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Comment on the stabilization method: Variational calculation of the resonance width
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We clarify the computational procedure used in a stabilization calculation of the resonance energy. We
propose a new, variational method for the calculation of the resonance width for elastic scattering. The
method is based on a minimum principle for the width which holds for L' trial functions satisfying certain
assumptions. The method gives all the resonance parameters, including the background phase shift, without
requiring traditional scattering calculations.

The purpose of this paper is twofold. First, we
discuss the computational procedure used in a
stabilization calculation of the resonance energy
in order to clarify some misconceptions which
exist in the literature concerning the method. The
discussion is motivated, in part, by a recent
paper' in which Oppenheimer and Doyle proposed
an interesting new method for calculating reso-
nance wave functions. Their method, unlike stabi-
lization, requires a prior knowledge of the back-
ground phase shift. Our second purpose is to pro-
pose a new variational method for the computation
of the resonance width for elastic scattering. The
method is based on a minimum principle which
holds for I.' trial functions satisfying certain as-
sumptions. Previous ealeulations have shown that
resonance wave functions obtained in the stabiliza-
tion procedure satisfy the required assumptions.
The proposed method allows for a variational re-
finement of the nonlinear parameters in the reso-
nance wave function as given by the stabilization
procedure. For elastic scattering, the method
gives the background phase shift, the width, and
the "shifted" resonance energy without requiring
a traditional scattering calculation.

Stabilization is a method for computing the en-
ergy, width I', and background phase shift 5~ of a
short-lived complex. It attempts to fit to a dis-
crete basis the most localized continuum wave
function in the energy region where a resonance is
believed to exist. ' Many publications have errone-
ously described this as a procedure which simply
consists of diagonalizing Hamiltonian matrices
over successively larger sets of configurations
(of which even the smallest is presumed to be suf-
ficient to describe the inner part of the continuum
wave function representing the resonance state)
and then scanning the resultant eigenvalues for the
continual appearance of a stabilized value which,

unlike the others, is insensitive to the size of the
basis. This prescription is, however, an over-
simplification of the definitive procedure we have
used for computing resonance states and can easily
lead to inaccuracies in reporting resonance ener-
gies which would not have resulted through a rig-
orous application of the stabilization method.

To understand the inadequacy of the above pro-
cedure we need only recall that in the time-depen-
dent picture a resonance is a localized wave packet
that resembles for a time 1/I' a bound state.
Therefore upon Fourier transforming to energy
space the packet is made up of not just one energy
eigenfunction but of many of them, all with ener-
gies falling within the width of the so-called packet
center. ' Each eigenfunction ean be expected to
resemble the "quasibound state"' in the inner re-
gion, so that they contribute constructively in this
region. In the outer region, however, these func-
tions should interfere destructively and should be
out of phase there. In the procedure mentioned in
the first paragraph, all that can be obtained is just
one of these functions whose energy can fall any-
where within the width of the resonance. For a
very narrow resonance this is of 1ittle consequence
and good results can be expected provided the ini-
tial guess for the state was reasonable. However,
the same cannot be said for the more general case
of a broader resonance. In a rigorous application
of the stabilization method, however, we seek not
just any one of the eigenfunctions, but rather that
particular one which is the most localized function
of the wave packet. It is this fundamental concept
of maximal localization which allows us to obtain
results devoid of the uncertainties intrinsic to a
more simplistic approach.

Having established the basic ideas involved, we
will now describe our procedure for stabilization.
It starts by guessing, on a physical basis, the most
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likely electronic structure in a Hartr ee-Fock
sense for the state in question. A self-consistent-
field (SCF) calculation is then. performed in which,
as usual, the orbitals are expressed in terms of
some primitive one-electron basis. The result
(4'c~) represents a first guess at the inner part
of the resonance function being sought. However,
at this point, we have no idea of which eigenfunc-
tion in the packet we have found. Since the degree
of localization is controlled by the nonlinear pa-
rameters (referred to collectively as a) in the one-
electron basis being employed, we generate a set
of these functions by performing a series of SCF
calculations using different values of o. . If it is
found that the SCF procedure will not converge
properly regardless of our choice of n, this indi-
cates tha. t no resonance exists (at least as we have
envisioned it). However, we usually do find that

proper solutions can be obtained for several values
of n (o, , i=1, 2, . . . , m). For each o. , we perform
a series of configuration-interaction (CI) calcula-
tions' in which the basis consists of the SCF wave
function obtained for the given n, and those other
configurations (involving the same n, )which . could
possibly mix significantly with it. In keeping with

the criteria of maximal localization, in the analy-
sis of these calculations it is the eigenvectors
which are of immediate importance and not the
eigenvalues. In each of these CI's we look for a
vector having a high overlap with the SCF wave
function. If no such high overlap is found, it indi-
cates that a resonance does not exist. We usually
find, however, that for each CI such a vector does
exist and that the corresponding eigenvalue is sta-
ble with respect to the addition of more configura-
tions. All of the stable eigenvalues obtained in this
manner lie within and become a rough measure of
the total width of the resonance. Finally, from
these m stabilized solutions (each with a different

z, and each representing one of the energy eigen-
functions in the packet mentioned above) we choose
that one having the highest overlap with the corre-
sponding SCF wave function. This choice repre-
sents the most localized continuum function of the
wave packet, and we take its eigenvalue to be the
resonance energy. One should note that our pro-
cedure fits the whole continuum wave function and
not just its innermost part [which in Feshbach's'
language is referred to as Qp (Ref. 5}], and, as
such, it gives the "shifted" resonance energy. '
Formally, it is quite useful to define Q as the pro-
jector onto our stabilized function. This means
I'g is negligible until one reaches the large dis-
tance at which the basis becomes inadequate.

This procedure for stabilization was first de-
scribed in 1967 and has been justified both formal-
ly' and sn actual computations for such broad

resonances as H' (Ref. 11) and H, ('Z„) (Ref. 2).
This method differs from those of Feshbach, '
Holoien, ' Ljpsky, and Russek, "and Miller. ' If
variation of nonlinear parameters is not feasible,
an alternate procedure for extracting the reso-
nance energies and widths may be used which has
been formulated by one of us and Fels'"' and has
been elegantly applied by Bhatia. " Another method
for extracting the width and background phase shift
at the resonance energy is given in Ref. 5 and in

a note by Lippmann. " This latter method has the
particular disadvantage of having to extract nu-
merical values for the resonant wave function as a
function of position, a procedure not easy to do ac-
curatel'. - with standard CI programs.

Lastly, we would like to point out that the pertur-
bation method developed by Drake and Dalgarno"
is equivalent to all the steps of stabilization de-
scribed here. Basically, what they have is a varia-
tion-perturbation principle for determining the
correction to an unperturbed function (which is
equivalent to our initial guess) which minimizes
the norm of the correction function with respect to
scale. If in our CI wave functions we had chosen
a normalization which set the coefficient 4 ~c~ to
unity then their criteria and our overlap criteria
would be the same (and are not the criteria of
Holoien).

In the following, we consider a new method for
obtaining the background phase shift 5~ and the
width I" which is useful in single-channel problems
and which involves only integrals of the stabilized
function. Hopefully these integrels can be obtained
more accurately than values of the resonance func-
tion at a point. The method is based on the ob-
servation' that for distances spanned by the basis
set a stabilized eigenfunction g„with energy E„
corresponds, within a normalization constant, to
the total scattering function at E =E„. That is,

y+r(E„) =constx g„(E„)

for- all stabilized eigenvalues E„=—,'k'„. Consequent-
ly, for a single open channel, the total phase shift
5„can be extracted from the normalization-inde-
pendent K -matrix formula':

( )
(8„IH —E„ IS(k„r}} S
(8„ IH —E„ I C(k„&)) C„'

where S(kr) and C(kr} are the Ricatti-Bessel and
Ricatti-Neuman functions, respectively.

In the discussion above, we have argued that the
most localized resonance function (call it g„) ob-
tained in the stabilization procedure corresponds
to the center of the resonance, i.e. , E„=E„. Now
using the fact that at E = E„
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and using the relation

lim tan(5s+ x) = —1/tan5~,
X~ff /2

we obtain the formula used in Ref. 1,

(8„IH —E„I C(k„r)) C

(8„IH —E„IS(k„r)) S„

Hence knowing (9„and E„gives 5~. Now I" can be
obtained using the formula for the width given by
Hazi and Fels,"
1'=(4/k„)j(8IH —E„[[(o 5 )S(k„)-( '

5 )C(k„)])['.
(6)

Interestingly, in Ref. 1, a prior knowledge of 5~
(from a scattering computation) was used in Eq.
(5) to determine the optimal a and therefore 8„
and E„. We have inverted this line of thought,
since we claim to know H„and E„ from the stabil-
ization procedure.

Qppenheimer and Doyle have found' that the for-
mula in Eq. (5) was sensitive to the detailed form
of 8„, and, as such, they used it to determine the
nonlinear parameters n. This result has led us
to examine in detail the magnitude of the error in
the calculated width which can be expected when
the resonance function is slightly off the center of
the resonance. The analysis given in the Appendix
shows that for an eigenfunction a„with E„=E„+-,'-y

r, =r(1+y'/r').
Here I' is the exact width and I', is the approxi-
mate width which is obtained from Eqs. (5) and (6)
under the assumption that E„=E„.The result in
Eq. (7) holds rigorously for any 8„which lies with-
in the width of the resonance, i.e. , if 2(E„-E, (

=y &I', and which satisfies the relationship

tI', (E„}=[e"sl"'"/2v(E„-E, +-,'fr )] 8„(E„). (g)

This result is essentially Eq. (1), with the explicit
form of the normalization constant derived from
Feshbach's theory. Several previous calcula-
tions' " "have shown that resonance wave func-
tions obtained by the stabilization procedure satisfy
these two conditions, provided the basis sets are
sufficiently large to span the range of the poten-
tials.

The importance of the result in Eq. (7) stems
from the observation that I', computed from Eqs.
(5) and (6) is an upper bound to the exact width,
provided Eq. (8) is valid. Thus we now have a
minimum principle at our disposal: The nonlinear
parameters z of the basis set can be varied to
minimize I', . The minimum value so obtained
gives the width of the resonance. Since the mini-
mum occurs for y =0, i.e., E„=E„, the energy

eigenvalue corresponding to an optimized 8„(giving
the smallest I', ) gives the resonance energy in-
cluding the *'shift. " The background phase shift 5~
is obtained by using the optimized 8„ in Eq. (5).
Again, we emphasize that these conclusions hold
provided Eq. (8) is valid for the resonance func-
tions 8„. Insofar as Eq. (8) is satisfied only ap-
proximately, the computed values of E„, I", and

5~ will be approximate.
In an actual computation, the idea of maximum

localization should be used first to determine E„
and 9„. This requires only bound-bound integrals,
which are available from standard atomic and
molecular computer codes. The minimum principle
for I' is used when 5~ is calculated. It is an added
refinement that gives E„, 8„, and 5~ to an ac-
curacy, to which the idea of maximum localization,
with its emphasis on the inner part of the wave
function, is insensitive. The minimum procedure
for I' and the calculation of 5~ require bound-con-
tinuum integrals.

The proposed variational procedure for refining
the values of the resonance parameters can be
utilized not only with the stabilization method, but
also with the method of Oppenheimer and Doyle.
If a reasonable, but not necessarily accurate,
guess for 5~ is available from independent sources,
Eq. (5) can be used to find the initial values of the
nonlinear parameters o. which occur in 9„.' Then
I", can be minimized to obtain an improved reso-
nance function (9„, and from that better values of
l, E„, and 5~ can be found.

For multichannel resonances, the stabilization
method gives E„. From a single stabilized wave
function the partial widths cannot be obtained,
since one does not have the N independent solutions
needed to get full multichannel information for N
open channels. Although we have not proven it, we
believe that it should be possible to get the total
width from the stabilized function. This belief is
based on the fact that the initial step of stabiliza-
tion gives a range of stabilized energies and this
range is of the order of the total width.

APPENDIX

Consider a normalized resonance function 9„
with energy E„. If 9„ is stable with respect to in-
creasing the basis set, then E„satisfies'

2jZ„ —E, /&r,

where E„and I' denote the exact resonance energy
and width, respectively. For sufficiently large
basis sets which span the range of the potential,
(9„ is proportional to the exact scattering function
at E =E„(except in the asymptotic region), i.e. ,

6)„satisfies Eq. (1). The normalization constant
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can be expressed in terms of the resonance pa-
rameters using the Feshbach formalism, ' with the
result given in Eq. (8).

One of us and Fels have shown" that a trial value
of the width, I', , can be calculated from g„using
the formula

tan6s = (S„y+C„I')/(C„y —S„I') .
Fquation (A5) is equivalent to

sin6s = —(S„y+C„r)[(S'„+C'„)(r '+y')1

cos6s = (S„r—C„y)[(S'„+C'„)(I'+y')]

(A 5)

(A6)

(A7)

6s = 6r(E ) —tan '[I'/2(E, „—E„)] . (A4)

Defining E„=E,+ —,'y and using Eq. (2) for 6r(E„),
we obtain

r, =(4/u. )I&a. I& —E. Istn(i. y+6s~)&I'

where 5~, denotes the trial value of the background
phase shift. Using Eq. (8) in (A2), one obtains the
result"

I', =[I' '~'cos(6, —6 )

+ 2I' '~'(E„—E„)sin(6s, —6s)]', (A3)

where 5~ denotes the exact background phase shift.
The validity of Eq. (A3) for stabilized resonance
functions has been verified by several groups. ' " "
If we assume that for E near E„ the energy de-
pendence of the total phase shift 6r(E) is given by
the Breit-Wigner form, then 5~ is given by

The above choice of signs is consistent with Kq.
(3)

On the other hand, the trial value of the back-
ground phase shift, 6s, , is obtained from Eq. (5),
or by assuming that E„=E„ory = 0:

sin6s, = —C„(S'„+C'„) ' ',
cos69t =S„(S„+C„)

(A8)

(A 9)

Substituting Eqs. (A6)—(A9) into Eq. (A3), one ob-
tains after some algebra

r, =r(1+y'/r').
It is interesting to note that the error in I' is in-
dependent of the "bound-continuum" matrix ele-
ments $„and C„, and it depends only on how far
H„and E„are removed from the true center of the
resonance.
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