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Self-energy corrections to the K-electron binding in heavy and snperheavy atoms*0
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The self-energy corrections of order a to the K-electron binding energy in high-Z atoms are studied
numerically throughout the range Z = 70-160. Nuclear finite-size effects are included in the electron wave
functions and in the electron propagator to avoid the Coulomb singularity at Za = 1. Denoting the self-energy
correction by hE = a(Za)'F(Za)mc'/n, it is found that F(Za) increases smoothly from a minimum near
Z = 90 through F(100a) = 1.46 ~ 0.01 to F(160a) = 3.34 ~ 0.16. For comparison purposes, the self-energy
corrections in a Coulomb field for Z between 50 and 130 are evaluated, and the values of F(Za) thus
obtained are in close agreement with previously published values; the Coulomb field values of F(Za) are very
close to the finite-nucleus results for Z g 90.

I. INTRODUCTION

Quantum electrodynamics (QED) leads, in low-
est order, to two types of radiative corrections
to the energy levels of an electron bound in an ex-
ternal potential. They are the electron self-ener-
gy and the vacuum polarization corresponding to
the Feynman diagrams in Figs. 1(a) and 1(b), re-
spectively. In this work, we will address ourselves
to the self-energy contributions only; the vacuum
polarization corrections have been discussed in
detail elsewhere. '

In most of the early work on the self-energy,
one was interested in the level shifts in light
atoms, such as hydrogen, deuterium, or helium,
where precise measurements of the Lamb shift
couM be performed. Thus, the general approach
was to expand the self-energy into a series in Zn.
A comprehensive treatment of this Zn expansion
is given by Erickson and Yennie. ' References to
earlier works on the Lamb shift calculations can
be found in Ref. 2, as well as in more recent re-
view articles on QED.'

In the Zn expansion calculations, the self-ener-
gy level shifts hE is usually expressed in the
form

d. E = (aim)(Za)'E(Za)mc'.

FIG. 1. Feynman diagrams representing the (a) elec-
tron self-energy and (b) vacuum polarization. Double
lines in these diagrams refer to the propagation of the
electron in an external potential.

The function E(Za) is then expanded into a series
involving powers as well as logarithms of Ze. The
general form of this expansion can be found, for
example, in Ref. 2.

The Zn expansion calculation may be a good ap-
proximation for small-Z atoms. For Z &10, how-
ever, contributions from uncalculated terms be-
come so important that successive approximations
to the function E(Za) fail to show signs of conver-
gence. If we want to calculate the level shifts for
heavy elements, this Zctt expansion is certainly
not suitable.

There are various reasons for extending the
study of the self-energy radiative corrections to
higher-Z atoms. From the purely theoretical
point of view, correct prediction of the Z depen-
dence of the level shift by QED is an important
test of the theory; this test is especially signifi-
cant in view of the recent advances in experimental
technique which now make possible measurements
of the Lamb shift in hydrogenlike systems with Z
not small. '

From a more practical point of view, though
negligibly small in light elements, the self-ener-
gy level shift represents a sizeable correction to
the binding energies of the inner-shell electrons
in heavy and superheavy atoms. ' ' Thus, the in-
clusion of the self-energy correction should, in
principle, improve the theoretical accuracy of the
binding-energy calculations. This, in turn, en-
ables one to estimate the accuracy of present day
approximatioms used in the atomic orbital calcula-
tions by direct comparison with precise experi-
mental measurements.

In fact, one may be able to obtain information
on the limits of validity of QED in this way. There
have been speculations about the possible break=
down of QED at high energy and small interaction
distance. '

Am interests)g test case will be the
study of electrons bound to superheavy nuclei with
Z~, say, greater than'. It has been proposed that
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if-QED is to be replaced by a nonlinear theory with
an upper limit to the electric field strength, then
for these superheavy elements, there will be
dramatic differences between the binding- energies
calculated from QED and those from the nonlinear
theory. ' Since precise measurememts of the bi~d-
ing energies for fermium, Z =100, are available, "
detailed comparisons between the theoretical and

experimental inner-shell binding energies for
pop Fm have been made and comparisons show ex-
cellent agreement between experiment and the con-
ventional linear version of QED."" This implies
that either we must give up the nonlinear theory
completely, or at least that the upper limit of the
electric field strength will have to be substantially
higher than expected. "

In any case, it seems that accurate ab initio cal-
culations of atomic binding energies are now pos-
sible even in the superheavy atomic region. If we
take this for granted, we can then tabulate theo-
retical x-ray energies to aid in the identification
of superheavy elements through their characteris-
tic x-ray spectra. Experiments have been carried
out in the identification of elements 102,"104,"
and recently, 116 and 126,"based on the theoreti-
cal x-ray energies tabulated from semiempirical
calculations. "There have been speculations on the
possible existence of islands of stability of super-
heavy nuclei near Z=114, 126, and 164." More
accurate theoretical calculations of the x-ray en-
ergies might aid in the identification of these
elements if they are found in nature, or produced
artificially.

In spite of all these important applications, our
knowledge of the self-energy level shifts in heavy
and, especially, superheavy atomic systems is
quite inadequate. In what follows, we shall dis-
cuss briefly some of the earlier works on the ex-
act evaluation of the self-energy; then we shall
turn to the results of the present calculation.

For a pure Coulomb potential, the 1$]/2 self-
energy level shifts for Z in the range 10-110have
been calculated by Mohr, who expanded the bound
electron propagator in terms of the known Coulomb
radial Green's function. " Mohr's study has been
extended to L shells" and new values for the Lamb
shift in hydrogenlike ions have been given. " In
Fig. 2, the function F(Zo) for the 1S,&, state is
plotted against the nuclear charge Z. Mohr's val-
ues of F(Zo ), shown as small closed dots in Fig.
2, illustrate the important point that the self-en-
ergy in a pure Coulomb field diverges at Zz =1.
This divergence is a consequence of the singular
behavior of the Coulomb wave functions at Z~ = 1,
and has also been pointed out by Labzovskii. "

An earlier calculation of the level shift which
avoids the Zz expansion has been given by Erick-
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son. " The function F(Zn) obtained by Erickson
is plotted in the dashed curve of Fig. 2. There
remain discrepancies between Erickson's values
and those of Mohr which are beyond the stated
theoretical uncertainties. In particular, the func-
tion F(Za) given by Erickson decreases with in-
creasing Z, passes smoothly through the Coulomb
singularity Zz =1, and drops slowly to zero as Z
approaches infinity. This, however, is entirely
different from Mohr's results, as well as from
those of the present calculation, as can be seen
in the last section of the present work.

Among the alternatives to these two approaches,
there is the calculation by Desiderio and Johnson'
(referred to as DJ in the following) based on a.

method developed by Brown, Langer, and Schaef-
er." Only values of the 1S,&, level shifts for Z
between 70 and 90 are given in DJ, and within
this range, all three calculations are consistent
with each other.

At this point, we would like to mention that there
are at least two other calculations on the self-en-
ergy level shifts for a wide range of Z. One is
the phenomenological approach of Fricke, "and
the other, a nonrelativistic approximation by Au. '-

These two alternative calculations give results
that are of the correct order of magnitude; how-
ever, neither seems to be suitable for the treat-
ment of very heavy elements. For our present
purposes, we shall not discuss them further.
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FIG. 2. Values of the function F(Zu) obtained in this
calculation and the values of I' (Za. ) based on the results
of Mohr (Ref. 19) and Erickson (Ref. 23).
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The method used in the present work is basical-
ly the same as that of DJ. There are several ad-
vantages associated with this approach. In the
first place, the method is concerned with an ex-
act determination of the self-energy term of order
n, and expansions in powers of Z~ and nonrela-
tivistic approximations are avoided entirely. Since
we can extend our numerical evaluations of the
level shifts to the superheavy region, we are able
to check the results predicted by the other theo-
ries near the Coulomb singularity. Moreover, the
present method is not limited to pure Coulomb in-
teractions. For example, finite nuclear size ef-
fects can be included in the calculation to extend
the study of the self-energy level shift beyond the
Coulomb limit Z~ =1. This is of particular im-
portance in view of the recent rising interests in
the superheavy atoms. "'"'" In the following
sections, we shall first describe the formulation
of the DJ method and discuss the associated nu-
merical problems; we shall then present and dis-
cuss the results of our calculations.

II. THEORY

In this section, we give a brief description of
the formulation of our calculation. Details of the
method as well as formulas can be found in DJ
and in Ref. 24.

Following DJ, the renormalized self-energy
level shift ~E is given by

&E = &E —&E„+&E,+ &E"'. (2)

Here, &EQ is the self-energy contribution cor-
responding to Fig. 1(a). The terms hE„, dE„and
&E'" are all defined in DJ; these terms are intro-
duced to renormalize the electron mass. The
term aE„ is found from Fig. 1(a) with the bound-
electron propagator replaced by a free-electron
propagator. Both 4EQ and ~E„contain linear di-
vergences which cancel, leaving a logarithmically
divergent residue. The counter term ~E, is also
logarithmically divergent, but the sum of the first
three terms in Eq. (2) is finite. The fourth term
in Eq. (2}, AE"', is also finite and can be evaluated
by an independent calculation.

Evaluation of the &EQ term is carried out in Fur-
ry's bound interaction representation of QED."
The electron wave functions u„(r) satisfy the Dirac
equation

H,u„(r) = E„u„(r),

where H, = ia V+ Pm+ V(r)-
Hence, ~ and I3 are conventional Dirac matrices.

Natural units in which ti = c = 1 are used. V(r) is
a time independent external potential. In the nu-
merical calculations to follow, V(r) is chosen ei-

ther as a pure Coulomb potential, V(r) = Z-~/r,
or as a Dirac-Hartree-Fock-Slater (DHFS) poten-
tial including both finite nuclear size effects and
electronic screening; the full Slater average ex-
change is employed.

To reduce the 4EQ term to a form suitable for
numerical evaluation, the bound-electron propa-
gator is decomposed into eigenstates of angular
momentum using a technique developed by Brown
and Schaefer. " The angular integration is then
carried out, as well as the three-dimensional in-
tegration over the photon momentum k. As a re-
sul t &EQ is reduced to a su m of a multipol e se-
ries over l and an integration over the photon en-

ergiess

cu. For numerical purposes, the path of the
& integration is rotated from the real axis to the
imaginary axis in the complex & plane. One re-
sult of the rotation is the appearance of pole
terms. 4EQ then becomes

+EQ +EQ + i 7rRQ + 2riR/ (4)

In what follows, we shall refer to the term
(aE,' —dE„+ dE, ) as the main term of our calcula-
tion and, as explained before, it is completely
finite. Expressions for all the terms in the right-
hand side of Eq. (5) can be found in DJ and will
not be repeated here. In the next section, we shall
discuss some of the numerical aspects of the
evaluation of Eq. (5).

III. NUMERICAL CONSIDERATIONS

Since there is no 2miR„ term for the 1$,&, state,
the K-shell self-energy level shift consists of the
following three terms:

aE = (main term}+ &E"'+ i', . (6)

The evaluation of the imRQ term is straightfor-
ward and involves no essential numerical prob-
lems. In the ~E'" term, we have to deal with
the Fourier transforms of the electron wave func-
tions. For a Coulomb potential, these transforms
can be calculated analytically. For a self-consis-
tent potential, however, the wave functions have
to be generated numerically. For high momentum,
the integrands of the Fourier transforms oscillate
so rapidly that extreme care has to be taken to
avoid drastic loss of accuracy as a result of se-
vere numerical cancellation. Upper and lower
bounds of the 4E"' term have carefully been es-

Here, 4EQ is the self-energy integral after the
path rotation. imRQ and 2miR„are the residues
at the poles of the integrand. The expression for
the self-energy level shift then becomes

dE = (4E,' —aE, + hE, )+ 4E~"+ivRO+ 2viR»

(5)
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timated. The overall error resulting from this
term is found to be less than 1% even in the worst
cases.

The most difficult part of our numerical pro-
gram is perhaps the evaluation of the main term.
Specifically, we have to deal with the sum of a
multipole series and an integration over the pho-
ton energy &. For numerical purposes, we can
only carry out the calculation to a finite multipole
order l and to some cutoff energy & . Beyond
these limits, extrapolation techniques are re-
quired.

Gaussian quadrature is used to carry out the
integration from 0 to & . Thus, before any ex-
trapolation, the calculation reduces to the evalua-
tion of a two-dimensional series in l and ~. As
an illustration, we refer to Table I of DJ in which
the integrand of (AEO —&-E„) is tabulated as a
function of &u and l for the K electron of Hg(Z = 80)
in a pure Coulomb potential.

The techniques employed in the extrapolation of
the multipole series and those used in the ~ inte-
gration have been discussed in DJ and will not be
repeated here. Essentially, these techniques are
designed for the specific forms of the integrand in
the asymptotic regions. Accuracy of these ex-
trapolations depends strongly on the cutoff values,
l,„and co . The choice of the cutoff, in turn,
results from a compromise between two factors.
On the one hand, we always want to choose as high
a cutoff as possible to approach closely the asymp-
totic region and thus to ensure a good start for the
extrapolation. On the other hand, the numerical
program becomes more and more unstable as l

and & increase, resulting in less and less accu-
rate values for the integrand. In particular, the
stability of the numerical program decreases with
increasing Z. Various methods have been devel-
oped to monitor the accuracy of the extrapolations

and to determine the optimum cut-off values, l,„
and (d . The extrapolations beyond l and (d,„
are believed to be the main causes of our numeri-
cal errors. We shall return to this point when we
discuss our error estimates in Sec. IV.

IV. RESULTS

For a pure Coulomb potential, the results of our
calculation on the 1S», self-energy level shifts
with Z in the range 50-130 are presented in Table
I. Comparisons are made with previous calcula-
tions; throughout the 50-130 range, our results
agree well with Mohr's calculations. In particu-
lar, our values of F (Zn) increase very rapidly
as Zn -1, in agreement with Mohr's determina-
tion.

To go beyond the Coulomb limit Z~ =1, finite
nuclear size effects have to be included in the cal-
culation. We use a DHFS potential because it has
the advantage that the effects of electronic screen-
ing are automatically included along with those of
finite nuclear size. The nuclear model employed
is that of a uniformly charged sphere with a nu-
clear radius R being given approximately by

R = 1.2A' ' (Fermi). (7)
Here A refers to the atomic weight of the nu-

cleus; for Z greater than 100, the values of A are
obtained from Ref. 27. In Table II, results of the
1S,&, level shift including finite nuclear size ef-
fect and electronic screening for Z in the range
70-160 are listed. Values of F(Zo) for both the
Coulomb and finite nuclear cases are plotted in
Fig. 2.

Error estimates are difficult to make in view of
the complexity of the numerical program. How-
ever, we believe that the main source of error
arises from the extrapolation of the integration
described in the preceding section. When pos-

TABLE I. Values of the 1S&g2 self-energy level shifts (in units of Ry) and the function
F (Ze) for a pure Coulomb potential.

Z i 7|RO Main This work
F (Ze)
Mohr ' Desiderio"

50 31.19
60 37.46
70 43.83
80 50.41
90 57.41

100 65.24
110 74.8
120 88.6
130 116.3

-9.84
-9.61
—7.97
—4.71

0.35
7.27

15.4
20.4
24 3

—18.44
—22.39
-26.51
—30.50
—33.76
—35.12

—30.5 + 1.0
-11.6+ 2.1

98.1 + 11.5

2.91
5.46
9.35

15.20
24.00
37.39

59.7+ 1.0
97.4 + 2.1

190.1+11,5

1.88
1.70
1.57
1.50
1.48
1.51

1.65+ 0.02
1.90+0.04
2.70 + 0.10

1.864
1.684
1.568
1.503
1.488
1.532
1.661

2.808 + 0.050

1.53
1.48
1.45

~ Values except F (130m) are taken from Reference 19.
Reference 5.' Private communication.
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TABLE II. Values of the 1S&/2 self-energy level shifts (in units of Ry) and the function
F (Zn) for a DHFS potential including finite nuclear size.

imRO gE(2) Main F (Zo')

70
80
90

100
110
120
130
140
150
160

43.46
50.01
56.94
64.61
73.67
85.45

102.64
131.3
179.7
257.2

-8.12
-5.23
—0 ~ 57

5 99
14.37

23.70 ~ 0.03
31.10 + 0.05
27.6 + 0.2
—3.0 ~ 0.4

—82.8 +0.8

-26.23
—29.93
—33.00
-34.42
—32.53
—23.73
1.8+ 2.1

60.0+ 4.8
171~ 5+ 11.3
367.0+ 26.0

9.11
14.85
23.37
36.18
55 ~ 51
85.42

135.5 ~ 2.1
218.9+ 4.8
348.2+ 11.3
541.4+ 26.0

1.53
1.47
1.44
1.46

1.53 + 0.02
1.67 + 0.02
1.92+ 0.03
2.30 + 0.05
2.78 + 0.09
3.34 + 0.16

sible, the cutoff energy ~ is so chosen that the
extrapolated tail integral is at least two orders
of magnitude smaller than the truncated integral.
Thus, the overall accuracy of our calculation
should not be affected significantly by uncertain-
ties in the extrapolation. For most of our results,
errors are believed to be less than 1%.

However, when Z is very large, or when Zz —- 1
in the case of a pure Coulomb potential, the tail
of the integration drops off so slowly that the
remaining part of the integral, after truncation,
is not at all negligible. Since the numerical pro-
gram is unstable at high energy as explained in
the preceding section, we must limit the size of

We can roughly estimate the corresponding
numerical errors in terms of the uncertainties in
the tail integrals. Our errors estimated from the
tail integrals are included in Tables I and II and
in Fig. 2.

Qf course, from the theoretical point of view,
apart from these numerical errors, there are also
uncertainties arising from the specific nuclear
models chosen and from the values of the nuclear
radius employed in the calculations. We believe,
however, that the level shifts should be insensi-
tive to these factors. In fact, we have changed the
radius R by a few percent and the resulting changes
to the level shifts are so small that they are com-
pletely negligible in comparison with the numeri-
cal uncertainties. We therefore assume that er-
rors arising from other sources are comparatively
smaller, and can be absorbed in the rough error
estimates already made.

As we have mentioned in the introduction, ac-
curate DHF calculations of the 1S,/, electron bind-
ing energy including various corrections have been
made for fermium Z = 100,"" and the theoretical
values are in excellent agreement with precise ex-
perimental measurements. However, the value of
the self-energy correction used in Ref. 11 is ob-
tained from an extrapolation based on the results

TABLE III. Comparison of the theoretical and experi-
mental 1S&/& electron binding energy (keV) in &ooFm.

Sum of all other
effects -142.449 -142.449
Self-energy 0.492 0.484
Ei g (Z= 100) —141.957 —141.965

Experimental value ' -141.967 + 0.013 —141.967 + 0.013

Reference 11.
b This ~vork.

' Reference 10

of DJ for Z = 70 —90. Since a more exact value of the
Z = 100 self-energy is now available, the theoreti-
cal 1Sy/2 binding energy of yppFm can be reexam-
ined by replacing the value of the self-energy cor-
rection in Ref. 11 by that obtained in the present
calculation. As can be seen from Table III, the
agreement between the present theoretical value
and the experiment is still quite satisfactory. In
fact, if the contribution from other binding effects
is replaced by that given in Ref. 12 instead of that
given in Ref. 11, the theoretical value thus ob-
tained is still consistent with experimental mea-
surements. This shows that the order of magni-
tude of the present results is reasonable and illus-
trates the utility of the DHF scheme for calculat-
ing the binding energies in the superheavy region.

As we can see in Fig. 2, the function F(Zn) in-
creases rapidly for Z&100. This means, in ac-
cordance with Eq. (1), that the rate of increase of
the self-energy correction is faster than (Za)' in
the superheavy region. The level shift at Z= 100
already accounts for 0.3% of the 1Sy/2 electron
binding energy. In view of the strong Z dependence
of this correction, the effect of the level shifts
for higher-Z atoms will be even more important.
It has been pointed out that for some critical
charge Z„= 170, the 1S,/, state will reach the
lower continuum with binding energy B = 2n~c'.
Further increase in Z will lead to "diving" of the
bound state into the positron continuum.
Rough estimates based on the extrapolation of our
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present results shows that the self-energy correc-
tion will at least be 1% of the 1S,&, electron bind-
ing energy near the critical region. Together with
contributions from other effects, such as the vac-
uum polarization which has already been examined
elsewhere, "we expect that the value of the critical
charge Z„will be altered somewhat. This will be
of interest because the prediction of the point of
diving by QED could be a, test of the theory in the
presence of a strong external field.

It should be mentioned in closing that Labzovskii

(Ref. 22) predicts the Coulomb singularity in self-
energy at Zz = 1 and estimates the level shift for
a finite nucleus at Z = 137 to be &E = 25 + 10 keV.
One sees from Table II that the actual value of
the self-energy at 137 is an order of magnitude
smaller than Labzovskii's estimate.
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