (3.18), (3.4), and

(3.13) one has
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Further iterations are not necessary. Now we
see that this expression for 0"'~ has the same
form as the one shown in Eq. (3.19). More pre-
cisely, only the first term in parentheses has not
been crossed by the operator A. From the cri-
terion previously discussed only this term is
relevant all the others are to be dropped since
they give rise to multiple counting.

In comparing Eqs. (3.19) and (3.25) one finds
that

and

r =—1/(I —M ")= ro (3.26}

(3.27}

T~ Aro =r+ 7~, (3.29a)

TABLE III. Terms contributing to one-photon absorp-
tion up to seventh order, Ti —=AB.

T A
XYA
YXA

A T
A XY

T A
TXY A
XTY A
XYT A
TYX A
YTX A
YXT A

T A
XYA
YXA

TA
TA

A
A
A
A

Ti
Ti
Ti
Ti
XY
Ti
TiXY
XTi Y
XYTi

Therefore, the exact one-photon absorption
amplitude is

1).",'(t)= . $d '*'( ~!~d,o'(~d)dd. (d.dda)

It can be checked that this expression for the
transition amplitude accounts for all the contribu-
tions to one-photon ionization process, each of
them being counted once time. To this end„all
the terms up to the ninth order are shown in

Tables III and IV.
It must be pointed out that an equivalent expres-

sion for 8,",' could be obtained in leaving unchanged
the operator lying on the right-hand side of A in

Eq. (3.18}i.e.,

(d!l (&)= d,. '$ ™Md( (add P G (d&dd'(d. ddb)

From Eqs. (3.28) it is straightforward to derive
the useful relation

TABLE IV. Nine-order terms contributing to one
photon 3.bsorption, Ti =—AB.

Order 9

T XYA
TXTY A
TXYT A
XT YA

XTYT A
XYT A
T YXA

TYTX A
TYXT A
YT XA

YTXT A
YXT A

T AT)
TXYA Ti
XTY A Ti
XYT A Ti
TYXA T,
YTXA Ti
YXT A Ti

T A T
XYA Ti
YXA Ti

T AXY
XYA XY
YXA XY

TA Ti
T A TiXY
TA XTY
T A XYTi

A T2i

A TiXTY
A TiXYTi
AXT Y
A XTYTi
A XYTi

YYXX A
YXYX A
YXXY A
XYYX A
XYXY A
XXYY A.

A XYXY
A XXYY

and the one obtained in changing A -B and J3-A,

(3.29b)

as is expected from time reversal invariance con-
siderations.

In Eqs. (3.28) the effect of T„7&, and r& is to
shift the poles exhibited by the lowest-order con-
tribution to 0") obtained from Eq. (3.2'I) by ex-
pansion. Nevertheless the important point to be
noted is that these operators cannot be interpreted
as shift operators. The level shifts can only be
determined through a consistent calculation of the
poles of 0")(E}.On the other hand, the asymme-
try of this operator gives rise to serious difficul-
ties if we want to define a renormalized state since
in this case the renormalization would be different
for the initial and the final states. For this rea-
son, the transition amplitudes will be calculated
in considering the matrix element of the operator0"' with the eigenstates of H, .

Before concluding this subsection we note that
the problem of the emission of a photon of the ra-
diation field can be treated in the same way. One
finds that the expression for the corresponding
transition amplitude is now
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C. N-photon ionization

The method discussed in Sec. IIIB can be used
in the case of N-photon ionization. To show this,
the absorption of two photons is first considered.
It will be shown, at the end of this subsection,
how the results obtained in this simple case can
be generalized.

For this two-photon process we suppose (as
was done previously) that all the electron lines
are fully perturbed, i.e., we consider the follow-
ing expression for the transition amplitude:

0'» =
T~~ AT~A. w (3.32)

The pl'esence in Eq. (3.32) of two opel store A
provides two sources of multiple counting which
will be eliminated successively, To this end, use
ls 111ade of Eq. (3.4) to wl i'te

n&"* =~~Ar~A[1 —(I",+M")]-', {3.33)

which by virtue of Eqs. (3.24) and (3.26) reads

(3.34)

From our criterion, it is clear that the second
term in the right-hand side of Eq. (3.34) contains
all the additional contributions which have been
already counted in w&AT&A&0. Therefore, it will
be dropped. In doing so, one of the sources of
multiple counting is eliminated. Due to the pres-
ence of two operators TLj on both sides of A. , some
contributions occur multiple times in the expansion
of the remaining operator T&A&&ATo. By the same
procedure all these additional contributions are
eliminated. The operator Q, which has been pre-
viously defined by the operator 0* in which all the
multiple contributions are canceled, is given for
this two-photon process by

n(» =7~&T,&T, . (3.35)

It is now a simple matter to write the exact ex-
pression for the two photon, ionization amplitude.

8,'l)*(t) = . e 'e'(a~T/AT/AT~G' ~t)) dE.
2mi

(3.31}

Suet like in Eq. (3.17), the asterisk indicates
that some contributions occur multiple times. As
was already pointed out, this multiple counting
arises from the presence of two 7& operators on
both sides of each A. . As before we have to elimi-
nate all these additional contributions. Qur task
is considerably simplified by the use of our cri-
terion for multiple counting. I et us consider the
operator

Qne finds

8,'", '(t) = . e 's'(a(r~Ar, Ar, ~ ~ r,AT,G'~ b) dE,
2mi

(3.37}

where N operators A. must be considered in the
integrand. From Eqs. (3.28), (3.36), and (3.37) it
is clear that the exact expressions for multiphoton
absorption amplitudes are not expressible with the
only electron propagator of Eq. (3.7). We observe
that the elimination of multiple counting and under-
counting of diagrams outlines the role played by
the propagation operators

G'(E) = ~,(E)G'(E),
G"(E) = T,(E)G'(E),

(3.38a)

(3.38t )

according to Eq. (3.29) which generalizes into

Tg»,», T,Ar, G =rgAr+1~ ~ ~ 7~Ar~G' ~

(3.39)

Since the two representations of Eqs. (3.38) for
the electron propagator depend on the way accord-
ing to which the diagrams are associated, it seems
rather puzzling to give a, general expression for
the level shifts. Qnly the numerical determination
of the pole of Q(E) will give the values of the level
shifts.

To conclude this section„a diagrammatic rep-
resentation of the ensemble of the results is given
in Fig. 5.

jV. TWO-LEVEL ATOMS

It is instructive to apply the theory so far dis-
cussed to the case of a two-level atom. More
precisely, we will be concerned, in this section,
with the calculation of the light shifts induced by
the absorption of one, three and five photons.
A comparison with the results previously obtained
by other authors will provide a test for our theory.
Qf course no conclusion wil. l be extrapolated to an
atom for which the continuous part of the spectrum
play a significant role in any multiabsorption
process.

Before going further it is to be noted that for a
transition which takes place between the states ~a}
and ~b), all the contributions involving these states
as intermediate states can be isolated and summed

8,",'(t) = . e 's'(a~1&AT, A1,G'~)b) dE.
2' s

(3.36}

A straightforward generalization of the above dis-
cussion enables one to determine the form of the
N-photon ionization amplitude. Qne obtains
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separately. This technique has been used in Ref.
18 to calculate the Bloch-Siegert shift and will be
utilized here when series representation for the
shift will be needed. It will be shown how the
general results of Sec. III can be straightforwardly
expressed within this formalism. %'e give below
some basic formulas elaborated in this framework.
For further developments the reader is referred
to the papers of Ref. 19.

The matrix element of G(E) from which the
transition amplitude can been calculated is

R(E) = V F~A70 + V F~ B7~,

where

T~ =(1 —XwoB —B7~A) ',
r =(1 —Av~B) ',
7q (1-—BYqA) '.

(4.5)

(4.5a)

(4.5t )

v' A7~ =7~AT~, (4.Va)

It is perhaps worthwhile to point out that the fol-
lowing relations hold:

T~ B7~—-TOB7~. (4.Vb)

R»(E)
(E —E, —R„(E))(E—E~ —R»(E)}—

i R»(E)i

(4.1)

where R(E) operates in the two dimensional sub-
space e spanned by ~a) and ~b}, the states of the
system atom plus field:

R(E)=V+V V+V V V+
0 0 0

(4.2}

In Eq. (4.2), Q is the projection operator outside
The problem now is to calculate exactly the

matrix elements of R(E) occurring in Eg. (4.1).
For this, we apply our summation techniques of
Sec. III. We begin with a slight change in the nota-
tions. %'e define the new absorption and emission
operators as

X =[q/(E -8,)]V-,

B =[q/(E —H, )]V',

respectively. Thus Eg. (4.2) reads

(4.3a)

(4.3b)

R(E) =(V'+V )P (X+B)'. (4.4)

The terms of the infinite series of Eg. (4.4} to be
summed for the calculation of B„and R» are those
which contain equal number of creation end de-
struction operators of photons. There are two
kinds of terms: those beginning with V' and those
beginning with V . It is clear that the first class
contains one extra operators A and the last class
of terms contains one extra operators B. Re-
garding only the operators A and B one has to sum
in the first case all the higher order terms con-
tributing to one-photon absorption whereas in the
second case we are concerned with one-photon
emission. Invoking Eq. (3.2'I) and the corre-
sponding expression obtained from the substitu-
tion A -B,B-A, one can write the form of the
operator R(E) to be used for the calculation of
R„(E) and R»(E) It is.

A similar procedure is used for the calculation
of R„and R~„ the nondiagonal matrix elements
of R(E}. Since the transition can involve the ab-
sorption of several photons, one must find the
relevant expression of the operato~ R(E) for each
particular case. Ne begin with one-photon ab-
sorption. The terms of the series of Eq. (4.4) to
be summed are the ones characterized by one net
absorption of photon. As before, there are two
classes of terms according to the nature of the
first operator, on the left-hand side, which is
either V+ or V . Considering the first class, the
terms to be considered can be obtained from all
the combinations of arbitrary number of A and B
operators in such a way that the net number of
operators A is two (one of them annihilates the
effect of the emission operator V'). Thus, con-
cerning the operators A and B, we are led to a
two-photon absorption problem. Owing to Eq.
(3.35), the contribution to R(E) provided by the
terms of the first class is V'v&A~, A~, . By the
same way one finds that the contribution to R(E)
arising from the terms of the second class is
V v& since in this case V accounts for the single
absorption. Collecting our results one finds that
the form of the operator R(E) to be used in the
calculation of the nondiagonal matrix elements of
R(E) for one-photon absorption is

R(E) =V v~ATOA70+V 7~. (4 3)

The method can be generalized to higher-order
absorption processes. Thus, the expression of
R(E) to be used for the calculation of the relevant
matrix elements in the case of a two-photon ab-
sorption is

R(E) =V v~AY, A~,Xr, +V ~~AY„

and for a three-photon absorption one gets

(4.9}

R(E) = V r~A70A&OA7'OAv0+V rgAYOA70'.

(4.10)

From Eqs. (4.8), (4.9), and (4.10), the general-
ization to arbitrary order is straightforward. For



a N-photon absol ptlon one has

R(E) = V+V~XTnA10' ' ' 7'0A7'0

+ V v~ A&0 ' ' &OA70, (4.11)

energies of the atomic states I«) and I&), respec-
tively Rnd &d ls tile p110to&1 81181gy (ill R.u. ). Let &ls

express V and V in terms of d the dipole opera-
tor. One has

where the fir st term in. the right-hand side con-
tains X+I operators A and the last contains N- I
BUch opel'R'tol s. It 18 cleR1' tllRt, fl'onl Eq. (4.7R)
that the above expressions for R(E}may also be
written. in other equivalent forms involving && and

They are not given here to limit the expense
of space,

%'e consider now, in more detail, the problem
of one photon transition. The states of the sys-
tem atom plus field will be denoted l«m) = I«) I m)
or If&I') =lb)lm'), I«) and Ib) being the two atomic
states and m and ~' are the occupation number
of the field. The corresponding energies are
E, =E, +m~ and E, ~ =E~+m'~„E, and E, are the

I

(4.12a)

(4.12b)

a and a being the destruction and creation opera-
tors of a photon, respectively. Finally, for the
sake of brevity we define P as

(4.13)

where in contrast to Eq. (4.1) the indices a and 5

stand fox the atomic states only.
For one-photon transition which takes place be-

tween the states I«n) and I &n+I ), one finds from
Eqs. (4.1), (4.5), and (4.8) that

an an+& (E @ It&&1 (E)}(E @ ft&&) (E)) lft&&) (E}l2 (4 14)

with

It«',„„(E)= (s+I)"P,

R&'„&,„(E) =

g(x)
bn+y yff+y

(4.15a)

(4.15b)

(s+ 2)I Pl'
(s+3)I &31'

(s+4)I Pl'
Off+3 E E

(4.15c)

ing t&/&d with the exact value calculated from the
zeros of the Bessel function. Examination of Table
V shows that the agreement is highly satisfactory.

The third-order xesonance shift for a transition
taking place between the states I«s} and Itn+3)
can be treated in the same way. In contrast to
what happens for the first-order resonance, two
equivalent expressions for the nondiagonal matrix
element of G(E} are obtained depending on whether
the states l«n) and lbn+3) are contained in the
ensemble of the intermediate states or not. In the
former case the matrix element ,„G,„„(E)is con-
veniently written by using the functions S,„, S~„,
T~y and Tg„defined as

Pxovided the average numbex of photons is large
enough, all the matrix elements of the operator
V appearing in the denominators of the continued
fractions reduce to & =(n)'~'P. In using the method
utilized in Ref. 18 the first-order resonance shift
(Bloch-Siegert shift} can be obtained from Eqs.
(4.15) in the form of a power series of the inten-
sity. Complete agreement is found with the re-
sults presented in that paper.

A more-accurate determination of the resonance
shift involves a numerical analysis of Eq. (4.14)
together wi'tll Eqs. (4.15). T1118 llRs been done Rlld

the results shown in Fig. 6 are in excellent agree-
ment with those of Ref. 20. A good test regarding
the accuracy of our method is provided by the
exact solution which can be found when ma/&d =0
(&o, =E, —E,)""Since in th.is case b/&u satisfies
J,(4b/~} =0, one can compare our result concern-

FIG. 6. Hooch-Siegel't shifts col'responding to one-,
thxee-, and five-photon resonance as functions of mfa.
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S(a,b
= (4.16a)

where the functions S, and S, are simply related by

g( )
E{ba)n+, 2 S(a b'la+2)

&..=nl pl'/(E E.-„s,„-,„) (4.16c)

(n -1)I pl*~ —~(.,b).-&-
(E E{

b, 14-n2 T{a,b)n-2)

(4.16b)

(a similar relation could be found for T, and f'b}.

One has

[(22+1}(n+2)(n+8)]~2pb

(E —E.„-S,„„-T,„)(E E„„—- S.„„}(E—E.„„-S,„„,)(E —E,„„-S,„„)
We consider now the second case where the initial and final states never appear as intermediate states.

One finds that G,„b„,,(E) can be written in terms of the matrix elements of the operator R(E) as

n&»
"an bn+s

[E —E,„—R,{„",„(E)][E—E „, -8{2', „„(E)]—[ft,'„'„„(E)]2 (4.18)

with

(4.19a)an an bn
(22 2)l pl

2

bn+1 (E E )

(n+8)I pl'
5 +2 ban+2 an+4

(22 + 2)l pl
2

an+2 {E E )

[{n+1)(n+2)(n+8)]'~p2

(E —E..., )(E —E....) —("2)IPI'

(4.19b)

cerning a two-level atom was not to deal with a
problem which has been intensively discussed in
the litexature. This simple case ha, s provided a
test for the accuracy of a calculation involving the
general formulas of Sec. III. The ra.pid conver-
gence of the continued fractions which has been
observed for the treatment of this problem seems
promising for further application of the method to
more complicated atoms.

V. RAMAN-LIKE PROCESSES

{4.19c)
Naturally, the tmo equivalent expressions for

G,„b„„asgiven by E{ls. (4.17) and (4.18) can be
used for the investigation of the resonance shift.
The form of Eq. (4.18) is suitable for a perturba-
tive treatment of the shift, whereas the factorized
expression of E{l. (4.17), which is obtained with a
little bit of algebraic manipulations is used for
computational analysis. The numerical results
obtained for this third-order resonance shift are
shown in Fig. 6 where the excellent agreement with
those of Ref. 20 is to be noted. As before the ac-
curacy of our calculation is tested in considering
the exact solution which can be found for {d,/{d =0.
Table V shows that our results are obtained with
extremely good precision.

The aim of the above quantitative analysis con-

TABLE V. Values of ruo/~ determined in using the
parameter b j~ calculated from the zeroes of J o(4b/~),
for few low-order resonances. The numbers in paren-
theses indicate the powers of 10.

So far me have only envisaged the multiple ab-
sorption of photons induced by a single radiation
field but the method me used can be generalized to
more-complicated problems. To see this me con-
sider, in this section, the case of an electron in-
teracting with two electromagnetic (em) fields.
Among the processes which this interaction can
originate, we limit ourselves to the discussion of
Raman-like processes. The two em fields are
chosen to behave unlikely with regard to the elec-
tron. One of them is the radiation field considered
in the preceding sections. It has been shown hom

this field can give rise to multiphoton absorptions
and radiative shifts. The additional quantized field
surrounding the atomic electron is the radiation
field of a.rbitrary small occupation number origina-
ted by the Raman emission. Such a field cannot
give rise to significant perturbation on the atom.
Thus the creation operators of this field mill be
only considered.

The resolvent operator for a two-field problem
is given by

older

0.601 206 389 3 1.380 019 528 2.163431 978
3.90(—10) 1.97(-10) 2.30(—10)

G(E) = Ga(E) + Ga(E)(V + V')G(E),

where

G, (E) =1/(E - If.).

(6.1)

(6.2}
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H, is the free Hamiltonian of the system, V and V'

describe the interaction of the electron with the
fields. Remembering Eqs. (2.4) and (2.13) we can
rewrite Eq. (5.1) as

G(E) =Go(E}+(A +B+Z}G(E), (5.3)

One observes that to zeroth order in Z, one ob-
tains the series already found for a one-photon ab-

where Z is the emission operator of the Raman
photon, i.e. , Z —= G,V". The operator Z is illustra-
ted in Fig. 7 by a horizontal waved line. Since
Z does not contain a destruction operator, any
absorption of photon and forward-scattering pro-
cess is referred unambiguously to the laser field
whose destruction and creation operators are
denoted by A and B, respectively. Equation (5.3)
can be solved by iteration. One obtains G(E) on the
form of an infinite series in terms of A, B, and Z.
For exampleup to first order in Z and up to third
order in A and B the expression of G(E) to be used
for one-photon absorption is

G (E) = A Go + (BAA +A BA +AA B)GO + (ZA + AZ )Go

+(ZBAA +BZAA +BAZA +BAAZ)GO

+ (ZA BA + AZ BA + A BZA + A BAZ )Go

+ (ZAAB + AZAB+ AAZ B+AABZ)GO .
(5.4)

G(E) =n&"'(E}G,(E), (5.5)

where the superscript N indicates the net number
of absorbed photons.

Limiting ourselves to one photon absorption we
have written in Table VI all the contributions to
0"' up to the fourth order in the field strengths
regardless the nature of these fields. In making
the substitutions X-A, ~ —B, 1; =1' —Z, we note
a one to one correspondence between the 25 terms
shown in Tables III and VI. This analogy holds for
every perturbation orders. Therefore, from Eq.
(3.27) together with Eqs. (3.4), (3.11), (3.12), and

(3.13), it is a simple matter to derive the exact
expression for 0"'(E). One has

(5.6)

sorption induced by a single field. To first order
in A and in Z one has the two terms representing
the lowest-order contribution to the Raman effect.
The other terms in Eq. (5.4) are the higher-order
corrections. One can find many other types of
series involving arbitrary number of absorbed pho-
tons and more than one interaction with the addi-
tional em field. It is to be noted that in contrast
to what happened in the case of a single field, the
number of terms to be summed rapidly increases
and one must handle considerable amount of con-
tributions even for low perturbation orders. In
using the close analogy between the problem we
consider and the one we have solved in Sec. III,
the summation can be performed straightforwardly.
To see this we treat the most general case where
arbitrary number of interactions of the electron
with the two em fields occur. It is convenient to
write G(E) as

TABLE VI. Contributions to one-photon absorption up
to fourth order in the presence of the radiation field
whose creation operator is represented by Z.

Order 1 Order 4

FIG. 7. Second- and fourth-order diagrams contribu-
ting to Raman scattering. The Raman photon is repre-
sented by a waved line.

Order 2

ZA
A Z

Order 3

Z A
ABA
BA A

ZA Z
A Z
AAB

Z A
ZAB A
AZB A
ABZ A
ZBA A
BZA A
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Z AZ
ABA Z
BAA Z

ZA Z'
ZA AB

A Z
A ZAB
A AZB
A ABZ
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where

r~ -1/[1 —(Z +RA 8 +&A'A)],

7, =1/[1 —(Z+AA &)],
A- =1/[1 —(Z+&A &)],
A' =1/[1 —(Z +BA'A)].

(5.7a)

(5.7b)

(5.8a)

(5.8b}

Eqs. (5.7), (5.8), (5.9), and the ones obtained in
changing A-B, 8-A can be used for the calcula-
tion of higher-order corrections to bremsstrah-
lung and inverse bremsstrahlung problems. Such
applications of the theory is devoted to subsequent
publications.

For shortness the dependence on E is not written
explicitly. A straightforward generalization of the

above discussion allows one to determine the ex-
pression of 0'"); For N net absorptions of photons
one finds

(5.9)0 -7oA oA o oA

Any specific process can be described in con-
sidering a special case of the above formulas. For
example, returning to one-photon absorption we

make the assumption that the laser field is weak

enough to neglect all forward-scattering process-
es. Gn the other hand, let Z operating in the two-
dimensional space be spanned by the (Raman) pho-
ton states ~O) and ~1}. The matrix element of
Q"' with these states is

fl,",' = (lift"'lo& = &ll- a (o) (5 lo)
1 1

1-Z 1 —Z

s inc e

(5.11)

one gets

Q, o =g, oA + A+~0. (5.123

Equation (5.12) shows the two familiar lowest-
order contributions to Raman scattering, i.e.,
absorption (emission) of a single photon of the laser
field followed by the emission (absorption) of a
single photon of different mode.

This simple example illustrates the manner by
which the required expression for a specific pro-
cess can be extracted from our general formulas.
For computational analysis the above approxima-
tion regarding the higher-order effects induced by
the field is not necessary and any problem can be
envisaged in its generality. This outlines the use-
fulness of having compact formulas accounting
for the ensemble of processes occurring when two
fields of quite different intensities interact with an
atom.

As a concluding remark one must note that the
same discussion holds for free electrons. Thus,
multiple absorption or emission of photons by an
electron in the presence of a static potential can
be treated in the same way. The only difference
is in the operator g which must describe the inter-
action of the electron with the static field. Thus

VI. CONCLUSION

The summation of the whole perturbation series
representing all the higher-order contributions to
definite absorption processes has led to compact
expressions for the transition amplitudes. The
way by which they have been elaborated is quantum
electrodynamically consistent i.e.; our technique
avoids any kind of multiple counting or under-
counting of diagrams. In that sense, the expres-
sions presented in this paper are a representation
of the exact transition amplitudes. Some important
remarks regarding the structure of the results can
be formulated. Firstly we observe that in any
multiphoton process the perturbed Green's function
joining two adjacent vertices is not the exact elec-
tron Qreen's function which can be calculated sepa-
rately. As a consequence no explicit form for the
radiative shifts can be put forward. Gnly a numeri-
cal investigation of the poles of the resolvent
operator will give the value of the atomic level
shifts. The summation of diagrams renders every-
thing into close expressions which must be con-
sidered in thei. r entirety. Secondly, the fact that
the transition amplitudes are expressed in non-
perturbative form with regard to the field strength,
suggests an important application of our results
to the case of very intense fields.

The transition amplitudes we obtain are bounded
for every value of the photon flux. Such a property
indicates that the corresponding expressions may
be considered as analytic continuation of the per-
turbation series. The availability of expressions
as ours facilitate rigorous and accurate studies of
the problem of ultraintense fields. This aspect of
the problem of the interaction of the radiation with
an atom is not discussed here but will be subse-
quently examined.

The calculation of the matrix elements of opera-
tors in terms of the continued fractions is not
easy. The origin of the difficulty lies in the pres-
ence of the continuum whose contribution increases
as the intensity is varied towards large values. A
numerical method allowing the accurate calcula-
tion of this contribution is in progress. Quantita-
tive investigation dealing with finite number of
discrete levels have been done. In this respect the
situation is very encouraging. With the standard
iteration procedure for evaluating the continued
fractions, convergence is easily reached. This



2124 Y. GONTIER, N. K. RAHMAN, AND M. TRAHIN 14

has been observed in the two-level atom considered
in Sec. IV and also in more complicated atoms.
For example, with a system of 28 levels and up to
the intensity of 10"W/cm', there have been no

problem regarding convergence of the continued
fractions in a trial calculation, for a case that we
have examined. '4

M =A 1 A B)B.1

1 — BA +M" (A3)

Utilizing the Feynman identity, the fraction in-
side the large parentheses can be expanded and one
obtains

1 1 1M" = A 1+A —+ —BA-
K K K
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where

K=1 —M".

1 1 1
+ —BA —BA—+''' B BK K K

(A4)

(A6)

M" = A (1 + AII B)B.
Using Eq. (3.12a) one has

1
1 —[BA+A(1+AII B)B]

(A1)

APPENDIX

It is shown here how the mass operator M" as
given by Eq. (3.14) can be obtained from Eqs.
(3.11), (3.12), and (3.13). To this end some alge-
braic manipulations must be done in the expres-
sions of M", . Let us consider M" which can be
written from Eqs. (3.8) and (3.11a) as

M = A[1 —A (1/K)B] 'B,
which by virtue of Eq. (A5) reads

M" =A[1 —A(1 —M") 'B] 'B.

(A6)

(Av)

Finally, by iteration, one finds that M" can be
expressed in terms of the operator T„defined in
Eq. (3.15a), as

M" = ATOB. (As)

Similar arguments hold for M", . One obtains

The series in the right-hand side of Eq. (A4) can
be immediately summed and M" can be written

which from Eq. (A 1 ) gives

(A2) M+ =B7gA,

where v& is given by Eq. (3.15b).

(A9)
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