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Many-body perturbation theory is developed within the algebraic approximation, i.e., parametrization of state

functions by expansion in a finite basis set. This considerably extends the applicabihty of the theory to

molecules, allowing all two-, three-, and four-body contributions to the energy to be evaluated through third

order. Within th.'s context, a comparison is presented between perturbation calculations and previously

reported configuration-interaction calculations which employed the same basis sets. The f2/I] Padh

approximants to the energy are constructed and upper bounds to the energy expectation values are

determined. Two zeroth-order Hamiltomans are used, and the convergence of the resulting perturbation series

is compared. Both of these perturbation expansions yield Pade approximants to the energy which are within

0.9% of the corresponding configuration-interaction results. The variation-perturbation upper bounds for the

energy are all within 3.2% of the corresponding configuration-interaction bounds. Considering this agreement

and the tractability of the diagrammatic perturbative scheme, it appears that the perturbation expansion is

highly competitive.

I. INTRODUCTION

The detex'mination of the electronic structure
of atoms and molecules containing pf electrons
1Qvolves the evRhlRtlon of RQ Rpplopx'1Rte elgeD-
vRlue RDd elgenfUQctlon of R 86IQlbounded Self-
Rdjoint Hamiltonian Gperatox 3C in Hilbert space.
A tractable scheme for solving such equations
ls the Rlgebx'Rlc Rppx'oxlDlRtlon in %'hich elgeQ-

fUDctlons Rre pexametrlzed by expansion ln R

finite set of functions. Diffex'ential equations
thus become algebraic equations for expansion
coefficients. The algebx'aic approximation re-
sults in the restriction of the domain of the op-
erator & to a finite-dimensional subspace 8 of
Hllbert space. The algebl Rlc Rppx'oxlD1Rtlon may
be implemented by defining a suitable orthonor-
mal basis set of M{&N) one-electron spin orbitals
Rnd constx'uctlng Rll unique +-electron detel IQln-
ants

~ p, ) usmg the 1!f one-electron functions. The
numbex' of unique determinants that. can be formed
ls 'g = {g), slid g is the dimension of the subspace
8 spanned by the set of determinants. The alge-
bx'Rlc Rppx'oxlDlRtlon x'estx'lets the domain of + to
this q-dimensional subspace.

Within the algebrai. c approximation, the Schr5-
dlngex' equRtlon may& in pl incipley be Solved by
the method of configuration interaction. The vrave
function is expressed as R superposition of con-
figurations

~ p) with linear coefficients C„, and
the optimal expansion coefficients determined by
the variation principle. In practice, difficulties
exise in setting up and solving secular equations
of high order. Thus, only a small subset of the
) p, ) is usually employed in the expansion.

Diagrammatic many -body perturbation theory'2
may also be fox'mulated within the algebraic ap-

pr oximation. Thus the domain of the perturbation
theox'y operators is restricted to the q-dimension-
al space spanned by the [ p, ) and consequently the
pertuxbation-theory wave function is generated in
terms of Rn 'g -dlIDensloDRl x'epl esentRtlon. The
results of many-body perturbation theory, vrhen

carried through infinite order, axe identical to
those of configuration intex'action if the same
basis set is used. Hwvever, the perturbation-
theoly expRQslons IQust be truncated Rt, some
flQlte order ~, Rnd 1Q this cR86, the degl 66 of
agx cement with the configuration interaction re-
sult is R measux'e of the convergence of the per-
turbation series through gth order.

The primary purpose of this vrork is to demon-
stx ate that full third-ox"der many-body pertur-
bative energy calculations can produce results
that are &within a fever percent of singly and doubly
excited conf lgurRtlon-inter Rctlon x'68Ults, %hen
each is performed vrithin the same basis set. This
has not been previously demonstrated and hence
should pl ovlde some D6% insight into the quality
of the pex'turbation expansions. The choice of an
atomic ol IQoleculRx' test SysteIQ ls immaterial
except that it Inust be a convenient, nontrivial
system where configuration-interaction results are
available. The object is to compare the pertur-
bative results with the singly and doubly excited
configuration-lnteractlon bmit, and not neces-
sRx'lly to RtteIQpt to flQd R Dlox'6 Rccux'Rte energy
value for the system than that obtained in previous
studies Therefol ey ln the Present %'orky third-
order perturbative calculations are compaxed arith
various conf iguration-interaction results of Baxr
and Davidsons for the ground '8 state of the neon
atom. Mox e accurate calculations exist for neon;
hovrever, the results of Barr and Davidson are
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chosen because they report various configuration-
interaction calculations for each of several basis
sets, which can each be employed for the pertur-
bation calculations. The other results which have
been reported for neon4 ' are not directly com-
parable with the present work.

The many-body perturbation theory'2 provides
a convenient diagrammatic formulation of Hay-
leigh-SchrMinger perturbation theory. The di-
agrams not only offer a pictorial description of
correlation effects but also give rise to an ex-
tremely efficient algorithm for the numerical de-
termination of the terms in the many-body ex-
pansion. This is particularly true when the alge-
braic approximation is invoked, and allows the
range of applicability to be considerably extended
for moleeules.

Many-body perturbation calculations, using the
numerical solution of the Hartree-Pock equations,
have been limited to atoms' and small hydrides, '
in which the relatively light hydrogen atoms are
treated as further perturbations. Within the alge-
braic approximation, many-body calculations have
been reported for atoms, ' the hydrogen molecule"
and some other diatomic moleeules. " These cal-
culations have all been restricted to the ealeulation
of two-body contributions through third order and,
in some cases, a partial or approximate evaluation
of both many-body contributions and higher-order
terms. The model ca1culations reported here for
the Ne atom are complete through third order within
the space spanned by the various basis sets. All
two-, three-, and four-body terms are rigorously
evaluated. This also allows the determination of
an upper bound by substituting the truncated many-
body wave function in the Bayleigh quotient.

Section II contains a description of the many-
body perturbation theory and its relationship to the
method of configuration interaction within the al-
gebraic approximation. The many-body pertur-
bative wave function and the determination of up-
per bounds are described. In See. III, the Ne-
atom calculations are described. A comparison
of two-body perturbative and certain pair-restrict-
ed configuration-interaction ealeulations is pre-
sented first. This comparison is presented be-
cause the two-body results are obtained simul-
taneously as a by-product of the full many-body
calculations, because pair configuration-inter-
action calculations are quite common, and be-
cause a pair-by-pair analysis ean be made. How-
ever, this comparison is only incidental and sub-
ordinate to the further comparison that is pre-
sented between the full many-body results and the
unrestricted singly and doubly excited configura-
tion-interaction results. A short discussion is
given in See. IV.

II. THEORETICAL CONSIDERATIONS

A. Effective Hamiltonian in a finite subspace

Let S denote the subspace of +-electron Hilbert
space spanned by the orthonormal set f1 v, &) of
+-electron functions which can be constructed
from a given set of one-electron basis functions.
The projector onto this subspace is

I, 1v& =1v&, 1v& ~ E,

and the effective Hamiltonian operator" in S is
3C =I~SCI~. Carets are used to identify operators
which have been outer projected onto S. The elec-
tronic Hamiltonian is

x

=pa�(p)

+ Q v(p, q),

in which p and q denote electronic coordinates.
The one-electron operator h is a sum of the elec-
tronic kinetic energy and nuclear-electronic at-
traction, while v is the two-electron Coulomb
repulsion term. The Schrodinger equation, within
the algebraic approximation, has the form fC1 P&

=El q&; I q&~S.
The solutions of the effective Schrodinger equa-

tion may be written as a superposition of configur-
ations

where the expansion coefficients may be deter-
mined in principle by the solution of a secular
equation. The method of configuration interaction
essentially entails preparing and diagonalizing the
matrix ( g1fC1 v) to find its lowest eigenvalue E.
In practice, the expansion (3) contains many terms
and some arbitrary criterion has to be invoked to
truncate it.

The many-body perturbation expansion may be
related to the method of configuration interaction
as follows. Let P denote the projector onto some
model or reference space S~; let Q denote the
projector onto the orthogona1 complement Sz, and
then

Iq =P+Q; S =S~SSq. (4)

Sub«tinting Eg. (4) mto fe1&) =E1 q&, multiplying
from the left by P or Q and eliminating Q1y& from
the two resulting equations, yields

G1y& =E
I g&; I x& =PIN&; I x&&Ev, (5)

with the reference operator

G =P [KP+P3C Q(E —QRQ) 'Q3C] . P
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Although the eigenfunctions of the reference op-
e1 Rtox' G are in the model spRce Sj, of dimension
d, the d eigenvalues of C are coincident with d of
the eigenvalues of &. In the many-body pertur-
bation theory, S~ is taken to be one-dimensional
and to consist of the lowest-enex'gy configuration

l 0), in the set [ l p, )). The corresponding lowest
eigenvalue E is identical to that obtained by divid-
ing the Hamiltonian into two parts, $C = $CO+3Cx,

expanding the inverse operator in E(I. (6), and
rearrRIlglng terms.

8. Closed-shell matrix Hartree-Pock reference functions

%'ithin the algebraic approximation, the integro-
differential Hartree-Fock equations become a set
of algebraic equations for the orbital expansion
coefficients. '~ The /-electron, closed-sheQ mod-
el wave function is l K) = det l p, (I) 91,(2). . . y„(N) l,
where the y's are spin orbitals, which within the
algebraic approximation are expanded in a finite
set of basis functions. The ket l K) is an eigen-
function of the model (i.e. , matrix Hartree-Pock)
Hamiltonian

&m.dent=Is & P + V" P Isy

where V~ is the one-electron self-consistent po-
tential in S.

('"(()=Q J(,. (2)0(,(2)dr, ,

C. Diagrammatic perturbation theory

The many-body perturbation expR1181on 18 ob-
tained from E(ls. (5) and (6) using the projectors

P=l0}&ol; q=glK&&Kl.

In genex'al, &o must have the form
Pl K) (Kl Tl K}(Kl, where T is arbitrary T.here
are an infinite number of possibilities of which
two are considered here.

(a) The 111««Hsmilfonian is defined by

Xo=—X,d,),
' X~=Iq 8 P, q — V" p Iq. &2

Clearly Z,d„of E(I. (7) is diagonal in 8 since the
l K) satisfy E(I. (10). The perturbative expansion
for E =( 0 l@ 0) can be rearranged to form a power
series in Q, :

where the nth-order energy term E„ is proportion-
al to the nth power of matrix elements over X,.

The perturbation series of E(I. (13) has a dia-
grammatic representation exclusively in tex ms
of linked graphs. ' The first-order contribution
Ei 1s given ln Flg. 1 and has the value

z, =&olz, l 0) =--,'g&f~ l Ol II&.

O =[I -(12)]1-'
and (12) permutes the coordinates of electrons 1
Rnd 2. Thus

k..„,lK&=h, lK&; K»-o; 6 =g ~, (1o)

where q~ is the orbital energy corresponding to
A.

The reference state
l 0) is the eigenfunction

having the lowest eigenvalue go-=E,. The functions
c), in l 0) are the occupied orbitals or hole states,
and are identified with the set of indices fiji. . .);
the remaining functions are the unoccupied, ex-
cited orbitals, or particle states, and are iden-
tified with indices (abc. . .). Any determinant l K)
is related to l 0) by the number of occupied or-
bitals y, . . . that are replaced by unoccupied or-
bitals y, . . . on changing l 0) into l K). If this
number is f, l K) is a f-tupie excitation. The
1111nlbel' of distlllc't f-tuple excltat10118 18 (1 ) ( 1 )
where M is the number of spin ox'bitals in the basis
set. Of course summing this product over t gives
(,")=n

By using the operator 0 defined in E(I. (9), only
one diagram from a given set of diagrams related
by electron exchange is required. The bracket
notation has the usual meaning, i.e.,

(Pql oils) = f deft, rpg((,) q,'(2)o(, (()q, (2).

(15)

The use of self-consistent matrix Hartx'ee-Fock
orbitals gives rise to an exact cancellation of all
single-particle insertions other than in E, as
shown, diagrammatically in Fig. 2. The ensuing

FIG. 1. First-order enex gy coxrections. X x'epre-
sents —V+, where V+ is the Hartree-Fock potential.
Interaction lines represent the opexator 0 defined in
Eq. (9).
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=0

=0 FIG. 4. Third-order energy diagrams. Interaction
lines represent the operator 0 defined in Eq. (9). Hole
lines axe labeled i j,0, /; particle lines are labeled g,
b, c,d. The number of distinct hole lines determine the
number of interacting bodies described by the diagram.
his the particle-parhcle (pp) diagram, 8 is the hole-
particle (hp) diagram, and C is the hole-hole (hh) dia-
gram.

=0 &.(pp) = 8Q Q & lj I Ol al ) &abl OI «&

FIG. 2. Single-particle insertions which cancel when
the Hartree-Fock model is used in zeroth order. Inter-
action lines represent the operator 0 defined in Eq. (9).

Only two occupied orbitals are involved in this
contribution. The hole-particle graph, Fig. 4 B,
has both two-body and three-body components

simplification is significant for high-order terms,
but is already evident for second order where, as
shown in Fig. 3, four out of five diagrams vanish
leavmg

z =4+ Q &ljl OI al &&al IOIlj)/D;, ,

with the denominator

Dlya~ && + &g &a &O ~

The third-order graphs are shown in Fig. 4. The
first of these, the particle-particle graph, Fig.
4 A, arises exclusively from two-body interac-
tions:

z,(ap)=-pg&ljlolal &&nalollQ&

x(cbl Ol kj )/D, ,„D,
Three-body terms correspond to the case where
i, j, and k are distinct, whereas the two-body con-
tribution arises when i =k. The hole-hole graph,
Fig. 4 C, involves two-, three-, or four-body
interactions depending on the--coincidence of the
hole indices:

x(kll Ol ij) &abl Ol kl)/D, „D„„,.
(20)

Two-body terms arise wheni =k and j =l or i =I
and j =k, while for three-body terms i =k, i =l,
j =0 or j =l. Four-body terms are those for which
i, j, 0, I are all distinct.

(b) Tll8 Sll1fl8d Ham'LlfQtllaB l8 defllled 13'

Hence,

k,'= PI && &z Ikl &)&&I;

(22)

FIG. 3. Second-order energy diagrams. Interaction
lines xepresent the operator 0 defined in Eq. (9). The following relations follow immediately,
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~+le gf —g +g e @1—
O0 0 1& 1

n=0

(23)

FIG. 5. Diagrammatic representation of Eq. (27).
Obviously, the infinite-order result does not de-
pend on the choice of 3C0. By using a second di-
vision of 3C, a qualitative measure of the con-
vergence of the series is obtained. The shifted
diagrammatic expansion is the same as that out-
lined above except that (i) all diagonal scattering
is excluded and (ii) the denominator factors Dt~„
are "shifted":

= e, + e,. —e, —e~ —
& rg I ol sf &

-
& aft I 0 I aft )

-&af I olfa&-&hf I ol ff &

-&af'IOlfa& &fj-IOljh&.

Two-, three-, Rnd four-body graphs arise as
discussed in the preceding section. However, the
two-body hole-hole graphs vanish since these
diagrams all arise from diagonal interactions.

It should be noted that both perturbation schemes
are defined with respect to single-determinant
states I K). Although the individual determinants
may not necessarily be eigenfunctions of the spin
or orbital angular momentum operators of inter-
est, the summations over E are not truncated
and therefore range over all permitted values.
Hence, the correct linear combination of deter-
minants is always obtained corresponding to the
use of proper angular momentum eigenfunctions.
This choice of reference states I K& causes the
specifically defined energy denominators of Eqs.
(17) and (24) to accompany the perturbation
schemes. Qf course, in infinite order, this choice
is equivalent to choosing multidetermjnantal ang-
ular momentum eigenfunctions for

I K&, assuming
the perturbation series are convergent.

D. Many-body perturbative ~ave function.
Upper bounds to the energy.

The many-body perturbation theory generates a
wave function having the form

(26)

where the mth-order correction I g ) is propor-
tional to the mth power of matr jx elements over
fC„and I g,& is the reference state I 0). The
diagrammatic representation of I P& contains only
linked graphs: contributions through second order
are given in Fig. 6. Truncation of this infinite
series for I g) after n terms produces an approxi-
mate wave-function I 4„&. In general, the func-
tion Irfx„& is not normalized, although a normali-
zation factor can be introduced. " Inserting I C „)
into the Rayleigh quotient yields a variational
upper bound for the eigenvaluel6

&...„-&... =(c„lfcl c„&/(e„l c„&.
In the present work, the wave function is trun-

cated at first-order I 4 t&. Since this wave func-
tjon has a simple form, Rn additional variatjonal
parameter y is easily incorporated:

I c,& =I 0&+ yl y, &, (27)

which is given the diagrammatic representation
shown in Fig. 5. After some manipulation, Eq.
(26) becomes

Eexect &ver ('Y} =+O+~y

where the overlay term ~» is

~„=-pg &f~ I ol ah)(af I olsq)/D2. .. (29)

A different wave function corresponds to each
perturbation scheme. Hence there is a. I C,) cor-
responding to the model scheme and another I 4', &

corresponding to the shifted perturbation proced-
ure. The optimal value of the parameter y is
obtained from the variation principle

III. A STUDY OF THE NEON ATOM

A, Basis sets

Three different one-electron basis sets were
used. These sets have been used previously for
detailed conf iguration-interaction studies. The
real normalized Slater basis functions are given
in Table I, together with the corresponding ma-
trix Hartree-Fock energies and values of g. Set
A is a "double-zeta" basis, "Set 8 is a "Hartree-
Fock" basis, "and Set C is composed of SetA
plus additional s, p, and d functions. 3 Set Bgives
the lowest matrix Hartree-Fock energy while Set
C gives the best description of the correlation of
the electrons. Set C includes d functions Rnd these
have an important effect in describing electron
correlation. These basis sets are quite modest
in size and are not flexible enough to yield high
absolute accuracy. However, they are adequate
for comparitive purposes. The values of q, the
dimension of the space 8 for each of the basis sets
given in Table I, take no account of orthogonali-
tles. Spin R11d spRtlRI symmetry ortI1ogoQRlltles
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TABLE I. Basis sets of real normalized Slater functions for neon.

Basis Matrix Hartree-Fock
set Ref. energy (hartrees) Function Exponents

q, dimension
of subspace S

B b

—128.534 80

—128 ~ 547 01

1s
2s
2P

1s
2s
2p

8.9141, 12.3545
2.1839, 3.4921
2.0514, 4.6748

9.5735, 15.4496
1.9550, 2.8462, 4.7746, 7.7131
1.4700, 2.3717, 4.4545, 9.4550

1.8 x105

2.5x 108

—128.538 72 1s
2s
3s
2p
3d

8.9141,
2.1839,
2.1839
2.0514,
4.6748

12.3545
3.4921, 8.9141

4.6748, 12.3545

8.5 x 108

E. Clementi, J. Chem. Phys. 40, 1944 (1964).
E. Clementi, C. C. J. Hoothaan, and M. Yoshimine, Phys. Rev. 127, 1618 (1962).

~ T. L. Barr, and E. R. Davidson, Phys. Rev. A 1, 664 (1970).

greatly reduce the number of terms which have
to be included in a complete configuration inter-
action expansion for the ground state.

The use of matrix Hartree-Fock orbitals leads
to the cancellation of the class of diagrams shown
in Fig. 2 and eliminates the entry through third
order in the energy of any single excitation de-
terminant ~K'), where K' denotes the excitation
from an occupied orbital i to an excited orbital a.
The only determinants that can enter the pertur-

bation series through third order in the energy are
doubly excited states

~
K"), where K" denotes the

simultaneous excitation from two occupied or-
bitals i and j to two excited orbitals a and b (de-
noted by ij -ab) In Fig. . 7 the structure of the
configuration interaction matrix and its relation-
ship to the terms in the perturbation expansion
is illustrated. The number of possible double
excitations obtainable from the three basis sets
is -2x10, 15X10, and 20x10 respectively;
however, spin and spatial orthogonalities reduce
these numbers to -140, 925, and 1750.

A

E F

I J K L

FIG. 6. Contributions to the many-body perturbative
wave function through second order where interaction
lines represent 0 defined in Eq. (9). Diagram A is
zeroth order, B-D are first order, and E-K are second
order. If X represents -V+, where V~ is the Hartree-
Fock potential, diagrams B and C cancel. Of the
second-order diagrams, E and F involve single-excita-
tions, G, H, and I involve doubly-excited states, J and
K involve triply-excited states, and L involves quadru-
ple excitations. Second-order diagrams which mutually
cancel are not given.

B. Results of perturbation calculations

The energy contributions corresponding to the
diagrams of Figs. 2 and 4 and Eqs. (14)-(20) are
given in Table II. Values of the overlap ~», Eq.
(29), are also given. The relative importance of
the various components is evident.

Intra-pair contributions involve, exclusively, a
single pair of hole states and therefore represent
two-body effects. The intrapair diagonal terms
arise from diagrams having not only a single pair
of hole lines but also a single pair of particle
lines (i.e., diagonal scattering). When the zeroth-
order Hamiltonian is 3C,„,«„, all such diagonal
terms are identically zero. The intra-pair, non-
diagonal terms correspond to interactions be-
tween two states ij -ab and ij-cd both involving
excitations from the same ij pair.

The two-body terms, especially the diagonal
ones, make the major contribution to the energy
correction. Three- and four-body terms are as-
sociated with inter-pair interactions. Three-body
effects arise from inter-pair interactions involving
pairs with a common occupied orbital, for in-
stance, ij -ab and ik ac. If two pairs have no
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TABLE II. Components of the perturbation expansions for neon.

Basis setb
$Cp +model +shifted +model +shifted +model +shifted

Intra-pair energies: diagonal terms (two-body)

E2

E3(PP)
E3(hp)
E'(hh)
Total

-0.137 14
+0.014 98
-0.052 74
+0.014 87
—0.160 03

—0.165 12
0.0
0.0
0.0

-0.165 12

-0.179 18
+0.012 89
-0.060 01
+0.023 17
—0.203 13

-0.207 70
0.0
0.0
0.0

—0.207 70

-0.250 52
+0.021 11
—0.076 00
+0.021 28
—0.284 13

-0.290 56
0.0
0.0
0.0

—0.290 56

Intra-pair interactions: nondiagonal terms (two-body)

E&(pp)
E23(hp)

Total

+0.000 93
-0.000 29
+0.000 64

+0.001 36
-0.000 34
+0.001 02

+0.00790
-0.012 43
-0.004 53

+0.010 88
—0.017 57
—0.006 69

+0.00578
—0.003 02
+0.002 76

+0.007 81
—0.003 94
+0.003 87

E33(hp)

E33(hh)

Total

Inter-pair interactions between pairs having a common hole state (three body)

+0.024 18 +0.036 14 + 0.031 82 +0.046 22 +0.029 89 + 0.043 48
+0.00005 +0.00006 +0.00011 +0.00012 +0.00010 +0.00011
+ 0.024 23 +0.036 20 + 0.03192 + 0 ~ 046 34 +0.029 99 + 0.043 59

Inter-pair interactions between pairs having no common hole states (four body)

E43(hh) +0.001 07 + 0.001 62 +0.001 45 +0.002 01 +0.001 58 + 0.002 21

Overlap A f f +0.015 21 + 0.022 85 +0.023 29 + 0.033 87 +0.021 20 +0.030 58

The energy terms are labelled with subscripts to denote order and superscripts to denote
number of interacting bodies. Energies are in hartrees.

b From Table I.

common orbital, ij-ab and kl-ab, then a four-
body inter-pair interaction arises. Although the
contribution from a given set ijk, or ijkl, may be
small the total sum of such many-body terms can
by no means be ignored, since the number of such
terms is in general large.

The convergence of the perturbation series is
displayed both as a function of number of inter-
acting bodies and of increasing order in Table III.

The convergence with the number of interacting
bodies needs to be examined with caution, how-
ever, since only contributions through third order
have been included in a given term E'. As higher
orders are computed, additional contributions are
obtained for each b ~2. On the other hand, all
two-, three-, and four-body contributions to the
terms for a given order have been included and
the convergence by order is exact. For all three

TABLE III. Convergence of the perturbation series. '

Basis
setb
Xp Knodel

Convergence

A+shifted +model +shifted

with increasing number of interacting bodies.
+model +shifted

Ef
E2
E3
E4

-74.418 35
—54.275 82
+0.024 23
+0.00107

-128.534 80
-0.164 10
+0.036 20
+0.001 62

-74.509 42
—54.245 24
+0.03192
+0.001 45

-128.547 01
—0.214 39
+0.046 34
+0.002 01

—74.475 64
—54.344 44

+ 0.029 99
+0.001 58

-128.538 72
—0.286 69
+0.043 59
+0.002 21

Convergence with increasing order.

Ep
Ef
E
E3

—74.418 35
-54.11644
-0.137 14
+0.003 05

-128.534 80
0.0

-0.165 12
+0.038 85

-74.509 42
—54.037 59
-0.179 18
+0.004 90

—128.547 01
0.0

-0.207 70
+0.041 67

—74.475 64
-54.063 08
—0.250 52
+0.000 72

—128.538 72
0.0

—0.290 56
+0.049 67

The energy E is a sum of all m-body contributions through third order; E„ is the nth-
order energy. Energies are in hartrees.

b From Table I.
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basis sets, the use of geo = &~«„gives more rap
convergence.

C. COMP8rlSOIl Of P811' ClMf'glCS

The pair energies obtained from bvo-body per-
turbation ealeulations Rre compared with the pair—
excited configuration interaction results of Barr
and Davidson in Table IV. Each calculation uses
the matrix Hartree-Fock orbitals f'or a particular
basis set and use the corresponding matrix Har-
tree-Fock enex'gy RS R 1efeleDce fol the 6Dex'gy

correction.
The perturbation result is obtained by restricting

the calculation to the inclusion of all two-body
compoDents Rr'181Dg 1D secoQd and third order
(Pigs. 3 and 4) for a given orbital pair. The
Is —Is and 2s - 2s terms each consist of R single
spin-orbital pair, while the Is —2s term consists
of a sum of the four corresponding component
spin-orbital pairs. Terms involving the 2P or-
bitals contain an additional sum over the spatial
components of this function. Only doubly excited
conf lgux'Rtlons entel Ule pex'tul bRtloD sex'168

through third ox'der.
The conf igur ation-inter action pair excitation

energies mere obtained3 by perfox ming a separ-
Rte cRlculRtloQ fol each orbital pRlx' %1th R %ave
function of the form

(31)
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The encl gles glveQ ln TRble IV are the dlffex'ences

between the eigenvalues corresponding to I g, , )
and I 0). Equation (31) includes contributions from
single excitations i -0, and refers to orbital pairs
rather than spin-orbital pairs. The latter has no
consequence for the terms Is —Is and 2s —2s.
Fox' ter'ms such Rs Is —2s hRvlllg more thRQ one
spin component, this includes some interactions
bet|veen different spin-orbital pairs; for example,
Is~, IsP, 2so, and isa, IsP, 2sn, 2sP: these are
three- and four-body contributions, r espectively.

The present work is concerned only with a nu-
merical comparison of results obtained from the
above two definitions, although other definitions
of pall energies exist.

For a given basis set, the perturbation and con-
figuration-interaction pair results in Table IV are
in remarkable agreement for the Is —Is, ls -2s,
Is —2p ~ and 2s —2s terms. Thus~ the hlghex'-
order effects and single excitations are negligible
for these pairs when compared to the bvo-body
third-order perturbation result. For the 2s —2P
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and 2p —2p terms the perturbation results are
consistently lower than configuration interaction
and the model scheme is closer to configuration
interaction than the shifted scheme. The inclusion
of the positive three- and four-body contributions
within an orbital pair must account for this differ-
ence.

The total "sum-of-pairs" energy is within 0.005
Hartrees for the model perturbation and pair con-
figuration-interaction schemes, the source of the
deviation arising within the treatment of the 2p
orbital. The shifted scheme gives a "sum-of-
pairs" energy that is another 0.005 Hartree lower
than the model scheme. Since none of these pair
calculations are bounded, the variation principle
cannot be invoked to choose one or another of
these results to be the best one. Indeed, in view
of the magnitude of many-body terms the "sum-
of-pairs" energy is not particularly useful. How-
ever pair analyses do provide a means of making
detailed comparisons of methods.

D. Comparison of many-body perturbation and configuration
interaction calculations

The basis sets of Table I have been used by Barr
and Davidson' to perform conf iguration-interac-
tion calculations, which they refer to as "total ( / )3 2

(32)

pair excitation block" (TPEB) calculations. It
should be noted that these calculations correspond
to the general configuration-interaction procedure,
Eq. (3), with the single restriction of including all
singly and doubly excited states. A comparison
of these calculations with the perturbation results
is given in Table V.

The two-body energy corrections overestimate
the configuration-interaction values by 14-23%.
The three- and four-body effects in third order
account for most of this difference and the total
third-order perturbation results are within 0.2-
5.5% of the configuration-interaction results.
Half the perturbation results overestimate and
the other half underestimate the configuration-
interaction values. The model scheme gives
closer agreement in each case.

It has been suggested" that the [n+ I/n] Pade
approximants form a more appropriate approxi-
mation to the energy expectation value than the
(2n+ 1)th-order Taylor series, although both have
residual contributions of order 2n+2. From the
third-order expansion, the [2/1] Pads approxi-
mant may be written in terms of the energy coef-
ficients

TABLE V. Comparison of full single- and double-excitation configuration-inter action
energy corrections for neon with many-body perturbation values, the f2/1J Pade approxi-
mants and the many-body upper bounds.

Basis set
Xp C model + shifted

P+model + shifted +model +shifted

(CI)
Configuration interaction (single and double excitations)

-0.13356 -0.174 65 —0.247 60

E2+ E'3

(% CI)

E,+E
(% CI)

Restricted perturbation (two-body)
-0.159 38 -0.164 09 -0.207 65 —0.214 39 -0.281 36

(119.3) (122.9) (118.9) (122.8) (113.6)

Full many-body perturbation (two-, three-, and four-body)
—0.134 08 —0.126 27 —0.174 28 -0.166 04 -0.249 79

(100.4) (94.5) (99.8) (95.1) (100.9)

—0.286 69
(115.8)

-0.240 89
(97.3)

E [2/1]
(% CI)

Pade approximant for many-body perturbation
-0.134 15 -0.13367 —0.174 41 -0.173 00

(100.4) (100.1) (99.9) (99.1)
-0.249 79 —0.248 14

(100.9) (100.2)

Evar (p = 1)
(% CI)

Many-body perturbative uppe r bound
—0.132 07 —0.123 45 —0.170 31 -0.160 60

(98.9) (92.4) (97.5) (92.0)
-0.244 61

(98.8)
-0 ~ 233 74

(94.4)

Optimized many-body perturbative upper bound

y optimal 0.964 38 0.797 77 0.952 82 0.814 21
E~ (y = opt) —0.132 25 —0.13172 —0.170 72 —0.169 11
(% CI) (99.0) (98.6) (97.7) (96.8)

0.976 94
—0.244 74

(98.8)

0.835 77
—0.242 84

(98.1)

~ Energies are in hartrees.
From Table I.

o T. L. Barr and E. R. Davidson, Phys. Rev. A 1, 644 (1970).
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mhich has the form of a sum of a geometric series
Rnd is, therefore, often referred" to as the "ge-
oIQetr'lc Rppx'oxlIQRtlon. Homevel „ this name
does not reflect the nature of the perturbation ex-
pansion since higher-order terms obtained by
expanding the denominator in Eq. (32) do Iiof cor-
respond to higher-order terms in the perturbation
expansion.

The [2/1] Pads approximants to the energy ex-
pansion are mithin 0.9 j of the configuration in-
teraction results. The use of this approximant
gives R significant change in the x'esults obtained
for the shifted scheme, mhich has the effect of
bringing the model Rnd shifted scheme in closer
agreement. This agreement is suggestive that
the result is independent of the particular splitting
of 3C chosen for the calculations and is a measure
of the rapid convergence of the perturbation ser-
ies.

Rigorous many-body uppex' bounds to the ex-
pectation value of the energy are also reported
in Table V. These mere obtained by evaluating
the Hayleigh quotient as discussed in Sec. GD.
Results ax'e given for both X, = 1 and the optimal
value given by Eq. (30). In all cases, theR, ~„
scheme gives a result closer to the configuration
interaction number, Rnd an optimal value of A.

closel to one.
There are tmo sources of the deviation betmeen

the many-body upper bounds Rnd conf lgul ation
interaction results: (i) the inclusion of single-
excitation configurations in configuration interac-
tion; (ii) the inclusion of higher-order effects in

the conf iguration intex action expansion. Homever,
these effects are seen to be very small.

IV. DISCUSSION

In the present study, the evaluation mithin the
Rlgebx'a, ic approximation of all diagrams in the
many-body perturbation series for the energy
through third order, including Rll tmo™,three-,
and four-body contributions, is discussed. The
absolute accuracy of the results obtained is de-
pendent upon the quality of the basis set employed.
The present model calculations are concex'ned mith
the comparison of the method of configuration
interaction Rnd Inany-body perturbation theory
mhen the same basis set is used in both schemes.

Two-body perturbation calculations and pair
configuration-interaction results are found to be
in good agreement. The analysis in terms of pa, ir
energies permits a detailed comparison of these
methods. The major source of deviation in Table
IV arises from the inclusion of some three- and
four-body effects in the pair configux ation-inter-
action calculation arising from the use of spatial
orbital configurations in the latter.

l l l l l

IQ)
l

IK')
l

IK'Q
l

IK"'P
l

IK'"'Pl

l l

l I l I

IK")
l l i

2
l

4
l
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l

4
I

4

IK*") 5 l 4 I 5 l 5

I Ktltlg I

I

l 5 l

I

I IG. 7. Belationship of configuration interaction
Inatrfx 'to tel Ills tll 'the pel'tul'bailoll expansioll. i0) de-
notes the ground state configuration; ~K'), ~K"), g"'),
and )K"") denote singly-, doubly-, triply-, and quad-
ruply-excited configurations. The figures indicate the
order in the perturbation series at which a given block
of the configuration-interaction matrix first contribute.
Thus, for example, matrix elements of the form
(K' ~R ~

K") first arise in fourth order in the perturba-
tion expansion.

Three-body effects in many-body perturbation
theory have been discussed for atoms and mole-
cules. " For nuclear matter, such components
have been estimated to have a magnitude of 3-6%
of the two-body energy. " The inclusion of three-
and four-body contributions in the present mork
changes the tmo-body correction by as much as
28$o. Many-body terms are clearly important
for the correct evaluation of the energy and are
most probably equally important for other proper-
ties.

The [2/1] Pads approximants for the model and
shifted perturbation schemes have been found to
be in closer agreement mith each other than the
corresponding Taylor series. Since the infinite-
order result is independent of the choice of zeroth-
order Hamiltonian, this suggests that the [II + I/n]
Pads approximant provides a more rapidly con-
vergent representation of the energy.

The inclusion of all many-body effects through
third order permits the determination of rigorous
upper bounds to the total energy. The agreement
of the many-body upper bounds mith the singly and

doubly excited configuration-interaction results
to within 3% is demonstrated. The major source
of deviation is the inclusion of single-excitation
conf igurations in the configuration-interaction
calculations. If the perturbation series mere car-
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ried through fifth order, this would correspond to
a second-order many-body wave function and
would include the effect of single, double, triple,
and quadruple excitations as shown in Fig. 6.

The shifted scheme arose in many-body per-
turbation theory as an attempt to include higher-
order diagonal diagrams in low-order terms
through denominator shifts. The shifted scheme
represents the case of a different splitting of 3C

which produces a better unperturbed energy re-
sult than the model scheme. Nevertheless, the
fg,d„procedure gives closer agreement with con-
figuration interaction than the shifted scheme in
all of the present calculations.

Many-body effects are found to be larger when

h'ft d is used as a z eroth-order Hamilton ian.
Two-body effects are also larger for this scheme;
the total third-order results from the two pertur-
bation schemes being in relatively close agree-
ment. Two-body perturbation calculations using

h'ft d have been observed to be "closer to experi-
Inent. " This is obviously because the positive
many-body terms being neglected are larger. It
is interesting to note the agreement between the
second-order energies and the full third-order
values. These figures differ by only 2-3% for
the 3C „«, scheme, whereas the corresponding
numbers for the , „,f„d scheme differ by 20-25%.
However, such behavior can only be observed
after a third-order calculation has been performed.

It is important to remember that the perturbation
calculations are not iterative and are computa-
tionally tractable. The calculations reported here
were performed on an IBM 360j91 computer, in

a multiprogramming environment. Some computer

CPU time requirements are given below to illus-
trate the efficiency of the diagrammatic scheme.
The integrals" over the basis sets A, C of Table I
are computed in -0.2, 0.9 sec respectively. The
self -consistent field procedure" and transf ormation'-'

of integrals to the matrix Hartree-Fock orbital
basis take -1.5, 7 sec and processing of the in-
tegrals on external storage takes -2.5, 4 sec for
Sets A, C. Finally, the evaluation of all the dia-
grams" through third-order including many-body
contributions and overlap terms for both pertur-
bation expansions together takes -2, 6 sec for
Sets A, C respectively. The time requirements
for Set B are only slightly less than for Set C.

The present results have been obtained for an
atom. However, just as for the method of con-
figuration interaction within the algebraic approxi-
mation, there is no difference between an atomic
and molecular problem once the integrals over
the operators in 3C with respect to the basis set
have been evaluated. Since these integrals can
be evaluated for functions centered on the various
nuclei in a molecule, the algebraic approximation
introduces an enormous flexibility into the range
of applicability of many-body perturbation theory
to molecular problems.
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