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Three-body problem of two-electron atoms*
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The Feshbach-Rubinow approximation, with a modification to take better account of screening, is first applied

to an illustrative one-dimensional problem. The same method is then used in realistic two-electron atoms to
obtain analytic expressions for the ground-state energy and wave function. Numerical results are presented to
show the improvement from earlier unmodified Feshbach-Rubinow calculations.

I. INTRODUCTION

We have recently applied' the Feshbach-Rubinow
(FR) approximation' to the three-body problem of
two-electron atomic systems, obtaining encourag-
ing results. In this approximation, it is assumed
at the outset that the three-body bound-state wave
function depends only on a single appropriately
chosen coordinate containing a few variational pa-
rameters. The problem then reduces to the solving
of a single second-order differential equation,
whose solutions are analytically known. In this
paper we show that within the framework of this
method, an improved choice of the coordinate can
be made to take better account of screening, yield-
ing a better estimate of the ground-state energy
than in Ref. 1. It is again possible to obtain ana-
lytic expressions for the energy and the wave func-
tion of the system.

Before doing the calculations for the realistic
case, we illustrate the method in a simple one-
dimensional model' of a "helium-like atom, " where
the three particles interact via zero-range inter-
particle potentials. This model cannot be solved
exactly, ' and several authors"' have recently ap-
plied different approximation techniques to esti-
mate its ground-state energy. In the FR approxi-

mation, the solutions turn out to be simple, and
the ground-state energy is lower than in other cal-
culations. Moreover, the choice of the FR coor-
dinate can be easily modified to yield a better esti-
mate of the energy, suggesting a similar improve-
ment in the realistic three-dimensional problem.
Section-II will be devoted to this illustrative model,
while in Sec. III we shall present the improved
version of the FR approximation for the realistic
case of two-electron atoms.

II. ONE-DIMENSIONAL MODEL

In the model one-dimensional "helium-like
atom, " the Hamiltonian is given by

It ' 8' 9'
H=—,+, -Ze'I5(x, )+5(X,)]2 m Bx Bx

+e'5(x, -x,) .

Here x, and x, are the distances of the two "elec-
trons" from the stationary "nucleus" of infinite
mass at the origin, m and -e are the mass and
charge of an electron, and ge is the charge of the
nucleus. Quite generally, the Schrodinger equation
may be exactly obtained by applying the variation
5(C ~H~C) =0, with the restriction that (4~4) is fin-
ite. With Hamiltonian (1), this gives

5 dx, dx, + —Ze'[5(x, ) +5(x,)] 4" +e'5(x, -x,)4' E4'~ =0. -
2m Bxg Bx2

(2)

Here the ranges of integration of the variables x
and x, are from -~ to ~. In our notation, parti-
cles 1 and 2 are electrons with coordinates x, and

x„and particle 3 is the nucleus with x, =0. In the
FR approximation it is assumed that the wave func-
tion 4 is a function of the single non-negative vari-
able R,

4 =4(R), R=2(r, +r, +qr, ).
Here r, is the interparticle distance between par-
ticles 2 and 3, i.e. , r, =~x,~, likewise r, = ~x, ~, and

r, = ~x, -x,~, while t) is a variational parameter.

Since we impose the condition that R) 0, it follows
from the geometry of the system that 1+q ~ 0. It
is now straightforward to change the independent
variables x, and x, in Eq. (2) to r, and R, and per-
form the r, integrations directly. On doing the
variation, one then gets the Schrodinger-like equa-
tion

2m ~ R dR R 1+&q'+2g

(@+2)E
(t) +1)(1+—,

' g'+ ~ q)
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If we now make the transformation 4 (R}=R '~'u,

the equation for u reduces to the usual radial
Coulomb equation with an effective centrifugal
term corresponding to l =--,', whose solutions are
analytically known. In atomic units of me'/I', the
ground-state energy is

1+q (Z —4q --,')'
1+-,' q 1+—,

'
q + —,

' g»

and the ground-state unnormalized' wave function
ls

1 1 »

e.(R)=exp -2—.. . , a=, . (5)
A Z —4q —4

g 1+~ q+ —'q ' nm

For a given Z, Eo of Eq. (5) should be minimized

by varying q. For Z =2, we find that the optimum

q is -0.1585, yielding E0=-3.136 in a.u. This is
lower than the HF result' of -3.083, and is slightly
better than the estimate of Kiang and Niegawa, '
which was -3.105. Note that if we put q =0 in Eq.
(5), we obtain Eo =-(Z —~)', which is just the one-
parameter variational result. ' A nonzero value of

q takes account of interelectronic correlations in

the wave function, yielding better results.
We shall now improve the method by modifying

the choice of the variable R on which the wave

function depends. Note from Eq. (3) that the co-
ordinates of the two electrons entered with equal
weight in the wave function. However, for those
electronic configurations of the system in which
the two electrons are at unequal distances from the
nucleus, the outer electron should experience a
smaller effective charge than the inner one due to
shielding. This would suggest that the FR method
may be modified by defining a new variable R by

R = ,'(ar-, +r, +qr), r, vr

where r =r„r, =r, if ry &r» and vice versa. Now

there are two variational parameters n and q in
the calculation, and the conditions n+q &0 and
1 +q & 0 must be obeyed for R & 0. Note that

ar, +r = —,'(a+1)(r, +r,) + '-(a —l)fr, —r, j,
and for the special case when r, =r„we keep the
variable R continuous by defining it as

R = [ (a+1)(r, +r,)+qr, ], r, =r, .
As before, starting from Eq. (2), and assuming
that the three-body wave function is only a function
of the continuous variable R, a Schrodinger-like
equation may be derived in an analogous manner.
This equation is

1 y@ e' [Z —(a+ q)/2(1+ a)](1+a)(2q + 1+a)
2m dR' R dR R (1+a)(1+a')+q(1+2a+3a')+4aq'+2q'

4E (1 + a +q)
(1+a)(1+a') +q(1+2a+3a') +4aq'+2q' , 4. 9

For a =1, this reduces to the earlier Eq. (4). Just a,s before, the solution is obtained analytically, and
the ground-state energy is given by

(1+a)'(1+ a + 2q)'[Z —(a+ q}/2(1+ a)] '
2(l+a+q}[(1+a)(1+a')+q(1+2a+3a')+4aq'+2q'] '

For a given Z, this expression is minimized by
varying the parameters ~ and q. In case of Z =2,
we find the optimum values to be z =0.8666, q
= -0.1079, and the corresponding E0=-3.1481 in

a.u. The modification of the FR method proposed
here has thus further lowered the ground-state en-
ergy by 0.012 a.u. We now proceed to incorporate
this modification in realistic two-electron atomic
systems.

III. TWO-ELECTRON ATOMIC PROBLEM

For simplicity, we assume the nucleus to be of
infinite mass and stationary at the origin. Desig-

nating the electron coordinates by xl and x„ the
Hamiltonian in this case is

h' », 1 1 e'
H = — (V, +V', ) -Ze' —+ —+

In order to derive the FR equations, one proceeds
exactly as in Sec. II, and defines the scalar vari-
ables r, =)x,(, r, =[x,), andr, =(x, —x,(. The vari-
ational equation analogous to (2) in terms of r„r„
and r~ is now given by

dr, dr, dr rrg, + +2 +

rl +r3 —r» 9+ 9+ 8 1 1
+ + —-Ze' —+ —-E 4'5 =0. (12)rr, ar, ar J r, r, r,



TABLE I. Ground-state energy ~ of He-like atoms.

Two-
electron
system

P rev Kous

calculation " Present calculation c
Best

estimate d

of —Eo

H

He
Li+

Be++

0.5079
2.8896
7.2668

13.6429

0.6894
0.8931
0.9340
0.9522

-0.1735
-0.1102
-0.0767
-0.0587

0.5206
2.8983
7.2748

13.6505

0.5278
2.9037
7.2799

13.6556

~ The energy is given in a.u.
Reference 1.
The optimum values of e and g which mihimize Eo of Eq. (14) are shown,
Reference 8.

In Ref. 1, the usual FR approximation was made
by assuming that the wave function is dependent
only on a single non-negative variable R, as de-
fined by Eq. (3). In this section, we first give the
new differential equation that is obtained by the
modified choice of the coordinate R as defined by
Eqs. (7) and (8). The main steps of the derivation
are given in the Appendix. By writing u =A'~'4 (R),
the Schrodinger-like equation that we get is

1+g'+2q' n d'u
2m 4 4 dR' 4R'

where P, q „s, and t are R-independent parame-
ters, given completely in terms of the variational
parameters ~ and q, and are defined in the Appen-
dix. As in Ref. 1, this is again the wave equation
of a particle in a Coulomb potential with effective
orbital momentum 3 =~, and the solutions are
known analytically. For the special case with
~ =1, a little algebra will show that Eq. (13) re-
duces to Eq. (10) of Ref. 1. The ground-state en-
ergy is now given by

For a given Z, E, is minimized with respect to the
parameters ot and g& and the corresponding re-
sults for He-like atomic systems are displayed in
Table I, For comparison, we also show in the
table the results obtained in Ref. 1 where n = j.,
and the best available results' from extensive vari-
ational calculations. It should be mentioned that
our formalism can be easily modified to take ac-
count of the motion of the nucleus, but in Table I
all values of E„ including those in the last col-
umn, are with the assumption that the nuclear
mass is infinite. From Table I we note that in
every case except H, the best variational esti-
mate for E, is lower than our Iesult by about
0.005 a.u. , while for H this difference is 0.007
a.u. The modified FR method that we have formu-
lated here has the merit of yielding simple analytic
expressions for the energy and the wave function
of two-electron atomic systems, but cannot com-
pete in accuracy with elaborate variational calcu-
lations. The numerical results obtained here
could have been obtained more directly, of course,
by choosing a trial wave function of an exponential
form ln the variable ff = p(~r) +r( "K3)~ Our paper
shows that for the variable chosen. . the exponential
is the optimum functional form for Coulomb poten-
tials.

and the unnormalized ground-state wave function
ls

8(Zs - I)/5 ft
(1+u'+2q')p+t)q a

(15)
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APPENDIX

We summarize here the steps to obtain Eq (13). Let. A, R, =r and2R, =r, be the new variables. Then,
since 4 is a function of A only, the integrations in Eq. (12) over the other variables (A„R,) may be per-
formed. The region r, &r, need only be considered as C and the various terms in Eq. (12) are symmetric
in r, and r, . Denoting half of the total volume element by J (dr), we have
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d&3&P'F3

zR/(x+f)f) t.2R -().-)& 3/(+ 8)
dA dA~

(2R-(~+«)sg/(«+ n)

2R/(1, +e+ 2q) f2R-(1-0{)B ]/(a+ q)
dA3+ dR2 dR,

2R/(y+ Of) pR (&+o)R ]/ g

(Al)

64 2(1i +q)'[2-(1+ a+/)(l - 5a- 4q)]+/(1+ a)(1+ a+ 2n) -3(a+))}( +a}'-{1+a}'
1S (1 + a)3(a +q) 3(1 + a + 2)))"

ough lengthY manipulation ~teide the following f()

1 3

(A2)

+ —dr = s R'dR,

g g4dg

Q' = 256 2(1+a+q}'[2(l+ a+ a') —q(l —a)] —2(1+a)(1+a +q)(1+a + 2@ +@') —(1+a)'(2+3a + 40)
15 (1 + a)3(a +q) (1 + a + 2q)

16 2(l +a +q)'[5(a +q) —1] —2q'+q(1 —a)'+ 3{1—a')
3 (1+a}'{a+q)'{1+a +2@)'

16 4(a+q)(l+a+q)'+(1+a)(1+a+2')
3 (1+a)'(a+q)'(1+a+2@)'

(AV)

(A8)

Using these results and performing the variation indicated in Eq. (12) leads to the following differential
equation for 4:

1+~ +2@, q 1 d ~6% e
2m 4 4 A' dR dA

—P+ —q —,—R' —(Zs —f) —C = pE4.B

This reduces to E(l. (13) of the text on making the substitution u =R' C .
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