PHYSICAL REVIEW A

VOLUME 14, NUMBER 6

DECEMBER 1976

Algebraic approximation in many-body perturbation theory

Stephen Wilson™® and David M. Silver
Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20810
(Received 7 June 1976)

Many-body perturbation theory is developed within the algebraic approximation, i.e., parametrization of state
functions by expansion in a finite basis set. This considerably extends the applicability of the theory to
molecules, allowing all two-, three-, and four-body contributions to the energy to be evaluated through third
order. Within this context, a comparison is presented between perturbation calculations and previously
reported configuration-interaction calculations which employed the same basis sets. The [2/1] Padé
approximants to the energy are constructed and upper bounds to the energy expectation values are
determined. Two zeroth-order Hamiltonians are used, and the convergence of the resulting perturbation series
is compared. Both of these perturbation expansions yield Padé approximants to the energy which are within
0.9% of the corresponding configuration-interaction results. The variation-perturbation upper bounds for the
energy are all within 3.2% of the corresponding configuration-interaction bounds. Considering this agreement
and the tractability of the diagrammatic perturbative scheme, it appears that the perturbation expansion is

highly competitive.

I. INTRODUCTION

The determination of the electronic structure
of atoms and molecules containing N electrons
involves the evaluation of an appropriate eigen-
value and eigenfunction of a semibounded self-
adjoint Hamiltonian operator 3¢ in Hilbert space.
A tractable scheme for solving such equations
is the algebraic approximation in which eigen-
functions are parametrized by expansion in a
finite set of functions. Differential equations
thus become algebraic equations for expansion
coefficients. The algebraic approximation re-
sults in the restriction of the domain of the op-
erator 3¢ to a finite-dimensional subspace S of
Hilbert space. The algebraic approximation may
be implemented by defining a suitable orthonor-
mal basis set of M(>N) one-electron spin orbitals
and constructing all unique N-electron determin-
ants | u) using the M one-electron functions. The
number of unique determinants that can be formed
ism=(%), and n is the dimension of the subspace
S spanned by the set of determinants. The alge-
braic approximation restricts the domain of 3¢ to
this n-dimensional subspace.

Within the algebraic approximation, the Schrb-
dinger equation may, in principle, be solved by
the method of configuration interaction. The wave
function is expressed as a superposition of con-
figurations | u) with linear coefficients Cyu, and
the optimal expansion coefficients determined by
the variation principle. In practice, difficulties
arise in setting up and solving secular equations
of high order. Thus, only a small subset of the
| u) is usually employed in the expansion.

Diagrammatic many-body perturbation theory!:?
may also be formulated within the algebraic ap-
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proximation. Thus the domain of the perturbation
theory operators is restricted to the n-dimension-
al space spanned by the | 1) and consequently the
perturbation-theory wave function is generated in
terms of an n-dimensional representation. The
results of many-body perturbation theory, when
carried through infinite order, are identical to
those of configuration interaction if the same
basis set is used. However, the perturbation-
theory expansions must be truncated at some
finite order n, and in this case, the degree of
agreement with the configuration interaction re-
sult is a measure of the convergence of the per-
turbation series through nth order.

The primary purpose of this work is to demon-
strate that full third-order many-body pertur-
bative energy calculations can produce results
that are within a few percent of singly and doubly
excited configuration-interaction results, when
each is performed within the same basis set. This
has not been previously demonstrated and hence
should provide some new insight into the quality
of the perturbation expansions. The choice of an
atomic or molecular test system is immaterial
except that it must be a convenient, nontrivial
system where configuration-interactionresultsare
available. The object is to compare the pertur-
bative results with the singly and doubly excited
configuration-interaction limit, and not neces-
sarily to attempt to find a more accurate energy
value for the system than that obtained in previous
studies. Therefore, in the present work, third-
order perturbative calculations are compared with
various configuration-interaction results of Barr
and Davidson® for the ground S state of the neon
atom. More accurate calculations exist for neon;
however, the results of Barr and Davidson are
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chosen because they report various configuration-
interaction calculations for each of several basis
sets, which can each be employed for the pertur-
bation calculations. The other results which have
been reported for neon*”® are not directly com-
parable with the present work.

The many-body perturbation theory!'? provides
a convenient diagrammatic formulation of Ray-
leigh-Schriddinger perturbation theory. The di-
agrams not only offer a pictorial description of
correlation effects but also give rise to an ex-
tremely efficient algorithm for the numerical de-
termination of the terms in the many-body ex-
pansion. This is particularly true when the alge-
braic approximation is invoked, and allows the
range of applicability to be considerably extended
for molecules.

Many-body perturbation calculations, using the
numerical solution of the Hartree-Fock equations,
have been limited to atoms” and small hydrides,®
in which the relatively light hydrogen atoms are
treated as further perturbations. Within the alge-
braic approximation, many-body calculations have
been reported for atoms,® the hydrogen molecule'®
and some other diatomic molecules.!! These cal-
culations have all been restricted to the calculation
of two-body contributions through third order and,
in some cases, a partial or approximate evaluation
of both many-body contributions and higher-order
terms. The model calculations reported here for
the Ne atom are complete through third order within
the space spanned by the various basis sets. All
two-, three-, and four-body terms are rigorously
evaluated. This also allows the determination of
an upper bound by substituting the truncated many-
body wave function in the Rayleigh quotient.

Section II contains a description of the many-
body perturbation theory and its relationship to the
method of configuration interaction within the al-
gebraic approximation. The many-body pertur-
bative wave function and the determination of up-
per bounds are described. In Sec. III, the Ne-
atom calculations are described. A comparison
of two-body perturbative and certain pair-restrict-
ed configuration-interaction calculations is pre-
sented first. This comparison is presented be-
cause the two-body results are obtained simul-
taneously as a by-product of the full many-body
calculations, because pair configuration-inter-
action calculations are quite common, and be-
cause a pair-by-pair analysis can be made. How-
ever, this comparison is only incidental and sub-
ordinate to the further comparison that is pre-
sented between the full many-body results and the
unrestricted singly and doubly excited configura-
tion-interaction results. A short discussion is
given in Sec. IV.

II. THEORETICAL CONSIDERATIONS

A. Effective Hamiltonian in a finite subspace

Let S denote the subspace of N-electron Hilbert
space spanned by the orthonormal set {| u)} of
N-electron functions which can be constructed
from a given set of one-electron basis functions.
The projector onto this subspace is

Is:zn:i U'><U‘|3
p=0

(1)
Is‘y>=1]}>, |V>€s’

and the effective Hamiltonian operator’? in S is

¢ =I¢3¢Is. Carets are used to identify operators
which have been outer projected onto S. The elec-
tronic Hamiltonian is

5= h(p)+Y v(p,q), @)
4 p<q

in which p and ¢ denote electronic coordinates.
The one-electron operator 2 is a sum of the elec-
tronic kinetic energy and nuclear-electronic at-
traction, while v is the two-electron Coulomb
repulsion term. The Schrddinger equation, within
the algebraic approximation, has the form #| ¢)
=Ely); |ES.

The solutions of the effective Schr¥dinger equa-
tion may be written as a superposition of configur-
ations

|w>=i‘,culu>, lwes, ®3)
B=0

where the expansion coefficients may be deter-
mined in principle by the solution of a secular
equation. The method of configuration interaction
essentially entails preparing and diagonalizing the
matrix { 1| %] v) to find its lowest eigenvalue E.

In practice, the expansion (3) contains many terms
and some arbitrary criterion has to be invoked to
truncate it.

The many-body perturbation expansion may be
related to the method of configuration interaction
as follows. Let P denote the projector onto some
model or reference space Sp; let @ denote the
projector onto the orthogonal complement S,; and
then

Is=P+Q; S=Sp®S,. (4)

Substituting Eq. (4) into 3| ¢) =E | ¢), multiplying
from the left by P or @ and eliminating @|y) from
the two resulting equations, yields

Glx)=Elx); |Ix)=Ply); Ix)ESs, (5)
with the reference operator
G=P[3P+PIQ(E-Q3 Q) *Qx|P. (6)



14 ALGEBRAIC APPROXIMATION IN MANY-BODY... 1951

Although the eigenfunctions of the reference op-
erator G are in the model space Sp of dimension
d, the d eigenvalues of G are coincident with d of
the eigenvalues of 7. In the many-body pertur-
bation theory, S, is taken to be one-dimensional
and to consist of the lowest-energy configuration
| 0), in the set{|u)}. The corresponding lowest
eigenvalue E is identical to that obtained by divid-
ing the Hamiltonian into two parts, 3¢ =%, + %,
expanding the inverse operator in Eq. (6), and
rearranging terms.?

B. Closed-shell matrix Hartree-Fock reference functions

Within the algebraic approximation, the integro-
differential Hartree-Fock equations become a set
of algebraic equations for the orbital expansion
coefficients.!* The N-electron, closed-shell mod-
el wave function is | K) =det| ¢,(1) ¢,(2) ... ¢,(N) I,
where the ¢’s are spin orbitals, which within the
algebraic approximation are expanded in a finite
set of basis functions. The ket | K) is an eigen-
function of the model (i.e., matrix Hartree-Fock)
Hamiltonian

jcmodel =IS (Zh(.b)*z VN(P)>IS ’ (7)
4 »

where V¥ is the one-electron self-consistent po-
tential in S.

n

m=3 [ ¢, 00,@ ., ®
where

0=[1-(12)]r3} 9)

and (12) permutes the coordinates of electrons 1
and 2. Thus

in X
Ronoaa|[ K) =85 |K); K20; 8= ¢  (10)
k

where ¢, is the orbital energy corresponding to
Pr-

The reference state | 0) is the eigenfunction
having the lowest eigenvalue §,=E,. The functions
@; in | 0) are the occupied orbitals or hole states,
and are identified with the set of indices {ij&. . .};
the remaining functions are the unoccupied, ex-
cited orbitals, or particle states, and are iden-
tified with indices {abc...}. Any determinant | K)
is related to | 0) by the number of occupied or-
bitals ¢;... that are replaced by unoccupied or-
bitals ¢,... on changing | 0) into | K). If this
number is ¢, | K) is a ¢-tuple excitation. The
number of distinct ¢-tuple excitations is (¥) (¥7¥)
where M is the number of spin orbitals in the basis
set. Of course summing this product over ¢ gives

(4) =n.

C. Diagrammatic perturbation theory

The many-body perturbation expansion is ob-
tained from Egs. (5) and (6) using the projectors

P=10)(0l; Q=3 IK)(KI. (1)
K=1

In general, 3?30 must have the form
SIKY(K| T|K){K|, where T is arbitrary. There
are an infinite number of possibilities of which
two are considered here.

(a) The model Hamiltonian is defined by

‘rkoaghmodel; jél =IS(Z U([), q) - ZVN(I))> IS . (12)
p<q ?»

Clearly 3,04 Of Eq. (7) is diagonal in S since the

| K) satisfy Eq. (10). The perturbative expansion

for E =(0| G| 0) can be rearranged to form a power

series in §¢,:

E-3E,, (13)
n=0

where the nth-order energy term E, is proportion-

al to the nth power of matrix elements over iC,.
The perturbation series of Eq. (13) has a dia-

grammatic representation exclusively in terms

of linked graphs.! The first-order contribution

E, is given in Fig. 1 and has the value

E,=(0lse,[ 0) =33 Gjlolij) . (14)

By using the operator O defined in Eq. (9), only
one diagram from a given set of diagrams related
by electron exchange is required. The bracket
notation has the usual meaning, i.e.,

(palolvs) = [ar, [ar,03(1) 97204, 9,@).

(15)

The use of self-consistent matrix Hartree-Fock
orbitals gives rise to an exact cancellation of all
single-particle insertions other than in E, as

shown, diagrammatically in Fig. 2. The ensuing

FIG. 1. First-order energy corrections. X repre-
sents — V¥ , where V¥ is the Hartree- Fock potential.
Interaction lines represent the operator O defined in
Eq. (9).
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FIG. 2. Single-particle insertions which cancel when
the Hartree-Fock model is used in zeroth order. Inter-
action lines represent the operator O defined in Eq. (9).

simplification is significant for high-order terms,
but is already evident for second order where, as
shown in Fig. 3, four out of five diagrams vanish

leaving

1 .. ..
E,;=3) 2 (ijl0lab){abl 0lj) /D,y (16)
ij ab
with the denominator
Dijap=€4+€j —€4—€, . (17)

The third-order graphs are shown in Fig. 4. The
first of these, the particle-particle graph, Fig.

4 A, arises exclusively from two-body interac-
tions:

FIG. 3. Second-order energy diagrams. Interaction
lines represent the operator O defined in Eq. (9).

A B

A s
i - i b i

cd K Ac K

FIG. 4. Third-order energy diagrams. Interaction
lines represent the operator O defined in Eq. (9). Hole
lines are labeled i j,k,l; particle lines are labeled a,
b,c,d. The number of distinct hole lines determine the
number of interacting bodies described by the diagram.
A is the particle-particle (pp) diagram, B is the hole-
particle (hp) diagram, and C is the hole-hole (hh) dia-
gram.

E{(pp) =20 X (ijl 0l ab)<abl 0] ca)

ij abed

X(cd| Ol 4j)/Dy;op D;joq - (18)
Only two occupied orbitals are involved in this

contribution. The hole-particle graph, Fig. 4 B,
has both two-body and three-body components

E 4 (hp) =—ZZ (ij| Ol ab) kal Olic)

ijk abe
X{cb| O Bj) /D;jap Dimpe - (19)

Three-body terms correspond to the case where

i, j, and k are distinct, whereas the two-body con-
tribution arises when ¢ =k. The hole-hole graph,
Fig. 4 C , involves two-, three-, or four-body
interactions depending on the-coincidence of the
hole indices:

1 g
Ey(hh) =533 (ijl 0l ab)
ikl ab
X( k1| 0| ij){ab] O| kL) /D; ;45 D1y -

(20)
Two-body terms arise when i =k andj=[ or i =1
and j =k, while for three-body terms i =k, i =1,
j =k orj=1l. Four-body terms are those for which
i,j, k, 1 are all distinct.
(b) The shifted Hamiltonian is defined by

n
JA(:{)E:’:cshifted'_"-’?z:model"'Z:|]{><I{|§CllI{><I(| . (21)
K=0
Hence,

fey= 31K (K5l K3 (K
K=0

. (22)
fi= Y TKCKIRIL)(L].

K=L=0

The following relations follow immediately,
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E=Y E}; E}=E,+E,; E}=0. (23)
n=0

Obviously, the infinite-order result does not de-
pend on the choice of JACO. By using a second di-
vision of 3¢, a qualitative measure of the con-
vergence of the series is obtained. The shifted
diagrammatic expansion is the same as that out-
lined above except that (i) all diagonal scattering
is excluded and (ii) the denominator factors D
are “shifted”:

ijab

Djjap =€; +€; —€, — €, =(ij| 0l ij) =(ab| O| ab)
—(ai|0lia)-(bi|O|ib)
—(aj| Olja) ~(bj|Oljb). (24)

Two-, three-, and four-body graphs arise as
discussed in the preceding section. However, the
two-body hole-hole graphs vanish since these
diagrams all arise from diagonal interactions.

It should be noted that both perturbation schemes
are defined with respect to single-determinant
states | K). Although the individual determinants
may not necessarily be eigenfunctions of the spin
or orbital angular momentum operators of inter-
est, the summations over K are not truncated
and therefore range over all permitted values.
Hence, the correct linear combination of deter-
minants is always obtained corresponding to the
use of proper angular momentum eigenfunctions.
This choice of reference states | K) causes the
specifically defined energy denominators of Eqgs.
(17) and (24) to accompany the perturbation
schemes. Of course, in infinite order, this choice
is equivalent to choosing multideterminantal ang-
ular momentum eigenfunctions for | K), assuming
the perturbation series are convergent.

D. Many-body perturbative wave function.
Upper bounds to the energy.
The many-body perturbation theory generates a
wave function having the form

[ =3" 19w s (25)

where the mth-order correction lzpm) is propor-
tional to the mth power of matrix elements over
#,, and | y,) is the reference state | 0). The
diagrammatic representation of |}) contains only
linked graphs: contributions through second order
are given in Fig. 6. Truncation of this infinite
series for Izp) after n terms produces an approxi-
mate wave-function |&®,). In general, the func-
tion | ,) is not normalized, although a normali-
zation factor can be introduced.’® Inserting | &,)
into the Rayleigh quotient yields a variational
upper bound for the eigenvalue'®

bes bV

FIG. 5. Diagrammatic representation of Eq. (27).

Eexact SEvg =(®,|R|3,)/A®,|®,). (26)

In the present work, the wave function is trun-
cated at first-order |®,). Since this wave func-
tion has a simple form, an additional variational
parameter y is easily incorporated:

&) =10)+yly), @7

which is given the diagrammatic representation
shown in Fig. 5. After some manipulation, Eq.
(26) becomes

E exact sE‘veu' ('y) =E0+E1
+[@y =) Eo+ v Eq ] /(14 %A ,,)
(28)

where the overlap term A, is

An=%zz (ij| 0l ab) (abl O] ij) /D%y, . (29)
ij ab
A different wave function corresponds to each

perturbation scheme. Hence there is a |<I>1) cor-
responding to the model scheme and another |d>'1>
corresponding to the shifted perturbation proced-
ure. The optimal value of the parameter y is
obtained from the variation principle

7 optimal :Ahl[i(ﬁz"'Au)l/z‘g]; e =%[1— (Ea/Ez)]
(30)

III. A STUDY OF THE NEON ATOM
A. Basis sets

Three different one-electron basis sets were
used. These sets have been used previously for
detailed configuration-interaction studies.® The
real normalized Slater basis functions are given
in Table I, together with the corresponding ma-
trix Hartree-Fock energies and values of n. Set
A is a “double-zeta” basis,” Set Bis a “Hartree-
Fock” basis,'® and Set C is composed of Set A
plus additional s, p, and d functions.® Set B gives
the lowest matrix Hartree-Fock energy while Set
C gives the best description of the correlation of
the electrons. Set C includes d functions and these
have an important effect in describing electron
correlation. These basis sets are quite modest
in size and are not flexible enough to yield high
absolute accuracy. However, they are adequate
for comparitive purposes. The values of 5, the
dimension of the space S for each of the basis sets
given in Table I, take no account of orthogonali-
ties. Spin and spatial symmetry orthogonalities
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TABLE 1. Basis sets of real normalized Slater functions for neon.

Basis Matrix Hartree-Fock 7, dimension
set Ref. energy (hartrees) Function Exponents of subspace S
A a —128.534 80 1s 8.9141, 12.3545 1.8x105

2s 2.1839, 3.4921
2p 2.0514, 4.6748
B b -128.547 01 1s 9.5735, 15.4496 2.5%108
2s 1.9550, 2.8462, 4.7746, 7.7131
2p 1.4700, 2.3717, 4.4545, 9.4550
C c —128.538 72 1s 8.9141, 12.3545 8.5x108
2s 2.1839, 3.4921, 8.9141
3s 2.1839
2p 2.0514, 4.6748, 12.3545
3d 4.6748

2 E. Clementi, J. Chem. Phys. 40, 1944 (1964).
b E. Clementi, C. C.J. Roothaan, and M. Yoshimine, Phys. Rev. 127, 1618 (1962).
¢T. L. Barr, and E. R. Davidson, Phys. Rev. A 1, 664 (1970).

greatly reduce the number of terms which have
to be included in a complete configuration inter-
action expansion for the ground state.

The use of matrix Hartree-Fock orbitals leads
to the cancellation of the class of diagrams shown
in Fig. 2 and eliminates the entry through third
order in the energy of any single excitation de-
terminant | K’), where K’ denotes the excitation
from an occupied orbital i to an excited orbital a.
The only determinants that can enter the pertur-

o fo t1 1

FIG. 6. Contributions to the many-body perturbative
wave function through second order where interaction
lines represent O defined in Eq. (9). Diagram A is
zeroth order, B-D are first order, and E-K are second
order. If X represents —V¥, where V¥ is the Hartree-
Fock potential, diagrams B and C cancel. Of the
second-order diagrams, E and F involve single-excita-
tions, G, H, and I involve doubly-excited states, J and
K involve triply-excited states, and L involves quadru-
ple excitations. Second-order diagrams which mutually
cancel are not given.

bation series through third order in the energy are
doubly excited states | K”), where K” denotes the
simultaneous excitation from two occupied or-
bitals ¢ and j to two excited orbitals a and b (de-
noted by ij~ab). In Fig. 7 the structure of the
configuration interaction matrix and its relation-
ship to the terms in the perturbation expansion

is illustrated. The number of possible double
excitations obtainable from the three basis sets
is ~2x10%, 15x10%, and 20x10° respectively;
however, spin and spatial orthogonalities reduce
these numbers to ~140, 925, and 1750.

B. Results of perturbation calculations

The energy contributions corresponding to the
diagrams of Figs. 3 and 4 and Eqgs. (14)-(20) are
given in Table II. Values of the overlap A,;, Eq.
(29), are also given. The relative importance of
the various components is evident.

Intra-pair contributions involve, exclusively, a
single pair of hole states and therefore represent
two-body effects. The intrapair diagonal terms
arise from diagrams having not only a single pair
of hole lines but also a single pair of particle
lines (i.e., diagonal scattering). When the zeroth-
order Hamiltonian is 3Cyqeq, all such diagonal
terms are identically zero. The intra-pair, non-
diagonal terms correspond to interactions be-
tween two states ij—ab and ij~cd both involving
excitations from the same #j pair.

The two-body terms, especially the diagonal
ones, make the major contribution to the energy
correction. Three- and four-body terms are as-

‘sociated with inter-pair interactions. Three-body

effects arise from inter-pair interactions involving
pairs with a common occupied orbital, for in-
stance, ij—ab and ik—~ac. I two pairs have no
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TABLE II. Components of the perturbation expansions for neon.?

Basis set® A
Py -~ N
3C0 JC model 3 shifted

B C

N

A A A
3Cmodel 3 shifted 3 model FCshifted

Intra-pair energies: diagonal terms (two-body)

E -0.137 14 —0.16512
Ej5(pp) +0.014 98 0.0
Ej5(hp) -0.05274 0.0
E§(hh) +0.014 87 0.0
Total —0.16003 -0.16512

E5(pp) +0.00093 +0.001 36
E5(hp) -0.000 29 -0.000 34
Total +0.000 64 +0.00102

E3(p) +0.02418  +0.03614
E3(hh) +0.00005  +0.00006
Total +0.02423  +0.03620

-0.17918 -0.20770 —0.25052 —0.290 56
+0.01289 0.0 +0.02111 0.0
—0.06001 0.0 -0.076 00 0.0
+0.02317 0.0 +0.02128 0.0
-0.20313 —-0.207 70 -0.28413 —0.290 56

Intra-pair interactions: nondiagonal terms (two-body)

+0.00790 +0.01088 +0.00578 +0.007 81
—0.01243 -0.017 57 —-0.00302 —-0.00394
—0.00453 —0.006 69 +0.00276 +0.00387

Inter-pair interactions between pairs having a common hole state (three body)

+0.03182 +0.046 22 +0.029 89 +0.043 48
+0.00011 +0.00012 +0.000 10 +0.000 11
+0.03192 +0.046 34 +0.029 99 +0.043 59

Inter-pair interactions between pairs having no common hole states (four body)

Ed(h) +0.00107  +0.00162
Overlap Ay; +0.01521 +0.02285

+0.001 45 +0.00201 +0.00158 +0.002 21
+0.023 29 +0.033 87 +0.021 20 +0.030 58

2 The energy terms are labelled with subscripts to denote order and superscripts to denote
number of interacting bodies. Energies are in hartrees.

b From Table I.

common orbital, ij~ab and kl~ab, then a four-
body inter-pair interaction arises. Although the

contribution from a given set ijk, or ijkl, may be
small the total sum of such many-body terms can

The convergence with the number of interacting
bodies needs to be examined with caution, how-
ever, since only contributions through third order
have been included in a given term E®. As higher

by no means be ignored, since the number of such orders are computed, additional contributions are

terms is in general large.
The convergence of the perturbation series is
displayed both as a function of number of inter-

acting bodies and of increasing order in Table III.

obtained for each b =>2. On the other hand, all
two-, three-, and four-body contributions to the
terms for a given order have been included and
the convergence by order is exact. For all three

TABLE III. Convergence of the perturbation series. 2

Basis
sgtb A R B R R c N
3Cy Fomodel R shifted FCmodel FCshifted Fmodel JCshifted
Convergence with increasing number of interacting bodies.

E! —-74.418 35 —128.53480 —74.50942 —-128.54701 ~74.47564 —128.53872
E? —54.275 82 -0.16410 —54.245 24 -0.21439 —54.344 44 —0.286 69
E’ +0.024 23 +0.036 20 +0.03192 +0.046 34 +0.029 99 +0.043 59
E* +0.001 07 +0.00162 +0.001 45 +0.00201 +0.00158 +0.002 21

Convergence with increasing order.

E, —74.41835 —128.53480 ~74.509 42 —-128.54701 -74.47564 —128.53872
E; -54.116 44 0.0 -54.037 59 0.0 -54.06308 0.0

E, -0.13714 -0.16512 -0.179 18 —0.20770 -0.25052 —0.290 56
E, +0.003 05 +0.038 85 +0.004 90 +0.04167 +0.00072 +0.049 67

3 The energy E™ is a sum of all m-body contributions through third order; E, is the nth-

order energy. Energies are in hartrees.
b From Table I.
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TABLE IV. Comparison of perturbation two-body pair energies and pair-excited configuration interaction energies for neon.?

Basis set?

Method

Configuration
interaction ¢

A
3C shifted

Perturbation theory

FCmodel

Configuration
interaction ¢

A
3C shifted

~

Perturbation theory
JCmodel

Configuration
interaction ©

FCshifted

A

Perturbation theory

JCmodel

-

-0.03170
-0.00398

—0.03164
-0.00399
-0.01285
—0.016 84
—0.008 29
-0.05261
-0.177 31
-0.238 21

-0.03159

-0.028 21
-0.00370
-0.006 21
-0.00991
-0.00514
—0.04702
-0.11345
-0.16561

-0.028 21
-0.00372
—0.006 31
—0.01003
—0.00514
—-0.04991
-0.12110
-0.176 15

—-0.028 16
-0.00371
—0.006 28
—0.009 99
-0.005 07
-0.048 41
—0.116 02
—0.169 50

-0.01197
-0.00181
-0.00189
—0.00370
-0.004 06
-0.04051
—0.096 07
-0.14064

-0.01197
-0.00181
-0.00192
-0.00373
-0.00406
-0.04305
-0.10128
-0.148 39

-0.01196
-0.00181
—0.00191
-0.00372
-0.00398
—0.04162
-0.098 10
-0.14370

1s-1s K shell

1s-2s

1s-2p
K-L interaction

-0.00398
-0.01279
-0.016 77
—0.008 23
-0.05123

-0.01266
—0.016 64
—0.008 38

2s-2s
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-0.050 29
—0.169 66
—0.228 33

2s-2p
2p-2p
L shell

—0.173 54
-0.23300

—0.276 67

—0.286 69

-0.20373 —0.281 36

-0.214 39

—0.156 31 —0.207 65

-0.16409

—0.159 38

Sum of pairs

2 Energies are in hartrees.

b From Table I.

¢T. L. Barr and E. R. Davidson, Phys. Rev. A 1, 644 (1970).

basis sets, the use of &, = moss gives more rapid
convergence.

C. Comparison of pair energies

The pair energies obtained from two-body per-
turbation calculations are compared with the pair-
excited configuration interaction results of Barr
and Davidson® in Table IV. Each calculation uses
the matrix Hartree-Fock orbitals for a particular
basis set and use the corresponding matrix Har-
tree-Fock energy as a reference for the energy
correction.

The perturbation result is obtained by restricting
the calculation to the inclusion of all two-body
components arising in second and third order
(Figs. 3 and 4) for a given orbital pair. The
1s — 1s and 2s —2s terms each consist of a single
spin-orbital pair, while the 1s —2s term consists
of a sum of the four corresponding component
spin-orbital pairs. Terms involving the 2p or-
bitals contain an additional sum over the spatial
components of this function. Only doubly excited
configurations enter the perturbation series
through third order.

The configuration-interaction pair excitation
energies were obtained® by performing a separ-
ate calculation for each orbital pair with a wave
function of the form

[ ;) =1 0) +3Ciali=ad + 3 Cypli=0)

+3Cija | ij=ab) . (31)
ab

The energies given in Table IV are the differences
between the eigenvalues corresponding to | ‘P:‘j>
and | 0). Equation (31) includes contributions from
single excitations i —~a and refers to orbital pairs
rather than spin-orbital pairs. The latter has no
consequence for the terms 1s - 1s and 2s - 2s.
For terms such as 1s — 2s having more than one
spin component, this includes some interactions
between different spin-orbital pairs; for example,
1sa, 1sB,2s@ and 1sa, 1sB, 2sa, 2sB: these are
three- and four-body contributions, respectively.

The present work is concerned only with a nu-
merical comparison of results obtained from the
above two definitions, although other definitions
of pair energies exist.'®

For a given basis set, the perturbation and con-
figuration-interaction pair results in Table IV are
in remarkable agreement for the 1s —1s, 1s -2s,
1s - 2p, and 2s —2s terms. Thus, the higher-
order effects and single excitations are negligible
for these pairs when compared to the two-body
third-order perturbation result. For the 2s - 2p
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and 2p - 2p terms the perturbation results are
consistently lower than configuration interaction
and the model scheme is closer to configuration
interaction than the shifted scheme. The inclusion
of the positive three- and four-body contributions
within an orbital pair must account for this differ-
ence.

The total “sum-of-pairs” energy is within 0.005
Hartrees for the model perturbation and pair con-
figuration-interaction schemes, the source of the
deviation arising within the treatment of the 2p
orbital. The shifted scheme gives a “sum-of-
pairs” energy that is another 0.005 Hartree lower
than the model scheme. Since none of these pair
calculations are bounded, the variation principle
cannot be invoked to choose one or another of
these results to be the best one. Indeed, in view
of the magnitude of many-body terms the “sum-
of-pairs” energy is not particularly useful. How-
ever pair analyses do provide a means of making
detailed comparisons of methods.

D. Comparison of many-body perturbation and configuration
interaction calculations

The basis sets of Table I have been used by Barr
and Davidson? to perform configuration-interac-
tion calculations, which they refer to as “total
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pair excitation block” (TPEB) calculations. It
should be noted that these calculations correspond
to the general configuration-interaction procedure,
Eq. (3), with the single restriction of including all
singly and doubly excited states. A comparison

of these calculations with the perturbation results
is given in Table V.

The two-body energy corrections overestimate
the configuration-interaction values by 14-239%.
The three- and four-body effects in third order
account for most of this difference and the total
third-order perturbation results are within 0.2-
5.5% of the configuration-interaction results.
Half the perturbation results overestimate and
the other half underestimate the configuration-
interaction values. The model scheme gives
closer agreement in each case.

It has been suggested® that the [n + 1/n] Padé
approximants form a more appropriate approxi-
mation to the energy expectation value than the
(2n + 1)th-order Taylor series, although both have
residual contributions of order 2n +2. From the
third-order expansion, the [2/1] Padé approxi-
mant may be written in terms of the energy coef-
ficients

E,

E[R/]=Eo+Es+ 1005 750y -

(32)

TABLE V. Comparison of full single- and double-excitation configuration-interaction
energy corrections for neon with many-body perturbation values, the [2/1] Padé approxi-

mants and the many-body upper bounds. 2

Basis set? A . B . R C .
3o FCmodel R snited 3C model 3C shifted FCmodel 3C shifted

Configuration interaction ¢ (single and double excitations)

(CI) -0.13356 —-0.17465 —0.247 60
Restricted perturbation (two-body)

E,+E} -0.159 38 -0.164 09 —0.20765 -0.214 39 —0.281 36 —0.286 69

(% CI) (119.3) (122.9) (118.9) (122.8) (113.6) (115.8)
Full many-body perturbation (two-, three-, and four-body)

E,+ E,4 -0.13408 —-0.126 27 -0.174 28 —0.166 04 -0.24979 —0.240 89

(% CI) (100.4) (94.5) (99.8) (95.1) (100.9) (97.3)
Padé approximant for many-body perturbation

E[2/1] -0.13415 -0.13367 -0.17441 -0.173 00 -0.24979 —-0.248 14

(% C1) (100.4) (100.1) (99.9) (99.1) (100.9) (100.2)
Many-body perturbative upper bound

Evar(y=1) -0.13207 -0.12345 -0.170 31 -0.160 60 -0.24461 —-0.23374

(% CI) (98.9) 92.4) (97.5) (92.0) (98.8) (94.4)
Optimized many-body perturbative upper bound

v optimal 0.964 38 0.79777 0.95282 0.81421 0.976 94 0.83577

Evar (y=o0pt) -0.13225 -0.13172 -0.17072 -0.169 11 —-0.24474 -0.24284

(% CI) (99.0) (98.6) 97.7) (96.8) (98.8) (98.1)

2 Energies are in hartrees.
b From Table I.

¢T. L. Barr and E. R. Davidson, Phys. Rev. A 1, 644 (1970).
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which has the form of a sum of a geometric series
and is, therefore, often referred!® to as the “ge-
ometric approximation.” However, this name
does not reflect the nature of the perturbation ex-
pansion since higher-order terms obtained by
expanding the denominator in Eq. (32) do not cor-
respond to higher-order terms in the perturbation
expansion.

The [2/1] Padé approximants to the energy ex-
pansion are within 0.9% of the configuration in-
teraction results. The use of this approximant
gives a significant change in the results obtained
for the shifted scheme, which has the effect of
bringing the model and shifted scheme in closer
agreement. This agreement is suggestive that
the result is independent of the particular splitting
of 3¢ chosen for the calculations and is a measure
of the rapid convergence of the perturbation ser-
ies.

Rigorous many-body upper bounds to the ex-
pectation value of the energy are also reported
in Table V. These were obtained by evaluating
the Rayleigh quotient as discussed in Sec. IID.
Results are given for both A =1 and the optimal
value given by Eq. (30). In all cases, the ® moge
scheme gives a result closer to the configuration
interaction number, and an optimal value of A
closer to one.

There are two sources of the deviation between
the many-body upper bounds and configuration
interaction results: (i) the inclusion of single-
excitation configurations in configuration interac-
tion; (ii) the inclusion of higher-order effects in
the configuration interaction expansion. However,
these effects are seen to be very small.

IV. DISCUSSION

In the present study, the evaluation within the
algebraic approximation of all diagrams in the
many-body perturbation series for the energy
through third order, including all two-, three-,
and four-body contributions, is discussed. The
absolute accuracy of the results obtained is de-
pendent upon the quality of the basis set employed.
The present model calculations are concerned with
the comparison of the method of configuration
interaction and many-body perturbation theory
when the same basis set is used in both schemes.

Two-body perturbation calculations and pair
configuration-interaction results are found to be
in good agreement. The analysis in terms of pair
energies permits a detailed comparison of these
methods. The major source of deviation in Table
IV arises from the inclusion of some three- and
four-body effects in the pair configuration-inter-
action calculation arising from the use of spatial
orbital configurations in the latter.

Three-body effects in many-body perturbation
theory have been discussed for atoms and mole-
cules.?! For nuclear matter, such components
have been estimated to have a magnitude of 3-6%
of the two-body energy.?® The inclusion of three-
and four-body contributions in the present work
changes the two-body correction by as much as
28%. Many-body terms are clearly important
for the correct evaluation of the energy and are
most probably equally important for other proper-
ties.

The [2/1] Padé approximants for the model and
shifted perturbation schemes have been found to
be in closer agreement with each other than the
corresponding Taylor series. Since the infinite-
order result is independent of the choice of zeroth-
order Hamiltonian, this suggests that the [n +1/n]
Padé approximant provides a more rapidly con-
vergent representation of the energy.

The inclusion of all many-body effects through
third order permits the determination of rigorous
upper bounds to the total energy. The agreement
of the many-body upper bounds with the singly and
doubly excited configuration-interaction results
to within 3% is demonstrated. The major source
of deviation is the inclusion of single-excitation
configurations in the configuration-interaction
calculations. If the perturbation series were car-

| | | | |
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FIG. 7. Relationship of configuration interaction
matrix to terms in the perturbation expansion. [0) de-
notes the ground state configuration; |K’), |K”), |[K''’),
and |K’**’) denote singly-, doubly-, triply-, and quad-
ruply-excited configurations. The figures indicate the
order in the perturbation series at which a given block
of the configuration-interaction matrix first contribute.
Thus, for example, matrix elements of the form
(K’ |3C| K"’y first arise in fourth order in the perturba-
tion expansion.
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ried through fifth order, this would correspond to
a second-order many-body wave function and
would include the effect of single, double, triple,
and quadruple excitations as shown in Fig. 6.

The shifted scheme arose in many-body per-
turbation theory as an attempt to include higher-
order diagonal diagrams in low-order terms
through denominator shifts. The shifted scheme
represents the case of a different splitting of i
which produces a better unperturbed energy re-
sult than the model scheme. Nevertheless, the
3 mode Procedure gives closer agreement with con-
figuration interaction than the shifted scheme in
all of the present calculations.

Many-body effects are found to be larger when
7 gifreq 1S used as a zeroth-order Hamiltonian.
Two-body effects are also larger for this scheme;
the total third-order results from the two pertur-
bation schemes being in relatively close agree-
ment. Two-body perturbation calculations using
3¢ hitrea have been observed to be “closer to experi-
ment.” This is obviously because the positive
many-body terms being neglected are larger. It
is interesting to note the agreement between the
second-order energies and the full third-order
values. These figures differ by only 2-3% for
the #,,,4; Scheme, whereas the corresponding
numbers for the % gn.q Scheme differ by 20-25%.
However, such behavior can only be observed
after athird-order calculation has been performed.

It is important to remember that the perturbation
calculations are not iterative and are computa-
tionally tractable. The calculations reported here
were performed on an IBM 360/91 computer, in
a multiprogramming environment. Some computer

CPU time requirements are given below to illus-
trate the efficiency of the diagrammatic scheme.
The integrals® over the basis sets A,C of Table I
are computed in ~0.2, 0.9 sec respectively. The
self-consistent field procedure®* and transformation
of integrals to the matrix Hartree-Fock orbital
basis take ~1.5,7 sec and processing of the in-
tegrals on external storage takes ~2.5,4 sec for
Sets A,C. Finally, the evaluation of all the dia-
grams?® through third-order including many-body
contributions and overlap terms for both pertur-
bation expansions together takes ~2,6 sec for
Sets A,C respectively. The time requirements
for Set B are only slightly less than for Set C.
The present results have been obtained for an
atom. However, just as for the method of con-
figuration interaction within the algebraic approxi-
mation, there is no difference between an atomic
and molecular problem once the integrals over
the operators in j¢ with respect to the basis set
have been evaluated. Since these integrals can
be evaluated for functions centered on the various
nuclei in a molecule, the algebraic approximation
introduces an enormous flexibility into the range
of applicability of many-body perturbation theory
to molecular problems.
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