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Impact-parameter method for proton —hydrogen-atom scattering variational bounds
on the 1s charge-exchange amplitudes~
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A trial wave function that is a linear combination of two traveling hydx'ogenlike basis func-
tions which contain two variable-charge parameters and a polarization parameter has been
used to obtain bounds on the second-order error term in the variational principles of Dem-
kov and Storm that are comparable to the magnitudes of approximate 1s charge-exchange
amplitudes. It is demonstrated that the erxor function b,&(X;) can be employed to judge var-
ious calculations and as an aid in adjusting parameters in the trial wave function to obtain
better bounds. Based upon the use of 6& as a measure of error in an approximate trial wave
function, we conclude that the Euler-Lagrange variational method is not the optimal ap-
proach. Suggestions are made for future work which might improve the calculated bounds.

I. INTRODUCTION

The proton-hydrogen-atom scattering problem
is one of the simplest three-body problems in-
volving the rearrangement of atomic particles.
Furthermore, in the important intermediate ener-
gy x ange, roughly specified as 1-100keV, this
three-body problem can be reasonably simplified
by the adoption of the semiclassical impact-para-
meter approximation. Despite the simplicity of
the impact-parameter model system, it has not
been possible to solve the time-dependent Schro-
dinger equation for the impact-parameter wave
function.

Approximate solutions are customarily genera-
ted by expressing an approximate or trial wave
function as a linear combination of a finite num-
ber of square-integrable basis functions. The
most popular basis has been the set of traveling
hydrogenic orbitals introduced by Bates and Mc-
Carroll. ' However, as Wilets and Gallaher' ob-
served, trial wave functions expressed in terms
of these basis functions lack sufficient flexibility
to adequately represent the exact impact-para-
meter wave function during the middle of the col-
lision. The Sturmian' and pseudostate' basis sets
were introduced in an attempt to deal with this
defect. However, trial wave functions constructed
with these types of basis functions cannot in gen-
eral satisfy the boundary conditions imposed by
the asympotic forms of the exact impact-para-
meter wave function. ' Furthermore, in the pseu-
dostate method, one introduces an artificiality
by including arbitrary functions. For example,
Cheshire, Gallahex", and Taylor' included arbi-
trary functions which are for all time approximate
representations of the lower bound states of the
helium ion. These difficulties could be avoided

by adopting the more powerful approach apparent-
ly suggested to %ilets and Gallaher' by Russek.
The flexibility in the trial wave function could be
increased by including time-dependent variable
parameters in the basis functions, and these para-
meters would be continuously adjusted to change
so that the atomiclike chara, cter required for large
I t I is continuously changed into molecularlike
character as the two protons approach. Cheshire
developed a variational framework in which to
exploit this suggestion, ' and the approach, which
has been referred to as the Euler-Lagrange varia-
tional method, is based on the requirement that
the functional considered by Sil' be stationary.
Cheshire' and MeCarroll, Piacentini, and Salin'
have investigated the case of time-dependent nu-
clear charge parameters in the j.s traveling hydro-
genlike basis functions. Although Cheshire's
method is really not variational in the sense that
the functional is stationary for the types of varia-
tions represented by available trial wave func-
tion, ' " the approximate transition amplitudes
ultimately obtained are second-order accurate xo"x

Other variational methods have been suggested" "
and recently applied. "

By following an indirect variational approach,
it is possible, in prineiP/e, to obtain exact im-
pact-parameter tx ansition amplitudes. Spruch"
and later Storm"'" derived upper and lower varia-
tional bounds tha, t bracket the exact amplitudes,
and thus by adjusting the parameters in these
bounds, one can, at least in principle, bra, cket
the amplitudes as closely as desired. An error
function which is a measure of the error associa-
ted with the trial wave function has been intro-
duced. " The absolute values of the errors in the
approximate transition amplitudes are uniformly
bounded by the magnitude of the error function.
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One can, as we shall demonstrate, use the error
function to judge various calculational approaches,
and as an aid in the adjustment of the parameters
in the trial wave function to yield better bounds.

A preliminary report which gave the magnitudes
of the variational bounds for some simple trial
wave functions has been published. " The purpose
of the present work is to describe the calculation
in greater detail, present new results, and, based
on this exploratory work, attempt to assess the
future success of this indirect approach. In Sec.
II, we develop the theory for the proton-hydrogen-
atom case and briefly comment upon its application
to more complex ion-atom collisions. The calcu-
lational procedures are discussed in Sec. III, and

the results and suggestions for future work are
discussed in Sec. IV. It should be pointed out that
although the basic conclusions stated in our pre-
liminary report remain unchanged, the previously
reported magnitudes of the error function and ap-
proximate 1s charge-exchange amplitudes have
been modified somewha. t as a result of a more
accurate account of some matrix elements and the
inclusion of the contribution to the error function
which comes from the integration from a large
positive time to infinity.

8
g,. =H(f}y, ,

r

which has the following asymptotic forms":

(2)

g, -P~e "' as t- —~,

tt,. -g(6„,+A„,)/re "n' as f-~,

II. THEORETICAL DEVELOPMENT

Let the position of proton 2 with respect to pro-
ton 1 be given by R(t), and let the positions of the
electron with respect to proton 1, proton 2, a,nd

the midpoint of R(t) be given by r„r„and r.
Three right-handed coordinate systems are cho-
sen as follows: First, as discussed by Bates,"
it is necessary to choose a sta. tionary coordinate
system with origin at the midpoint of R(t); for
convenience the axes are aligned so that the rela-
tive motion of the two protons takes place in the
y-z plane: Therefore

R(t) = by + vtz,

where b is the impact parameter and v is the ve-
locity of the incident proton. Second, it is con-
venient to choose two rotating coordinate systems
with origins at the two protons, and with z axes

A,

directed in the R(t) direction.
One then seeks the solution to the time-dependent

Schrodinger equation:

where the subscript i denotes the initial state from
which the state vector g,. evolves. The Hamiltonian
in Eq. (2) is

1 1 1
~V R'

and it can be expressed as

H = h, —1/r, + 1/R = h, —1/r, + 1/R,

where h, is the Hamiltonian for the hydrogen atom
with proton i as the nucleus. The asymptotic forms
of the wave function are expressed in Eq. (3} in

terms of the states of the Schrodinger time repre-
sentation in which excitation is most conveniently
described; these dynamical states are"

(6)

where T is the unitary operator corresponding to
the translation of the origin from proton 1 to the
midpoint of R(f). The quantities P„and e„are
eigenvalues and eigenfunctions of the hydrogen-
atom Hamiltonian h„and the A„,. are the impact-
parameter amplitudes for the transitions from the
initial state (t), to the final states Q„. For discrete
indices n, the A„; correspond to the amplitudes
for excitation. The impact-parameter wave func-
tion can also be expressed in terms of the dynam-
ical states of the time representation in which
charge exchange is most conveniently described;
in this case the unperturbed states are (Pr2j. "

In order to obtain approximate transition amp-
litudes, one must select a trial wave function X,
that belongs to the class of functions that have the
same asymptotic forms as P;. Consider trial
wave functions expressed as a two-centered linear
combination of parametrized traveling hydrogen-
like orbitals:

N

x,. =g g c„,„(f)x.,(&.,), (7)
P= j. ff&=1

where the f„~ parameters in the basis functions X„~
are restricted by the requirement that the basis
functions approach traveling hydrogenic orbitals
as I t I

—~. Trial wave functions such as those of
Eq. (7) belong to the set of acceptable trial wave
functions, since in the limit It I- ~ the states Q„
or ft}„2 approach traveling orbitals, and bound
states on different centers are orthogonal. Since
the variational principles given by Demkov, "
Spruch, "and Storm" require that the dynamical
states of the system, in this case the set {P„jor
equivalently the set (Q„,), be known, it might ap-
pear that these variational principles, and the
variational bounds which follow from them, wouM
not be applicable when two-centered traveling hy-
drogenlike trial wave functions are employed.
However, it can be easily demonstrated that the
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varlatlonal pl'lnclples of Demkov Rnd Stornl Rre
applicable for trial wave functions in the form of
Eq. (7) since the basis functions X~ approach Pr
or Q~, in the limit Itj-~, and bound states on dif-
ferent centers are orthogonal in this limit. In par-
ticular one can obtain the result"

A„, , =C„, , iJt(x„, s, x;)+i&(5$„,s, &g;), (8)

where X~ ~ is a time-reversed trial wave function
that approaches the state Q„„as jtj-~, and 5g~ „
is the error in this trial wave function. Although
it is not obvious, it appears that Spruch's varia-
tional principles" could be extended to the class
of trial wave functions represented by Eq. (3) by
the same type of argument.

By neglecting the unknown second-order term
&, the right-hand side of Eq. (8) provides a sec-
ond-ox der accurate estimate of the exact tran-
sition amplitudes. Of interest, therefore, is an

estimate of the error in the multitude of approx-
imate transition amplitudes that could be genera-
ted in this manner with txial wave functions X„~
and X&. If the trial wave functions remain normal-
ized for all time, it can be shown by using the
Schwartz inequality that

where in general P =2 and 4, is the error func-
tion":

dt DX;

D(X,)is the d. eviation vector in the Schrodinger
equation corresponding to the trial wave function

X, Furthermore, if the trial wave functions are
both expressible in terms of the same basis func-
tions" and one requires that the Schrodinger equa-
tion be satisfied in the space subtended by thebasis
set, it can be shown that the integral 8 vanish-
es and P= 1; note that in this case one need not

explicitly determine the second trial function X„„,
and the trial amplitudes C„, associated with the
trial wave function X,. are, according to this vari-
ational principle, second-order accurate. A sec-
ond-order bound in the error term & has also been
obtained":

dt dt' D X„z t')
Spruce obtained this bound on the second-older
error term in a different variational principle
some time ago. " Note that according to Eq. (8)
the second-order bound 4, bounds the error in
each approximate amPlitude, while the error func-
tion ~, bounds the errors ~n the approximate amp-
litudes uniformly Obviously . it will be difficult to
calculate the second-order bound 4„however, in
the special case of symmetric transitions, such

as Is charge exchange, "
(12)

In order to use Eq. (8) one must generate tria. l
wave functions. One method is suggested by the
Euler-Lagrange procedure in which one requires
t,llRt

sax,.)=o(f a«x,.
i

0 —' ix,.))=0.
m OCI

However, if one calculates the variation in the
functional I about the exact wave functions, one
finds that, instead,

vf(q,.) = i+A„*,.(c„,-A„,), (14)
n

which is a first-order error. This result might,
therefore, lead one to conclude that one cannot
obtain a trial wave function fr om this procedure
that differs from the exact wave function by a sec-
ond-order term. However, if both trial wave func-
tions X~ and X; obtained by this method are ex-
pressible in terms of the same basis functions,
then one can demonstrate that the Euler-Lagrange
method yields, accordhng to Eq. (8), second-order
accurate transition amplitudes. In fact there are
many methods that can be used to obtain trial
wave functions: the Dirac- Frenkel methods given
by Chang and Rapp" and Storm, '

ox the method
given by Shakeshaft and Spruch" based on the func-
tional considered by Demkov. " Logically one
could also simply pick trial wave functions by trial
and error, or determine parameters in a trial
wave function that is required to satisfy the "fam-
iliar coupled equations" by minimizing the molec-
ular energy. As long as the integral' vanishes,
all methods yield according to Eq. (8) second-or-
der-accurate transition amplitudes, and the errors
in the approximate amplitudes are bounded uni-
formly by the error function. Clearly then, the
error function provides a logical measure of the
error associated with a particular trial wave func-
tion; other measures undoubtedly exist, but the
magnitude of the error function provides a con-
venient common yardstick. As we will demon-
strate the error function is also R valuable aid in
adjusting pal ameters in the bounds bracketing the
exact amplitudes.

The above theory rests in a fundamental manner
on the assumption that the states of the unper-
turbed system are known, and the trial wave func-
tion belongs to the class of functions that have the
same asymptotic forms as the exact wave func-
tion as j t j -~. This is necessary since one must
be able to define transition amplitudes. This con-
dition is not very restrictive, and it does not rule
out the possibility that the trial wave function may
contain pseudostate or Sturmian functions. As
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We consider a tmo-state trial wave function with
the form

X„=(1/)/2 )(X~+X„), {15}

X' =C;,(f))t',
and where the ba,sis functions y'„are traveling 1s
hydrogenlike orbitals containing the variable-
charge parameters Z,' and Z~ and the polarization
parameters a '.
X).(~:,~;, o') =(Ii~&)ft@~,(~:)+o'@,/„(~;)j

+ [4„,{Z,') +o'C ~,(Z~)]}

(17)

Following Bates and McCarroll' we choose the

long as the trial wave function belongs to the class
of acceptable trial wave functions, one mill be
able to define approximate tr ansition amplitudes, '
and obtain Eq. (8). If the trial wave function does
not satisfy this restriction, then one cannot de-
fine physically acceptable amplitudes, and the
calculation would certainly have limited signifi-
cance.

However, in the case of more complicated ion-
atom collisions, one does not have the exact wave
functions for the unperturbed states, and, con-
sequently, one must introduce additional approx-
imations. One way of dealing with this problem
is to recognize that many approximate wave func-
tions for the states of the unperturbed ion or atom
are good representations of the exact states for
most physical considerations. This implies that
one should modify the model Hamiltonian so that
it corresponds to the approximate unperturbed
states at hand. For example, given a finite set
of approximate wave functions one could diagonal-
ize the Hamiltonian in this set and thereby rede-
fine the possible unperturbed states and energy
levels for the model system. The theory developed
for the proton-hydrogen-atom case would then

apply for transitions between these new "unper-
turbed states. " Alternatively one could construct
model Hamiltonians that contain pseudopotentials.
The parameters in the pseudopotentials would be
chosen such that the approximate wave functions
for the unperturbed states are good representa-
tions of the outer atomlike orbitals. ""In either
approach, matrix elements between orbitals in the
same center will vanish in the limit ltl-~, and
consequently one will be able to define impaet-
parameter model transition amplitudes and ob-
tain Eq. (8).

traveling hydrogenlike orbitals to be
+jul/2 -a(E + 0 /8)t

(r }e):iuz/2e i(E-~ + v /2 8)t
2pok 2p&

where
1 gy2

S

and where P„(r,) and )t),~ {r,) are normalized hy-
drogenlike orbitals centered on proton k", the up-
per sign in Eq. (18) applies when 0 = 1, while the
lower sign applies when k = 2. Following %ilets
and Gallaher, ' the basis functions X'„have been
chosen to have the parity + when the electronic
coordinates are reflected through the origin of the
stationary coordinate system. For any set of pa-
rameters Z,', Z~, and o', the expansion coeffi-
cients can be detexmined by solving the usual
coupled equations which in this case is simply

. d, ())), IH —i 8/st l)t'„)
&x' ix' &

= (G'/S')&;, . (19)

The calculation of the matrix elements in Eq. (19)
presents no diff'. culty. All single-centered in-
tegrals can be evaluated analytically. By foQom-

ing McCarroll, " the two-centered integrals ean
be reduced to one-dimensional integrals that can
be efficiently evaluated using a Gauss-Laguerre
quadrature. " The details of the solution of the
familiar coupled equations for the expansion coef-
ficients C,', are well known and need not be re-
pea, ted here. "

In one series of calculations the polarization
parameter was zero, and the parameters ~,' mere
chosen to be either the static parameters given
by Dalgarno and Poots, ' the Euler-Lagrange pa-
rameters given by McCarroll, Piacentini, and
Salin' for an energy of 2 keV and an impact para-
meter of 0.26a„or arbitrary functions. For our
work me fitted analytic functions of internuclear
distance to the parameters of Dalgarno and Poots,
and McCarroll, Piacentini, and Salin, and the
functions are shown in Fig. 1. The Euler-La-
grange parameters of McCarroll, Piacentini, and
Salin and the arbitrary functions are of course
dependent upon energy and impact parameter. In
another series of calculations, the polarization
parameters o' mere determined by solving the
Euler-Lagrange equation. For the case of fixed
functional forms for the charge parameters, the
Euler-Lagrange equations for the linear expan-
sion coefficients C'„a,nd the polarization para-
meters decouple, yielding the familiar coupled
equations for the C'„and simple quadratic equa-
tions for the polarization parameters. It is of in-
terest to note the asymptotic form of the polar-
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VARlABLE NUCLEAR CHANGE
vs R———DP—'—MPS

-'*----- A F

l.e'

l.6-':.)t

Zs
I.4- ':. 'I,

Q6-:j
Zs

Qg-

+Q t I 1 3 I I I I j j I I2

lO"-

N+(see ')

lO
I5

POS ITlVE DEVlATlQN vs R

E = 2. keV
NP———DP

----*--'A F

Q.2-

I I I I I I I I I I I I

2 4 6 8 lo l2

R (ao)
FIG. 1. Nuclear charge parameters Z~ vs internuclear

distance R. The curve labeled NPS8 is based on the
Euler-Lagrange method at 2 keV and an impact para-
meter of 0.26' t). The curve marked DP (Ref, 25) is
based on a static molecular treatment of H&. Curve AF
is an arbitrary function chosen to give good vatues of
the error function 6& at 2 keV. The NPS and DP curves
for Z~ are nearty identical at 2 keV.

ization parameter; we find as I t I- ~

128' 2 (Z~)'~'

(2+Z~)'[—,'Zp(Z~ 1) ya' e'„] R'

lQ I I I I I I I I I I 1 ! I

2 4 6 8 lo l2
R(a )

FIG. S. Deviations for positive parityN'=))D+)(/g as
functions of internuclear separation R at 2 keV andB
= 0.2Qp. The curves labeled NPS, DP, and AF refer to
the use of Z, curves given in Fig. 1. The NPS and DP
curves are essentially equivalent.

Dinwiddie of our laboratory, "who solved the static
variational problem numerically for the param-
eters g,', g~, and o'. Although this problem had
been originally set up by Dickinson~ in 1933, it
was never actually solved to our knowledge. The val-
ues of the 8,' molecular energies are compared to

In one series of calculations, all the parameters
g,', g~, and e' were determined by minimizing the
molecular energy. We are indebted to Dr. David
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FIG. 2. Error function 6& vs impact parameter at
2 keV for trial wave functions containing only the nuclear
charge parameters Z~~, with 0 ~ = 0. Curve NP corres-
ponds to "no parameters" with Z', set equal to unity at
a11R. Curves DP and AF correspond to the functions
given in Fig. 1.

lo' I I I I I I I I I I i I

2 4 6 8 l 0 l2

R (00)

FIG. 4. Deviations for negative parity N =(ID ((/X as
functions of internuclear separation R at 2 keV and 8
=0.2a(). The curves t,abeled NPS, DP, and AF refer to
the use of Z, curves given in Fig. 1.



TABLE I. Comparison of exact and approximate electronic energies of H, . The approxi-
mate values were calculated by Dinwiddie {Ref. 28) using a molecular wave function given by
Eq. {17), with translational factors set equal to unity.

Exact Approximate Approximate

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
8.00
9.00

10.00
12.00
14.00
16.00
18.00
20.00

2.10145
0.26501

—0.249 05
—0.451 79
-0.541 80
-0.582 32
-0.598 72
-0.602 64
-0.599 95
-0.593 82
-0.586 02
-0.577 56
-0.56Q 86
-0.546 09
-0.533 94
-0.524 42
-0.517 23
-0.511 97
-0.508 21
-0.505 59
-0.502 57
—0.501 19
-0.500 58
-0.500 17
-0.500 07
-0.500 03
-0.500 02
-0.5QQ 02

2, 102 30
0.266 17

-0.247 36
-0.449 68
-0.539 49
-0.579 97
-0.596 36
-0.600 29
-0.597 63
-0.591 55
-0.583 85
-0.575 55
—0.559 26
-0.544 89
-0.533 04
-0.523 70
-0.516 64
-0.51148
-0.507 82
-0.505 28
-0.502 39
-0.501 09
-0.500 52
-0.500 15
-0.500 06
-0.500 03
-0.500 02
-0.500 01

3.49581
1.48312
0.795 60
0.435 19
0.20543
0.043 50

-0.07645
-0.167 54
-0.237 64
-0.292 07
-0.334 63
-0.368 09
-0.415 50
-0.445 55
-0.46483
-0.477 29
-0.485 38
-0.490 64
-0.494 06
-0.496 27
-0.498 61
-0.499 54
-0.499 90
-0.50006
-0.500 05
-0.500 03
-0.500 02
-0.500 02

3.569 04
1.523 32
0.818 11
0.447 14
0.211 27
0.046 52

-0.074 81
-0.166 59
-0.237 06
-0.291 74
-0.334 42
-0.367 94
-0.41541
-0.445 49
-0.464 79
-0.477 25
-0.485 35
-0.490 61
-0.494 03
-0.496 25
-0.498 59
-0.499 53
-0.499 89
-0.500 05
-0.500 05
-0.500 03
-0.500 02
-0.500 01

the exact values in Table I. It should be noted that
although approximate molecular orbitals mere used
as basis functions, the energy phase factor in Kq.
(17) is given by Eq. (18). Hence the relative phase
of the tmo basis functions is different from that
found in molecular calculations.

For a tmo-state trial. wave function such as X„
of Eq. (31), the norm of the deviation vector can
be put m an interesting form which greatly faczlx-
tates the calculation of 4, . %e have

(21)

which follows from the normalization condition,
me find that

IIDII'=kllD'll'+lllD II',

Note that in this special ease one need not deter-
mine the linear expansion coefficients C,', in order
to calculate the error function. By the straight-
forward application of the analysis leading from
Eq. (38) to Eqs. (40)-(43) one can reduce the GG
elements to a sum of matrix elements of the form

&4'~J f(r„or r, ))4'„&, j,j'=1s, 2p, k, k'=l, 2,

where f(r') is a rational function of r'. All single-
centered matrix elements can again be evaluated
analytically, and most of the two-centered matrix
elements can again be reduced to one-dimensional
integrals which can be efficiently evaluated using
a Gauss-Laguerre quadrature. However, the pro-
cedure cannot be applied to the matrix elements
with the form

I ID'II' = (1/3')(«' —IG'I'/8'),

GG H ia x» H i8
X

(24)

(25)

which occur mhen g,' W 1 and g~ W 1. The four ma-
trix elements of this type mere reduced to tmo-
dimensional integrals mhieh were evaluated using
Gauss-Legendre and Gauss-Laguerre quadratures.
This method is not very efficient; typically the
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p. = (1/2 p, H3(~*/n. ,)
—(&*/n*„)[-.' z,(z, —1)+w„])~*,

P. =(1/2P, )[-: (~'/n;)1- P,'/2P„
(31)

(32)

where we have used the fact that in the asymptotic
region g,'=1 and g& =g~, and we define

A =128v2 Z~~/(2+Z, }', (33)

n„=-.'z, (z, -1)+w„,
~m =~2~- ~i. ~ (35)

The integx al for the error function can be written
as

(36)

where T is a large time (-40ao/v), and the first
step follows from the time-reversal invariance of
the matrix elements, The first integral in Eq. (36)
was evaluated numerically using a standard spline
integration procedure. The smaller second inte-
gral in Eq. (36) was evaluated analytically using
the asymptotic forms given in Eq. (29)-(35).

IV. RESULTS AND DISCUSSION

The effect af nuclear charge parameters g,' in
the basis orbitals was studied in the first series of

first 20 points out of a 400-point Gauss-Laguerre
and a 16-point Gauss-Legendre quadratures were
required. The calculation of these four integrals
was the most time consuming step in the calcula-
tion. In the case of a varying g,', g~, and o', the
calculation for six impact parameters required
approximately 35 min of CPU time on an IBM
370-155 computer, and the evaluation of these
four two-dimensional integrals accounted for ap-
proximately 85% of this time.

It is of interest to note the asymptotic form of
the norm of the deviation vector; using the asymp-
totic forms of the integrals in Appendix A we find,
when o' =0,'~

i aD[i-1/ft&+ O(1/ft4); (28)

while using Eq. (20) for the asymptotic form of o'
we find

MIDI [
-

P, /&*+ P,/ft'+ P,/ft'+ o(1/ft'),

where

p, =[1+(w*/n*„}[—,', z', (z, —1)' +w'„+-,' z, (z, —1)w„]
——,'(x'/n„)(2+z, )(z, -1)—2(w'/n„)w„} ~,

(30)

calculations by setting the polarization parameters
equal to zero. Values of the error function 6,
are illustrated in Fig. 2 for a range of impact pa-
rameters and an energy of 2 keg. The solid curve
labeled NP corresponds to a calculation in which

5,' =1; or just the two-state traveling hydrogenic
calculation of McCarroll. " The dashed curve
labeled DP corresponds to a calculation in which
the static charge parameters shown in Fig. 1 were
used, while the dot labeled MPS corresponds to the
calculation in which the Euler-Lagrange param-
eters shown in Fig. 1 were used. The dotted curve
labeled AF corresponds to the calculation in which
the judiciously chosen but, nevertheless, arbitrary
functions shown, in Fig. 1 were used as the charge
par ameters.

As discussed in Sec. II, the error function pro-
vides according to Eq. (8) a common measure to
assess the error associated with each trial wave
function. The fact that the error function is small-
er in the static case indicates that by this mea-
sure the Euler-Lagrange variational method is not
superior to the static method. The fact that one
can choose arbitrary functions as charge param-
eters and obtain values of 4, lower than those ob-
tained in either the static or Euler-Lagrange cases
indicates that by this measure, neither the static
nor the dynamic Euler-Lagrange variational meth-
ods is the optimum method.

It is also possible to analyze the norm of the
deviation vector during the collision. The parity
components [~D "(

( are shown in Figs. 3 and 4 for
these three calculations. A study of Figs. 3 and 4
indicates that the superiority of the static method
to the Euler-Lagrange method in this case can be
largely attributed to the fact that the error func-
tion ((D [~ increases at internuclear separations
less than R =0.75 where the parameter g, turns
upward. This conclusion is in conflict with the
argument given by Cheshire that would lead one to
expect that g, should approach unity as R-0.' It
should be noted that Cheshire's argument' is based
on the assumption that the translational factors
introduced by Bates and McCarroll' are correct
at small internuclear separations, and it seems
unlikely that this assumption is valid. " Finally,
it is of interest to note that the arbitrary functions
used as charge parameters in the calculation
labeled AF were chosen by analyzing the parity
error functions for a variety of functions. Such a
trial and error approach may have merit in gen-
eral, since it appears to be time consuming to
determine parameters by solving the necessary
equations.

In the second series of calculations the effect of
the polarization parameters o' was investigated.
The variable-charge parameters g,' were set
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FIG. 5. Error function 6& and 1s charge-exchange
amptttu« IC I, l vs impact parameterS at 5 keV for
trial wave functions containing all six parameters Z~,
Z&~, and fT . Symbols are the same as in Figs. 1 and 2.
The error function b,

&
= 26& is also plotted for curve MO,

which refers to Dinwiddie's approximate molecular par-
ameters.

equal to unity, and the charge parameters p~ were
taken to be either one or two. The results obtained
in these calculations indicate that choosing Z~ =2
is superior to choosing g~ =1, and again it appears
that the static method is superior to the Euler-
Lagr ange method.

In the final series of calculations, all the param-
eters g,', g~, and o' were allowed to vary during
the collision, and values of the error function are
shown in Fig. 5 for an energy of 5 keV. The curve
labeled NP again corresponds to the two-state
traveling hydrogenic calculation with no adjustable
parameters included, and the curve labeled MQ
corresponds to a calculation in which the static
parameters were used. The curve labeled AF
again corresponds to a calculation in which a set
of arbitrary functions were used as parameters,
and these arbitrary functions were chosen by
analyzing the deviation curves [ ~D'~

~
for a variety

of arbitrary functions. The solid oscillatox y curve
corresponds to the approximate 1s charge-exchange
amplitudes obtained when the molecularlike orbi-
tals were used as basis orbitals. Finally, the
dotted curve b, , shows values of the second-order

l0-

8-

6-

E= 5keV
NP

I I I I I

2 5 4 5 6 7 8
B{ao)

FIG. 6. Error function 4& as a function of impact par-
ameter B at 0.1 keV for trial functions containing all
six parameters Z~, Z&~, and o . The symbol NP refers
to the case where Z~8= 1 and 0'~ = 0. The symbol EL
corresponds to an Euler-Lagrange calculation of these
parameters, and DP refers to Dalgarno and Poots's
molecular calculations of the parameters. MO refers to
use of Dinwiddie' s approximate molecular parameters.

error bound 6, for the molecular-type trial wave
function, and„as shown in Table II, the magnitudes
of the second-order bound are only slightly larger
than those of the approximate 1s charge-exchange
amplitudes for the range of impact parameters
3.5-6.0. In view of the simplicity of the trial wave
function we consider this to be an encouraging re-
sult, and we feel that there is hope that a more
sophisticated trial wave function will result in
lower bounds.

In Figs. 6-10 the values of the error function
obtained by employing parameters from the NP
case, the DP case, the Euler-Lagrange polariza-
tion calculation, and the molecular-type calcula-

TABLE El. Comparison of approximate 1s charge-
exchange amplitudes I C&, I with values of the second-
order bound 0& for an energy of 5 keV.

I I I I I I

2 5 4 5 6 7 8
B(ao)

3.5
4.0
4.5
5.0
5.5
6.0

0.75
0.57
0.4i
0.29
0.21
0.14

0.85
0.60
0.41
0.3i
0.25
0.20

FIG. 7. Error function 6,
&

as a function of impact
parameter E at 5 keV for trial functions containing aH
six parameters Z~8, Z&~, and o+ . The symbol NP refers
to the case where Z~ = 1 and 0' = 0. The symbol EL
corresponds to an Euler-Lagrange calculation of these
parameters, and DP refers to Dalgarno and Poots's mole-
cular calculations of the parameters. MO refers to use
of Dinwiddie's approximate molecular parameters.
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tion are compared at various energies. At an

energy of 25 keV the velocity of the incident pxoton
is approximately that of an electron in the first
Bohr orbit, and, hence, it is not surprising that
the molecular-type trial wave function is superior
to the atomic-type trial wave function for energies
below 25 keg, while the reverse is true for ener-
gies greater than 25 keV. It may be somewhat
surprising, however, to observe that the trial
wave function with the Euler-I. agrange polariza-
tion parameters yieMs bounds in the 100-keV case
that are inferior to those obtained with just the
traveling 1s hydrogenic trial wave function. Fig-
ures 6-10 indicate that it is important to account
for the polarization of the atom. In fact, except
for impact parameters less than -la~, it appears
that polarization is more effective than variable
nuclear charge in reducing calculated bounds.

It is perhaps of interest at this point to consider
ways in which the error function might be reduced
in future work. Fixst consider the results shown
in Fig. 4 for 5 ke7. At an impact parameter of
4m~, where the approximate charge-exchange am-
plitude is roughly 0.5, we note from the asymptotic
form of the norm of the deviation vector shown in
Eg. (28) that roughly 40')D of the error associated
with the two-state traveling hydrogenic trial wave
function can be attributed to the integration of the
1/R' term in Eq. (28) from R=+~ to R =+10a,.
The account of the polarization of the atom pro-
vided by the polarized 1s functions used in this
work modifies the asymptotic form of the devia-
tion vector as shown in Eq. (29) and thereby re-
duces the error by approximately 40%. However,

E= 50keV
NP———DP—.—E L

*--------.* M 0
2-

i I I I l I I

I 2 3 4 5 6 7 8
B(a, )

FIG. 9. Error function 6,
&

as a function of impact par-
ameter B at 50 keV for trial, functions containing all six
parameters Z', , Z&, and o . The symbol NP refers tothe
case where Z~ = 1 and rr'= 0. The symbol EL corres-
ponds to an Euler-Lagrange calculation of these para-
meters, and DP refers to Dalgarno and Poots's molecular
calculations of the parameters. MO refers to use of
Dinwiddie's approximate molecular parameters.

if one considers the asymptotic form of the norm
of the deviation vector given by Shakeshaft" for
the case of exact H,

' molecular basis orbitals, it
is observed that the 1/R' term does not occur, re-
flecting the fact that the exact H,

' traveling molec-
ular basis functions provide a better account of
the long-range polarization effect. It may, there-
fore, be possible to obtain a reduction in the mag-
nitude of the second-order bound by using 1s
hydrogenlike orbitals that provide a more sophis-
ticated account of polarization. First, one could
parametrize the P-like character in the is orbi-
tals in a way that would allow the direction of

E = lOOkeV
NP———DP—EL

-"--.*-- *--- MO

I I I I I I

2 5 4 5 6 7 8
B (ao)

I I I I I

2 3 4 5 6 7 8
B(a, )

FIG. 8. Error function 6& as a function of impact par-
ameter B at 25 keV for trial functions containing all six
parameters Z~, Z&~, and o ~ . The symbol NP refers to
the case whereZ, =1 and o'~=0. The symbol EL corres-
ponds to an Euler-Lagrange calculation of these para-
meters, and DP refers to Dalgarno and Poots's molecular
calculations of the parameters, MO refers to use of
Dinwiddie's approximate molecular parameters.

FIG. 10. Error function 6& as a function of impact
parameter B at 100 keV for trial functions containing all.
six parameters Z~, Z&~, and o'~. The symbol NP refers
to the case where Z~e = 1 and o'~ = 0. The symbol EL
corresponds to an Euler-Lagrange calculation of these
parameters, and DP refers to Dalgarno and Poots's
molecular calculations of the parameters. MO refers
to use of Dinwiddie's approximate molecular parameters.
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polarization to lag the R(t) direction; this dynamic
effect is partly responsible for the m coupling in
molecular calculations. Second, one observes
that the essential difference between the approxi-
mate H2 molecular-type basis functions used in
this work and exact H~ molecular basis functions
is really a difference in the phase f3ctors in the
two types of basis functions; this suggests that
it might be possible to obtain an improvement by
including parameters in the "energy phase fac-
tors, " and then choose these factors to minimize
the norm of the deviation vector in the asymptotic
region.

It would also be of interest to investigate the
suggestion of Schniederman and Russek" that one
include parameters in the traveling or translation-
al factors in the basis functions. The effect of
such parameters could easily be studied in the
two-state calculation described here, using the
magnitude of the norm of the deviation vector as a
guide in choosing suitable functions for the param-
eter f(r, R) suggested by Schniederman and Rus-
sek."

FinaDy, one might expect that the error function
could be reduced by including more states, possi-
bly parametrized, in the trial wave function.
Rather extensive calculations have been report-
ed2 4*26 with as many as seven states on each pro-
ton included in the trial wave function. '~ The ex-
cited states affect the Is charge-exchange ampli-
tudes somewhat, and it seems likely that the ad-
dition of these excited states would reduce the
error.

Qne might be concerned that such work might be

limited in accuracy since the trial functions do
not account for the ionization process. '~ Vfe note
that the cross sections for ionization are small,
especially so for energies below 25 keV. 33 This
suggests that the flux lost to the ionization must
be small in the asymptotic region. Now continuum
effects can be quite large for, say, R&15ao, but
it is possible in principle to completely account
for the continuum in a finite region of space with
square-integrable functions. Viewed generally,
the indirect variational approach provides a
framework in which to do this; one includes pa-
rameters in square-integral basis functions and
then chooses the parameters to minimize the error
function. In fact, if it shouM become difficult to
choose parameters on the basis of physical in-
tuition, it might be useful to choose a trial wave
function that consists of two parts; one part would
contain the approximate amplitudes and would take
the proper form as ~t ( —;the other part would
vanish in the asymptotic regions but would contain,
arbitrary parameters that would be chosen to mini-
mize the error for R&15ao.

As observed by Aspinall and Percival, " it is
possible to evaluate analytically matrix elements
of the form

(Al )

Specifically we find

Ce„=2(Z, )'[&, + (1/2Z,'}rC,],

(Z»)' 24 2R' 1 5 10+ZQ
IP 32ga ~s gs g 5 g2 4 g3

10+Z»JP 12(10+Z»R») +Z»R 12(10+Z»R»)+Z4»R4 K
p Zp

{Z,)~(Z»)~ 2 1 3 6+y R ~ 6+y R
2&2R x X

' r'

(A3)

n

,„Q(2n —2h+1)!(nR)'» ',
u=x

(A7)

where g, and g~ are the charge parameters in the
orbitals, and

& =+s+ & Zp &

Z,„=,'R'" '[e "-'Z,-(o R-) e""Z,(-—nR)]

,„,Q(2n —2h)! (c.R)" ',
K,„„=,'R'"[e""Z„(-aR) + e "&-;(nR)]

I I 9 1
2 Z6

2' (Z»j'+ 32
R (2+Z»)' (Z»R)'

3S4 864
(Z, R)' (Z, R)'

(A8)

where E,( o)Ris the exponential integraV' and n
represents either g„g~, or y. From the asymp-
totic expansion" for the exponential integral, we
find from Eqs. (A2)-(AV) that as R- ~
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256&2 Zp+ 1 1228842 (Zp)'~ 1

(2 +Z p)' R (2 +Zp) R
(A10)

which are needed to derive the asymptotic forms
of the norm of the deviation vector given in Eqs.
(28)-(25).
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