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Accurate deternunation of the total electronic energy of the Be ground state
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New configuration-interaction (CI) ideas are tested and utilized to yield the most accurate determination to
date of the Be nonrelativistic energy E = —14.667358(28) a.u. Be, including a mass-polarization correction of
—0.000030(3) estimated from literature data. A 650-term CI series gives a rigorous upper bound

E„= —14.666902. The truncation error of the 10s9p8d7f5g3h1i carefully optimized Slater-type orbital set is

estimated largely from studies of apparent energy limits for each harmonic; it amounts to —0.000407(22). An

additional —0.000019(2) energy error arises from truncating the full CI expansion. A relativistic energy

correction E,„p, —E„, = —0.001987(30) is predicted, which agrees well with an ab initio estimate of —0.001986
obtained by combining the Hartree-Fock quality results of Hartmann and Clementi with Pekeris's exact result

for Be'+, thus including K-shell correlation effects in the relativistic correction. The correlation energy is

determined with 0.03%%uo of uncertainty, E, = —2.56604~0.00068 eV. Particular attention is given to
construction of basis sets, energy extrapolation procedures, and compact approximations to the full CI
expansion. Comparisons with previous calculations are made, and it is pointed out how the present results

may be improved.

I. INTRODUCTION

This paper is concerned with (i) an accurate
means of estimating the eigenvalues E„, of the
atomic nonrelativistic Schrodinger equation, and

(ii) a determination of the total electronic energy
of the ground state of Be. We aim at a small un-
certainty in the extrapolated E„„sufficiently nar-
row to permit a prediction of the relativistic en-
ergy correction E„ to within 1% in order to pos-
sibilitate very accurate numerical tests of the
many-electron relativistic Hamiltonian. For Be,
1/0 of E„ is about 0.000 020 a.u. = 4.4 cm ', amount-
ing to 1.4 ppm of the total energy, which is just
about the uncertainty in the present calculation.

We use standard configuration-interaction (CI)
techniques. By standard we mean the use of (i)
a Slater-type orbital (STO) basis, (ii) orthogonal
one-electron symmetry-adapted spin orbitals,
with equivalence of partner orbitals in degenerate
representations, and (iii) an N-electron basis with
L -S symmetry.

Four ab initio estimates of E„, have been re-
ported previously. The many-body perturbation
theory (MBPT) estimates" have an uncertainty
of 0.004 and 0.002 a.u. , respectively. Since Kelly's
and Kaldor's calculations were aimed at demon-
strating a method and not at highly accurate re-
sults, it should not be concluded that the large un-
certainty of their results is intrinsic to their par-
ticular implementation of MBPT. My own earlier
estimate, ' obtained from a standard CI calculation,
has a reported uncertainty of 0.000150 a.u. , more
than ten times smaller than the MBPT results, and
here, again, the purposes were primarily directed

at describing a strategy for atomic CI calculations.
In recent work, Sims and Hagstrom have used a
CI-Hylleraas approach to compute the lowest upper
bound to E„,previous to the present work. Also,
they have estimated for Be E„,= —14.6667+0.0001
a.u. which is compatible with our previous CI re-
sult' of -14.666 540+0.000150. We have discov-
ered, however, that the true energy E.„, lies out-
side and well below the reported margin of error
of both previous variational calculations.

The crucial aspect that permitted the calculatioa
of these ab initio estimates was the recognition of
patterns of convergence for the energy. Other
extensive calculations' ' on the ground state of Be
have omitted any reference to the uncertainty of
their results and are therefore inconclusive re-
garding the actual value of E„,. Their authors
have interpreted their calculations as probes of
computational methods for well-known quantities,
and so they have relied on empirical estimates
which make use of experimental energies and an

approximate relativistic energy correction.
A recent calculation by Froese Fischer and

Saxena has distinguishing features that deserve
special mention: they used a numerical multi-
configuration Hartree-Fock (MCHF) technique
and obtained the lowest CI upper bound to E„,pre-
vious to the present work. Unfortunately, the
possible existence of patterns of convergence was
not considered and no estimate of E„,was given.

In Sec. II we discuss the salient features of an
accurate CI calculation for closed-shell atomic
states. Open-shell states shall be discussed in
a companion paper. " In Sec. III we present the
results of the nonrelativistic calculation for the
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ground state of Be Rnd compute an ab initio rela-
tivistic correction using literature data. We also
discuss correlation energy, convergence of the
CI series Rnd R description of it, and pair energies
and how to improve standard CI upper bounds. The
discussion in Sec. IV is devoted to comparisons
with previous calculations and to point out the way
towards improved r esults.

II. SALIENT FEATURES OF CI

The starting point of any CI calculation is the
selection of a reference configuration.

For optimization purposes it is more convenient
(see Sec. IIC) to use a Hartree-Fock reference
configuration, rather than one formed with major
natural orbitals" (NO's). This is probably because
canonical Hartree-Fock {HF) orbitals are localized
in shells, while major NQ's are less localized,
and efficient optimization strategies'~ are based on
shell-localized model wave functions.

For CI purposes anything that provides for a
short-range fluctuation potential" might seem"
adequate. Unfortunately, it has not yet been clari-
fied how an optimum short range fluctuation po-
tential should be constructed such that the impor-
tance of three and higher excited Jigged clusters
ls minimized.

We intended to use an HF reference configuration
expressed in canonical HF orbitals, following ear-
lier CI calculations, "' and in order to allow de-
tailed comparisons with previous work. The HF
orbitals had to be abandoned, however, and re-
placed by major NQ's, as discussed in Sec. IID.

A. Outline of procedure

The distinctive feature of our method is that the
truncation error of the orbital basis is largely
determined at the very outset of the calculation.
The 111a111 steps 111 olll' nletllod al'e (1) construction
of a prototype set, {ii) study of patterns of con-
vergence, (iii) optimization of STO parameters,
and (iv) checking the stability of the patterns of con-
vergence by increasing the size of the prototype
set with a few optimized STQ's. At this stage w' e
have an optimized STQ basis together with the
largest portion of its truncation energy error.
We then proceed to (v) obtain a particular NO
basis, and finally (vi) approximate the full CI in
the given orbital basis. The only difficult deci-
sions arise in steps (ii) and (iii) in trying to get
maximum accuracy at a reasonable cost in both
human Rnd computer time.

B. Patterns of convergence

In this subsection we discuss a set of calculations
which Rre primarily directed at obtaining interme-

diate results useful to compute the truncation error
of a primitive basis set (to be determined in Sec.
II C). As a bonus, these intermediate results will
provide us with a guide to the energy optimization
of the primitive set.

I et us define L-, K-, and I-shell wave functions
RS

e(l, she))) =((*)'(2s)' A ((s)'Q (x.*,)).,), (()
c~b

@(K aha(o=((s)'(2s)' A (2s)'F (x.*,)),„),
a~b

(3)

4(l she)))=(( )'(2s)' 2{'s((s2s)I 's(*,*,)(„,)

+A 'S S 182S 3S X, gb i,b,

where 1s and 2s may be canonical SCF orbitals of
double ( quality Rnd the sums run over a set of
predetermined orbitals.

I.et us now consider a given set of functions. Vfe
define its L-shell truncation error as the difference
between the energies of the g(L shell) with a. com-
plete set and with the given set, xespectively. The
only obstacle to the computation of the L-shell
truncation error of a given set is an estimate of
the energy of 0 (L shell) with the complete set.
This we are unable to approach directly because of
the large number of integrals involved if energy
convergence to within a few microhartrees is
sought. Instead we consider apparent angular en-
ergy limits for each successive harmonic func-
tion.

The apparent angular energy limits are obtained
with a small prototype set containing harmonic
functions up to / —1 and a large set of even-tem-
pered'6'" STQ's,

' r +(m(s)(p) ~

Z„=gb, &=1,2, . . . ,

for the given harmonic investigRtion.
The prototype set is given at the top of Table I;

it consists of Huzinaga Rnd Arnau's'8 double g
basis Rnd L-shell STQ's energy optimized in the
order 2p, 4p, 3p, 3(f, 4f, 5g, and 6h, except
that for the p orbitals we only use the first L-shell
p-type NQ. Hereafter small energies are reported
in microhartrees, 1 p. hartree =10 a.u.

Qur results for the L shell are given in Table I
in the first hvo rows following the identifier for
each angular limit. The convergence of the cal-
culated energy (top entry) towards the extrapolated
limit is ascertained by testing the stability of the
energy contribution of eRch NQ upon mally varl-
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TABLE II. Energy contributions of L -shell P-type
NO's, in phartree.

Energy &-shell energy

2

3

5
6
7

8
9

10

76.74
19.46
11.86

4 ' 21 '
2.80
0.61
0.34 '
0.18
0.00

—14.617 157 41
-14.617 176 87
-14.617 188 73
—14.617 192 94
—14.617 195 74
—14 ~ 617 19635

"—14.617 196 69
—14.617 196 87
—14.617 19687

~ Stable to all figures.
b Last figure may not be stable upon improvement of

basis set.
Last two figures may not be stable.

ations in the values of a, 5, and k, as illustrated
in Table II. Unfortunately, the separate energy
contributions of each NO are not upper bounds to
their corresponding limiting values; neither do

gey satisfy handy empirical laws, as found in the
heliumlike systems. " The uncertainty of the ex-
trapolated limit is computed by adding up conserva-
tive margins of instability for each NQ contribu-
tion. The extrapolated limit is obtained by adding
the uncertainty computed above (with minus sign)
to the lowest calculated energy.

An extended prototype set including all three
possible p-type orbitals mas used to test the sta-
bility of the apparent I.-shell truncation error for
1=2, as shown in Table I under "d limit. '*

For the I shell, results analogous to those of
Table l are obtained in a similar fashion (these
results are later condensed in Table Vl).

Our CI calculations of apparent angular energy
limits stop at l =6. The L-shell harmonic contri-
butions for /&6 are estimated in Table III on the
basis of a conspicuous (l+ —,') asymptotic empiri-
cal law, similar to the one discovered by Schwartz

(on theoretical grounds) for the ground state of
He. The harmonic contributions to the I shell
appear to follow instead a 3 ' exponential law, as
illustrated also in Table III.

Finally, for the K shell me have relied on pre-
vious studies. '~' The important results are syn-
thesized in the three equations belom:

er =E(Be, E shell, exact} -E(Be, K shell, approx. )

E(Be~, exact, without 2s)

-E(Be, approx. , without 2s)

=—E(Be~, exact) -E(Be~, approx. ),
where &~ is the K-shell error. With a basis con-
siderably inferior to the present one, these equa-
tions mere found valid' to an accuracy better than
1 p, hartree. The results for the K shell are given
in Table IV.

In Sec. IVD we point out to another possible
method for computation of truncation errors.

C. Basis optimization

Eight years ago, when my previous Be paper'
came out, there was immediate concern with what
are now considered coarse descriptions of elec-
tronic correlation, and so the details of basis-set
optimization were of secondary interest. Today,
atomic CI techniques kave developed" to the point
where it is feasible to consider very large cal-
culations. I claim that these" and other currently
available techniques can be used to yield expec-
tation values of near-spectroscopic accuracy. In
this context basis-set optimization of some sort
becomes inevitable.

Many hypotheses about interdependence of STO
parameters might be advanced at the outset. We
do not need any of these hypotheses, however,
because the uncertainties in each step of the op-

TABLE III. Extrapolation of energy contr ibutions for I & 6, in. phartree.

Energy
contributions A(l +3) 4

I shell
Energy

contributions

60+ 1
23+ 1
12+ 1

23
12
6.7
4.1
2.6

21+2

80 +1
27 +3

9
3.5+ 0.5

28
9.3
3.1
1.0
0.3
0.1
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TABLE IV. E-she11 STO truncation error.

Li
ergy Be2+

Present work Exact &&(& (p hartree)

-13.626 841
-13.651 076
—13.654 113
—13~ 654 893
-13~ 655 159
—13.655 261
—13.655 295

—13~ 626 859
—13.651 118
—13.654 172

18
24
27

Truncation error,
Eqs. (6)-(8)

'Upper bound with present 10s9p8d7f 5g341i basis.
b Reference 19.

Reference 38.

timization are ascertained from NO analyses of
apparent angular energy-limit wave functions
which are studied before doing the optimization
(Sec. II 8).

The optimization is carried out in two steps. In

the first one we optimize I.-shell wave functions.
In the second and final step we optimize K-shell
wave functions, including all orbitals from the
previous step. Intershell optimizations are made
only exceptionally (as explained later), but the
concomitant truncation error is duly estimated.
By carrying out L-shell optimizations first, the
K-shell optimizations which follow are quite sim-
ple, the energetically important STO's being very
much localized. '

We start with the nominal canonical HF orbitals
of Bagus et al.2' plus the virtual orbitals, totaling
four s-type functions. An I.-shell 2p STO is op-
timized first. Then (keeping the 2p fixed) we op-
timize, successively, 3s, 4s, and 5s STO's in the
I.-shell. We stop adding s orbitals at this stage,
because the results of patterns of convergence
indicate that we have reached convergence to with-
in 3 p. hartree. A cyclic reoptimization has little
effect. Similar calculations with NO's instead of
canonical HF orbitals yield results which are
def initely poorer.

Next we optimize 2s, 3s, and 4s STQ's in the
K shell. The end result is the same one from a
similar optimization based on the ground state of
Be' . At this stage we are 18 p, hartree away from
either the s limit of Be or the s limit of aK-shell
CI, and the result is stable upon further isolated
variations in any of the ten s-type STO's.

The optimization of p STQ's in the I. shell pre-
sented some surprises. The order is somewhat
altered: 2p, 4p, 3p, and 6p. After successive
optimizations of these four STQ's the truncation
error is 112 p, hartree. Many cyclic optimizations

are required to bring down the truncation error
to 17 p. hartree. At this stage it is noted that the
i'irst four I.-shell p-type accurate NO's (see Table
II) give an energy 7 ghartree below the energy ob-
tained with the four I.-shell optimized STO's (re-
ported in Table I under "p limit" ), which shows
how well we have done with the optimization. The
accurate NO results of Table II also suggest that
further energy improvements do require the in-
troduction of additional STO's, which are not in-
cluded in order to keep the computational cost
within budget limitations. After addition of the
K-shell optimized STO's we are only 7 p, hartree
above (Table I under "p limit" ) the apparent p
energy limit (Table I under "p limit" ). We see
that the I.-shell truncation error of our full p-type
basis is 7+1 p, hartree.

Fortunately, the optimization of higher harmonics
becomes simple again. After successive optimi-
zation of 3d, 4d, and 5d, the energy is 22 JLt. hartree
away fI om the apparent L, -shell d limit. Two fur-
ther cyclic reoptimizations place the energy within
15 p, hartree. For higher harmonics cyclic re-
optimizations are unnecessary. An analogous
behavior is observed in K-shell optimizations.

Many methods for parameter optimization are
currently used in atomic and molecular quantum
mechanics. To our surprise, we have found that
the simple-minded cyclic optimization (originally
advocated by Hoothaan and Bagus2') works out
satisfactorily. For the optimization of a single
orbital exponent we have resorted to an admixture
of brute force and common sense, the later con-
sisting in recognizing that multiple minima are
accompanied by multiple maxima which occur,
approximately, when the overlap integral between
any two STQ's approaches its highest possible
value (for a large basis one of these maxima is
usually very close to the absolute minimum). If
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our common sense fails us (for example, if we
are too lazy to search around all minima), the
information given by the NQ analyses of apparent
angular energy-limit wave functions will alert us.

In Table V we give the STO basis together with
corresponding average x'adii. Notice the distribu-
tion of average radii of CI optimized STQ's rela-
tive to the nominal set of Bagus et al. %hat is
amazing is that this distribution was not imposed

TABLE V. Characterization and localization of STO
set.

&)(L)

1 +0.5

10 +2
3 +1

15 +3
4.5+ 1
2.5 + 0.5

lkl
7+1
8+1
8+1
7+1
8+1

12+ 1

TABLE VI. Summary of truncation-ener gy estimates
for I and L shells, inphartree.

18
4s
28

18
48
38
5s
28
38
3P
4p
5P
6p
2p
4p
3P
6p
2P

4d
5d
6d
3d
5d
3d
4d

5f
6f
7f
4f
4f
5f
4f
6g
7g
5g
6g
5g
7a

6A

7i

Orbital
exponent

6.225
16.0
7.45
8.80
3.437
2.7
1.776
2.2
0.869
1.08

14.9
14.0
14.0 '
14.0
2.9"
5.00
2.10
2.80
1.036

16.0
16.0
16.0
16.0
7.1
2.55
1.60
1.74

17.0
18.0
18.5
10.0
3.6
2 40
1.56

20.0
20.0
13.0
2.8
1.9

22.0
15.5
2.4

18,0

(bohr )

0.241
0.281
0.335
0.398
0.437
1.67
1.97
2.50
2.87
3 ~ 24
0.235
0.321
0,407
0.479
0.86
0.90
1.68
2.32
2.41
0.219
0.281
0.344
0.406
0.493
2.15
2.19
2.59
0.323
0.361
0.405
0.450
1..25
2.29
2.88
0.325
0.375
0 423
2 32
2,89
0.341
0.419
2.71
0.417

Shell

K (HF)
E
E
E
& (HF)
L
& (HF)

L (HF)
L
E
E
K
E
K
L

L

K
E
E
E.
E
L
L
L
E
E
E
E
I,L
L
L
E
E
E

E
E

E

TABLE VII. Summary of STO truncation results, in
tahar'tree.

ave function Total

L

E
Subtotal (L+~+ E)
'8 s) '~(p )'

72 ~9
41 ~10

271 ~1

384 ~20
23 &3

a Priori, i.e., we did not look for local minima
consistent with a preestablished localization of
the STQ's, except for the use. of L, - and K-shell
wave functions.

By now we are in a position to compute I - and
I-shell apparent angular enex'gy limits using the
prototype set and the final basis for the higher
harmonic under investigation; the I.-shell results
are given in Table I. The truncation errors in the
I, shell, a, (f ), for l ~6, can now be computed
from the data in Table I, and they are collected
in Table VI together with the I-shell truncation
errors computed in the same way.

After computing the I-shell energy with our
originally optimized STQ basis for 3 = 3, and upon
verifying that the truncation ex ror was 32 p. hartree,
we decided to optimize an f-type I-shell STO which
turned out to be 4f = 3.6. This STO contributes
29 p.hartree to the I shell and 8 ghartree to the
I. shell, and was incorporated into our final STQ
basis.

Finally, we assume that for small truncation
errors, such as those in this work, the total
truncation error is the sum of I.-, I-, and K-shell
truncation errors. In Table VII we summarize
the STO tx'uncation-error results. The truncation
error of our STQ basis is estimated in 384+20

Orbital exponent has been estimated.
Upon one cyclic reoptimization it changed from 4.9

to 2.9. See discussion in Sec. IIG.

407 +23
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Qartree, except for minor corrections due to
unlinked terms of the type 'S(xy) 'S(p, )2 which we
discuss in See. IIG. Any further truncation errors
shall be attributed to truncations in the full CI
expansion.

D. Selection of orbital basis

The spd orbitals are NO's of a wave function
which includes the HF configuration and all single
and double excitations. This wave function is not
invariant upon the NO transformation, and so one
might be tempted to carry out NO iterations, which
me consider superfluous in the present case. The
fghi orbitals are NO's of an analogous wave func-
tion with a small 4s2p2d STO basis.

At this stage it is convenient to repeat both CI
calculations with their respective NO's, in order
to identify the leading unlinked clusters for later
use in the approximation to the full CI (Sec. II 6).

The HF space was abandoned because (i) the
relatively large matrix elements between single
and double L-shell excitations demanded several
hundred iterations for the evaluation of eigenvec-
tors of large matrices, and (ii) the large CI coeffi-
cients of the L-shell single excitations mere re-
sponsible for the presence of too many three-ex-
cited-unlinked clusters.

The question of whether there exists a kind of
NO or other orthogonal orbital with definite inter-
pretative and computational advantages remains
open. The present NO's, however, are definitely
superior to NO's which include HF orbitals, ' for
the reasons stated above.

E. A-electron functions

We use I.-S eigenfunetions obtained as succes-
sively orthogonalized symmetric projections" of
Slater determinants. When degeneracies exist
the different I.-S functions may be characterized
by internal couplings of electron groups. " An

extensive theoretical discussion" and computa-
tional details ' are given in the literature. All
possible types of I.-S functions for a given orbital
basis are stored on magnetic tape (master tape).
Input to the CI program, other than options 2nd,
possibly, basis functions, consists of a string of
numbers in a one-to-one correspondence with the
I.-8 functions of the master tape.

F. Eigenvectors of large matrices

The computation of eigenvectors of large real
symmetric matrices can be done very efficiently
with Shavitt's algorithm, "based on a method by
Nesbet. 'o Quick convergence depends upon matrix
characteristics mhich are not easy or even desir-

able to control, "so that one must be ready to
abandon a seemingly suitable orbital basis if
eigenvector convergence becomes problematic.
The accuracy of the eigenvalues can be rigorously
tested by Wilkinson's formula, " E =8+~ r~, where
r is the residual vector, r =(H —Ef ) c, and C is
normalized. The computation of eigenvectors
consumes a small fraction of the total computa-
tional time. Our final upper bound had a precision
of 0.01 p.hartree and required 66 iterations.

G. Approximation of the full CI

Although our energy uncertainty due to the trun-
cation of the STO set is about 23 p. hartree, it
seems possible (see Sec. IVD), in principle, to
reduce this uncertainty to 2 p. hartree or less, so
that a comparable uncertainty in the approximation
to the full CI energy is desirable.

The full CI is approximated by a sequence of CI
calculations, as described in 'fable VIII. We start
mith a 659-term CI mhich includes all singles and
doubles plus 15 leading linked and unlinked terms.
This is in order to get as close as possible to the
final result so as to minimize the uncertainties in
further CI truncations. The first truncation mas
obtained by deleting 253 terms selected by Bromn's
criterion, "which says that the energy contribution
of the mth configuration, AI;, is given by

(9)

Equation (9) is derived assuming that upon de-
letion of 4 from 4 the resulting function is mell
approximated by the same linear eoeffieients c
except for renormalization. In each step the
truncation error is computed as a difference be-
tween tmo variational energies which, in the pre-
sent set of calculations, agrees with the sum of
the deleted AE 's to better than 99%.

Next we include the 149 unlinked terms with
predicted energy contributions greater than 0.1

p. hartree. These predictions are based on Eq.
(9), with

abed Q cd
+mm Dij k1 ~jj +Dpi' Do r

C=~CCm ~ jj kf
(ttycd}

In Eq. (10), D, is the average energy of the refer-
ence configuration, D', ,'. is the average energy of
the ij-ab excitation, "and so on. In Eq. (11) we
understand the sum to be over all possible pro-
ducts permitted bv the unlinked cluster expan-
sion.

After another truncation we include 233 terms
believed to represent the remaining important
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TABLE VIII. Sequence of calcul. ations to approximate the full CI.

10
11
12

%ave function

All 8+8 plus 15 leading T+Q
Same as 1, truncated
Same as 2 plus 149 unlinked
Same as 3, truncated
Same as 4 plus 233 linked
Same as 5, tr uncated
Same as 6 plus 160 U and &
Same as 7, truncated
Same as 8 plus 194 terms,

mostly linked ones
Same as 9, truncated
Same as 10 plus 60 U and I
Same as 11, truncated
Remaining unlinked clusters,

Eqs. (9)-(11).
Total CI truncation. error
Extrapolated full CI energy

CI size

659
406
555
523
756
589
749
604
798

Energy

—14.666 040 00
-14.666 034 01
—14.666 468 97
—14.666 467 95
-14.666 732 97
-14.666 730 56
—14.666 765 33
-14.666 762 67
—14 ~ 666 895 06

—14.666 892 41
—14.666 902 85
-14.666 901 84

—14.666 921(2)

Truncation
energy

(p hartree)

5, 99

1.02

2.41

2.66

1.01
3.0+ 1.0

See text for more precise explanations.
b Difference between two variational energies.

aE„=c' [(E —D;,' )+ (E —D'4)] . . (12)

For the types of terms we are considering, Eq.
(11) can be well approximated by

PIPI Xy&m= &as2sCX Is ~

Placing (13) into (12) we get

(c»» )2gE» + (c&w )2dE&x» (14)Is Is 2s 2s 2s 2s Is Is ls Is 2s 3s

linked clusters, mainly single and double exci-
tations of leading double excitations such as
(ls)'(p, )', (p, )'(2s)', and (1s)'(d, )', and three-
body "collisions. "" In identifying these terms
it is convenient to use a hierarchy of configurations
based on occupation numbers (eigenvalues of the
1 matrix).

The energy effect of other linked and unlinked
clusters is computed through new secular equa-
tions, and the energy contributions of the still
remaining unlinked clusters are estimated via
Eqs. (9)-(11). The energy effect of the remaining
linked terms is believed to be less than 1 p, hartree.
The final upper bound, E„=14.666 902, is 19 p, har-
tree above the full CI energy, which has been
estimated with an uncertainty of 2 p, hartree. The
nonrelativistic energy is estimated in See. III.

An analysis of energy contributions of 'S(xy) 'S(p, )'
terms indicates that the present STQ basis is sig-
nificantly incomplete in this respect. The energy
contribution of these terms can be estimated very
accurately by means of Eq. (9), even without ex-
plicit knowledge of the c 's and H 's. Introducing
(10) in (9), with DO= 8, we get

~E~„=—271 p, hartree, (16)

to about 95% accuracy, so that from (15) and (16)
we get a STQ truncation error of 23~3 ghartree,
which we report in Table VII.

III. RESULTS

The experimental electronic energy for the Be
ground state is given in Table IX, where use is
made of the latest recommended values of the
physical constants. " A summary of the relevant
energies involved in our ab init&& estimate of the
total electronic energy is given in Table X. A
Burroughs 6700 computer and double-precision
arithmetic (22 significant figures) have been used
throughout.

The mass polarization term has not been com-
puted, but Prasad and Stewart~ have done so very
accurately for Be+ and Be~ using Weiss's wave
functions. " For Be~ they gets &

= —5.63 cm '

where the last term on the right-hand side of (14)
is relatively small. Using c~~I~~I = —0.29, we have

(15)

%'e have found that the energy correction given
by (15) is accurate to 85/~ or better, for terms
of magnitude comparable to the ones we wish to
approximate. Summing both members of (15) over
all xy not included in our orbital basis, we get, on
the left-hand side, the total STO truncation error
due to the 'S(xy) 'S(p, )' excitations. On the right-
hand side, we get, from Table IV,
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TABLE IX. Experimental electronic energy in cm '

of the Be ground state.

Ionization potential Energy

First
Second
Third
Four 'th

Electronic energy, Be
In a.u.
In a.u. (Be)

75 192.07+ 0.1
146 882.87 + 0.1

1 241 259.5 + 0.1
1 756 018.82+ 0.1

3 219 3g3.26+ 0.4
—14.668 452(2)
—14.669 345(2)

'8 =-109737.3177(83) cm '; &(~Be)=109730.6377(83)
cm ~ (Hef. 35).

L. Johansson, Ark. Fys. 20, 489 (1961); 23, 119
(1962); J. E. Holmstrom and L. Johansson, &b&. 40,
133 (1969).

Hef. 38, corrected for present & The most recent
experimental value [M. Eidel. sberg, J. Phys. B 5. 1031
(1972)j has an uncertainty of 10 cm '.

J, D. Garcia and J. E. Mack, J. Opt. Soc. Am. 55,
654 (1965), corrected for present &

The uncertainty in the value of & is not taken into
account because me finally use a.u. (Be).

= —0.000025 a.u. , in excellent agreement with
Pekeris's "exact" result" of -5.62 cm '. For
Be+ they get E

p
= —0.000027, and the result

should be as reliable for Be~. Since Em& receives
contributions largely from regions with high kinetic
energy contributions, i.e. , the K shell, we conclude
that for the additional 2s electron in going from

Be+ to Be, E
p

must not change by mor'e than
-0.000003(3) a.u. , giving a, total value of E p=
-0.000030(3), which we report in Table X. There-
fore we predict a nonrelativistic ener gy E„=
-14.667358(28) a.u. for Be and a relativistic and

radiative energy correction E„=E—E„,=

-0.001 987(30) a.u.
Hartmann and Clementi ' have computed the

relativistic energy correction by perturbation
theory, '0 using self-consistent-field wave func-
tions of near-Hartree-Fock quality. They use an

extended form of the Breit equation for N-electron
systems, expand the Hamiltonian in powers of Za
up to and including the order z', and get an expec-
tation value of -0.002 198 a.u. They have also
calculated" a low-order Lamb-shift correction
for Be~ but not for Be, arguing that the effect
of. the outer electrons is expected to be relatively
small. Their value for the Lamb shift of Be~ is
+0.000323 a.u. In this way they get a total rela-
tivistic and radiative energy correction E„=
-0.001 875 a.u.

The result of Hartmann and Clementi can be
improved" by adding the full relativistic electron
correlation in the K shell. In the same spirit that
we used for the estimation of A-shell STQ trunca-
tion errors, we assume with Hartmann and Clem-
enti that this effect is approximately equal to the
difference between Pekeris's relativistic cor-
rection for Be", which is —0.001 878 a.u. and
the Hartree-Fock quality relativistic energy of

TABLE X. Ab-initio prediction of the electronic energy of the Be ground state.

Energy correction Total energy

650-term CI, E„
Truncation error, full CI
Full CI, extrapolated
Tr uncation error, STO basis
Nonrelativistic energy, E„,—E ~p
Mass polarization, estimate
E„,, final estimate
E, experimental
E„=k—E„„our prediction
Breit interaction
Lamb shift
E-shell relativistic corr elation
E„, total relativistic and

radiative corr ection

—0.000 019(2) '

—0.000 407(23)

-O.OOO O3O(3) '

—0.002 198
+0 000323
—0.000 111
—0.001 986

—14.666 902

—14.666 921(2)

—14.667 328(25)

-14.667 358(28)
—14.669 345(2)

0.001 987(30)

See Table VIII.
See Table VII.
See discussion in text.
See Table IX.

~ Reference 39.
f Computed in Hef. 39 using the formula of P. K. Kabir and E. E. Salpeter, Phys. Rev. 108,

1256 (1957).
g Reference 38.
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TABLE XI. Comparison of gb initio determinations of
the correlation energy of the Be ground state.

Correlation energy Percentage
@hartree) deviation

Kelly
Bunge
Sims and Hagstrom
Kaldor
This work

92 000+ 4000
93 520 + 150
93 700+100'
92 200 + 1900
94 305+ 25

—2.44
—Q.83
-0.64
—2.23
+0.03

Reference 1.
Reference 3.
Reference 4.
Reference 2.

Hartmann and Clementi, 39 which is —0.001 767 a.u.
When taking into account this effect, Hartmann
and Clementi's value of —0.001875 must be cor-
rected by —0.000111 a.u. , giving E„=—0.001 986,
which agrees well with our predicted &„
= —0.00198"t(30). The full significance of this re-
sult is discussed elsewhere. 4'

Correlation energy remains the theme which
unifies, if tenuously, the various outputs of di-
verse ab initio methods. In Table XI is shown

our correlation energy result in perspective
against previous estimates (the HF energy is
taken from Reffenetti"). (In accord with com-
mon usage, the Hamiltonian used to define cor-
relation energy does not include the mass polari-
zation term. ) We notice that the present correla-
tion energy estimate is outside and well below
the error bounds of three previous estimates.
The probable reasons for previous failures are
common ones, (i) underestimation of STD trunca-
tion errors and (ii) complete negligence of other
effects. (In our previous calculation' we erred
by underestimating the I - and I-shell STO trun-
cation errors, and by neglecting 1sP, Pd three-
excited configurations; in other works'~ the
treatment of error bounds is not sufficiently doc-
umented to reach conclusions in this respect. )
In the present work we believe that the only pos-
sible source of error is a possible omission of
some configuration; such type of error (human
errors) are probably unavoidable unless the cal-
culation is fully automatized from beginning (nu-
clear charge, number of electrons, charge) to
end.

In Table XII are given the energies of several.
variational wave functions for comparison with
recent work by Sims and Hagstrom, where con-
vergence is discussed in terms of energy versus
number of expansion functions in the CI series.
The results in Table XII reflect well on the rate
of convergence of the standard CI series up to

TABLE XIL Comparison of energies of truncated wave
functions with other variational calculations.

Authors

This work
FS
This work
FS
SH'
This work
SH
FS
This work
FS
SH
This work
FS
SH
SH
This work
SH
This work
This work
All 8+D, this work

sjd 1 im it, this work

spdfg limit, this work

Number
of terms

2

2

15
15
15
20
20
20
32
32
31
52
52

57
236
107
300
650

639

Energy

—14.616 770
-14.616 837
—14.655 526
—14.661 587
-14.661 73
-14.658 319
—14.663 09
—14.663 494
-14.660 735
—14.665 146
-14.665 31
-14 ~ 663 458
—14.665 870
—14.666 06
—14.666 32
—14.666 322 '
—14.666 547
-14.666 549
-14.666 902
—14.662 857
-14,663 241{20)'
-14.665 445
—14.665 567{11)
-14.666 750
—14.666 970{30)

Fx'oese Fischer and Saxena, Bef. 9.
b Sims and Hagstrom, Ref. 42.

At this stage our results reflect basis-set incomplete-
ness,

At this stage Sims and Hagstrom's results reflect
bas is-set incompleteness.

Extrapolated value.

the first 200 terms or so. From this point the
convergence is spoiled by basis-set incomplete-
ness. Even so, it is clear that CI converges much

more rapidly than anyone expected. ~ It now re-
mains to be seen if the work of Sims and Hagstrom4
and that of Froese Fischer and Saxena' can prac-
tically be extended towards increased accuracy. "

In Table XIII are given the overla, ps between
our final wave function and several invariant por-
tions of it. These overlaps will probably not be
very much affected by increased accuracy in the
wave function. From the relationship between
the overlap and error bounds to expectation val-
ues" one can appreciate how these error bounds
are affected by systematic truncations such as
are found in simplified models for atomic cal-
culations. A detailed description of the wave
function is given elsewhere.

A. Pair energies

Pair energies in general are of interest inasmuch
as they are invariant quantities for given refer-



ACCURATE DETERMINATION OF THE Be TOTAL ELECTRONIC. . 197S

TABLE XIII. Overlap between 650-term wave function
and several invariant portions of it.

add up exactly to the variational upper-bound
energy.

Invar iant
Number Overlap

of terms (&&10 )
B. How to improve standard CI upper bounds

Reference configuration
(ls) (2P)
Other two-excitations (& shell)
I shell, 'S(1s2s)
I shell, 3S(1s2s)
Two-excitations (& shell)
One-exc itations
Three-exc itations
Four-excitations

1
1

90
112

71
103

8
147
117

908 750
86 979

2063
237
206

1510
47
59

147

Certainly not an invariant, but it is singled out here
because of its importance.

One possibility is to use considerably larger
STO sets and to attempt to reduce the size of the
orbital basis and of the CI expansion by means
of energy-optimized spin orbitals. " Another pos-
sibility is to use radial functions other than
STO's"; in this context what is of interest is im-
proved asymptotic convergence. One might also
consider CI-Hylleraas' wave functions with orthog-
onal orbitals. The important issue, however,
is hom to improve CI results; this is discussed
in Sec. IV D.

ence orbitals. Symmetry-adapted pair energies"
seem to be of even more interest because they
add up to the correlation energy very closely, to
within 1% in the present ease, as shown in Table
XIV. Froese Fiseher and Saxena' have defined
symmetry-adapted pair energies, taking into
account near-degeneracy effects. Their pair
energies add up to NeA' computed corxelation
energy to within 0.001 jo for a w'ave function which
accounts for almost 99/0 of the correlation ener-
gy. If this nota, ble result is maintained for more
accurate wave functions [certainly by introducing
additional "pair energies, " such as e(2s, p, ), etc. ]
Froese Fischer and Saxena's pair energies might
mell constitute the much sought answer about hom

to do quantitative CI "by parts. "
In Table XIV we also give absolute pair ener-

gies, ' which are of special interest because they

TABLE XIV. Symmetry-adapted and absolute pair
energies from 650-term CI expansion.

Energy Symmetry Absolute

E(1s, 1s)
&(2s, 2s)
&(1s, 2s)
c(l s)
&(2s)

E (reference
configuration}

0.042 564
0.046 731

—0.006 016
~ ~ ~ a

0 ~ ~

-14.572 481

0.042 537
—0.046 560

0 ~ 005 416
0

+ 0.000 092

-14.572 481

-14.667 792 -14.666 902

' Included in &(1s, 1s).
Included in &(2s, 2s).
With HF orbitals at sPd level of approximation,

& (1s) + ~(2s) = 0.0001 phartree.
d Our 10s STO basis gives a self-consistent-field energy

Esca, = —14.573 02048, which is 2.7 p hartree above the
HF energy (Ref. 17).

DISCUSSIONS

The increased tempo and evolving structure
of modern CI methods as a powerful technique for
atomic and molecular calculations is nowhere
better reflected than in Schaefer's monograph. "
Other uses of accurate CI wave functions are
discussed by Bonham and Fink. " Shavitt" has
recently reviewed the status of general CI meth-
ods. Ne shall consider comparisons with pre-
vious works and perspectives for more accurate
results.

A. CI and MBPT

In Table XII we give an extrapolated sPd energy
limit believed to be accurate to within 11 p. har-
tree. Kelly' estimated the sPd energy at —14.6650
a.u. for Be, in remarkable agreement with our
more precise estimate. Our earlier estimate, '
E,~„=—14.66453, mas too high, because of the
reasons given in Sec. III. One simple and strong
test of CI and MBPT mould be to check the CI
spd energy-limit results (both finite-basis upper
bound and extrapolated energy) by carrying out
a discrete-basis' MBPT calculation with our pres-
ent basis set.

B. CI and numerical MCHF

Froese Fischer and Saxena, ' optimize diffeyent
bases for L, I, and %shells. These authors end
up with a 13sl6pl2d4f 3g basis of nonorthogonal
numerical orbitals. As far as the number of ba-
sis functions is concerned, standard CI converges
definitely faster than MCHF, and it is clear that
this is a shortcoming of MCHF, since a non-
orthogonal basis cannot be increased much further
without compromising numerical accuracy. On
the other hand, MCHF eonverges much faster
than standard CI with regard to the number of
configurations (see Table XH). This does not
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constitute a severe handicap for standard CI, how-
ever, since considerably larger Hamiltonian
matrices a,re currently being handled' with stan-
dard methods.

The MCHF energy is 880 p, hartree above our
computed 10s9P8d7f 5g3h li standard CI upper
bound and 1100 p. hartree above our estimated
sPdf g energy limit (see Table XII). Nevertheless,
Froese Fischer and Saxena' state that in CI "the
effect of a finite basis is difficult to analyze, "
whereas their numerical method "has an accuracy
which, to a large extent, is independent of the
nature of the solution. " A general assessment
of the potential a.ccuracy of MCHF seems to be
premature at this time.

C. CI and CI-Hylleraas

It is likely that for Be, CI-Hylleraas expan-
sions'~ converge much faster than standard CI
expansions (see Table XIII). On the other hand,
patterns of energy convergence in CI-Hylleraas
calculations have not yet been recognized, and,
as a consequence, it is difficult to assess con-
vergence and uncertainties. It is not clear whether
CI-Hylleraas is more economical than CI for Be,
for present or higher levels of accuracy. An

approach that expl. oits the advantages of both stan-
dard CI and CI-Hylleraas methods should give
better results than either method. It might con-
sist of a CI-Hylleraas expansion based on oxtIEog-
onal one-electron functions including the HF
configuration. Even so, the feasibility of this
program for N&10 seems questionable. " If CI-
Hylleraas can be pushed towards convergence, it
will provide the best wave functions for expecta-
tion and transition values, while CI will provide
accurate nonrelativistic energies to be used in
concomitant error-bound calculations based on
bounds for the overlap. "

D. Perspectives for more accurate results

For closed-shell atomic states it might be pos-
sible to reduce the uncertainty in the energy by
another order of magnitude, well below 1 cm ',
with methods that are presently available.

Our main source of uncertainty is in the esti-
mate of the STO truncation error by means of
costly studies of patterns of convergence. " The
(L+I +E)-sheLL part of these can be largely sim-
plified" if one solves the exact two-electron pair
equations, "'"which should be achievable with

an accuracy of better than 0.1 cm ',"using vari-
ational"'" r, , expansions and recent integral
evaluation procedures" of Sims and Hagstrom.
It should be stressed that such calculations have
not been attempted yet. Note also that we are
thinking in terms of borrowing pair-equation re-
sults to improve CI results, inverting one of the
proposals" made by Sinanoglu 14 years ago."
The estimate of the energy difference between
the truncated and full CI can be improved by doing
l.arger CI calcul. ations and using Shavitt's meth-
ods."

E. Conclus&ons

We have determined the nonr e lativistic energy
of the Be ground state with an uncertainty of 2

ppm. The relativistic and radiative energy cor-
rection is predicted to within 1.5%, and it agrees
remarkably well with an ab initio estimate which
makes explicit use of the relativistic Hamiltonian.
It is clear that meaningful numerical tests of
the relativistic many-electron Hamiltonian for
small atoms are at hand as Musher hoped for."

Purists may not like the empirical nature of
our calculations. The error bounds to our re-
sults, however, are based on empirical extra-
polations, much in the same spirit used by ex-
perimentalists in determining the uncertainties
of their ionization potentials. "

As new computational methods make their en-
tries in electronic-structure calculations, it is
inevitable that there will continue to be interest
in "recovering" x percent of the empirical cor-
relation energy. Physically, however, that is of
no interest. Here we have detenu. ined the cor-
relation energy to less than 0.03% error.

Never before has CI been regarded as a power-
ful technique for atomic calculations of near-
spectroscopic accuracy. The present results may
constitute a turning point in this respect. One
must realize, however, that the conceptual sim-
plicity of CI is effective only with the help of
efficient and versatile computer codes which need
constant updating to keep abreast of new theoretical
ideas.
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