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Theoretical analysis of isotropic-nematic transition properties~
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With the aid of a modified mean-field model, one in which the spatial correlations are handled by means of a
conventional classical liquid theory and the orientational ordering alone is subjected to the mean-field

approximation, we find it possible to correlate thermodynamic data near the isotropic-nemaiic transition

region. In contrast with the Maier-Saupe theory, we deduce accurately the volume change, latent heat, and

maximum supercooling temperature. The theoretical analysis when applied to PAA and MBBA leads to
results in quantitative agreement with experiment. We propose that measured data on other nematic and

cholesteric liquid cystals be subjected to tests under the same scheme.

I. INTRODUCTION

We wish to address ourselves to the question of how
much one can extract from a mean-f ield theory for
liquid crystals. It is generally conceded that the mean
field theory does quite well in predicting qualitative
features such as order-parameter changes and
phase diagrams. ' ' When it comes to understand-
ing thermodynamics quantitatively near phase-
transition regions, however, the approximation is
thought to falter. ' We disagree. Our view is that
if the approximation is introduced in the right con-
text, and if the thermodynamic analysis is carried
out correctly, the mean-field theory can go a long
way.

By the right context, we mean that in dealing with
nematogens, the mean-field approximation should
be applied only to determining the orientational or-
der. At liquid-crystalline densities, which are
essentially classical liquid or solid densities, it is
clearly inappropriate to apply a mean-field approx-
imation to the description of sPatial ordering. The
latter should be treated with a lattice model, or
better yet, with a conventional classical liquid
theory. Now, the lattice model, or any model
which fixes the intermolecular distance in an aver-
aging process, ' is not only unrealistic, but also
assumes as input a rather restricted spatial dis-
tribution of molecules: one which in all likelihood
is not consistent with the calculated orientational
distribution. References 2 and 3 did away with
such a model. The spatial dependence of the inter-
molecular potential was of forms susceptible to
mean-field treatment, but did not contain short-
range repulsions. Such models cannot sustain
configurational equilibr ium: They collapse under
pressure. Thus the resulting spatial distribution
of molecules, even when made consistent with the
orientational distribution, should be regarded as
input to the theory.

In this paper, we present a more sophisticated
model: one that accounts for short-range repulsive
interactions. We view the spatial distribution of
molecules as having resulted from a conventional
classical liquid theory. Instead of carrying out de-
tailed calculations, however, we determine the
relevant parameters in the model by using estab-
lished experimental data. A mean-field analysis
is then carried out to obtain orientational ordering,
and subsequently physical quantities related to the
isotropic-nematic (I N) transiti-on. As far as
liquid-crystalline properties are concerned, this
is still a mean-field theory. Statistical mechani-
cians with background rooted in Ising and other lat-
tice models may feel uncomfortable with our usage
of the terminology, but they must surely recognize
that liquid crystals are after all just classical liq-
uids endowed with orientational order. Thus in a
mean-field approximation, although a density func-
tion will suffice in describing the orientational
distribution, pair-distribution functions must still
make their presence felt to properly account for
spatial correlations.

Our theory begins with a pairwise potential

) = l'0('ri2)+ l'2(r12) P2(~1' ~2) + l'4(~12) P4(~i ' n2)

where the unit vector 0, denotes the orientation
(8, , p,.) of the fth molecule, and P, and P, are Le-
gendre polynomials. A potential of this form is not
the most-general expansion formula, but is suffi-
ciently general at the present stage of development
of microscopic theories for liquid crystals, and is
a most tractable expression as we shall soon see.
V, and V, are assumed weak compared to V, . Oth-
er than that, we need no information about the ex-
act nature of the forces.

The properties of the system are completely de-
termined by the v-particle distribution functions
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The one-particle distribution function, or the den-
sity function P"'(1)=—P"'(r„Q,), can be separated,
thus: n(r)f(8). For isotropic and nematic phases,
n(r) = p

—= 1/v. The two-particle distribution func-
tion P(2)(1, 2) =P"—'(r„Q„r„Q,) deviates from a
product of two density functions by a factor

g(1, 2) =P"'(1,2)/[P"'(l)P"'(2)],

and

P"'(1,2) = p'f(8, )f(8,)g(1, 2)

-p'f(8, )f(8,}g.(r„)

P"'(1,2, 3) =—p'f(8, )f(8,)f(8,)g(1, 2, 3)

-p'f(8 )f(8 )f(8 )g,"'(r„,r„,r„).

known as the pair-correlation function. g(1, 2) de-
pends on the positions and orientations of mole-
cules 1 and 2. For a system characterized by
pairwise interactions, g(1, 2) is of fundamental im-
portance. Strictly speaking it should be calculated
either from its definition, or by means of an ap-
proximate integral equation. ' In the crudest ap-
proximation where all correlations are ignored,
g(1, 2) is set to unity. We feel that this is too dras-
tic a move. If such an approximation is used for a
system in which the potential contains a repulsive
core, the internal energy will diverge. In our
mean-field model, it will be replaced by an effec-
tive g: one that is obtained by averaging g(1, 2) in
some reasonable way over all orientations. The
averaging process leads to a simple formula

g(1, 2) g, (r„—) =g,(r„
l
[V, + V,o,'i V,o,']/kT), (4)

where g, (r l
V/kT) denotes the radial distribution

function for a system of spherically symmetric
particles interacting via a pairwise potential V,
and

o,. =— f 8 P,. cos8) dA

denotes the ith orientational order parameter.
While we have no intention of actually postulating
V a.nd calculating g(1, 2), the result shown in Eq.
(4} is crucial in our analysis. We shall for this
reason end our introduction by "deriving" the equa-
tion that governs the orientationally averaged g,
and show that the solution is approximately given
by Eq. (4).

Differentiate P"', using the defining equation (2}:

V, P"'(1,2)=P"'(1,2)1, ( „' )
~ P"'(1,2, 2)v, (

' )d, d12, .

(6)

In the isotropic and nematic phases, we can write

(8)

(3) ~
—V(r„)

+ p g,' &12& +23 31) 1 &T dr3

where

(9)

V(r „)= V, (r„)+ V,(r„)o,'+ V,(r„)o,'

Equation (9) is the familiar Born-Green-Kirkwood-
Yvon (BGKY) integral equa. tion for a classical iso-
tropic liquid characterized by the pair potential
V. The solution g, (r») can be calculated in a num-

ber of ways. ' We thus obtain

g.«») -g.(r» l[Vo+ V.c'+ V,o 2]/kT). (»)
The appearance of g, affects the values of several
ther modynamic parameters. The deter mination
of the parameters will however remain empirical.
We do not intend to solve Eqs. (9)-(11) in this pa-
per.

II. THERMODYNAMIC FUNCTIONS

The identification of v and T, rather than P and

T, as the independent thermodynamic variables is
a most direct choice to make in a molecular theory.
It implies that one should work with the Helmholtz
free energy F, rather than the Gibbs free energy
G. This gets a bit awkward when phase transitions
are under consideration. Extreme care must be
taken. For example, it will not do to ignore the
difference between &G -=G, —G„and hF -=F, —F~
(where I and N denote isotropic and nematic
phases, respectively) by claiming that Pr2v =P(vz
—v„) makes an insignificant contribution, since
quantities of such magnitudes are precisely the
objects under study. Here lies one of the common
pitfalls in interpreting molecular theoretic results.

In this section we further develop our mean-

Substituting these expressions into Eg. (6) and in-
tegrating the resultant equation over 0, and A„we
find

—P(r„}
&,g.(r,.) =g, (r„}&, kT"
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=~,.„„+-,Npr. +-, Npr20, + 2Npr, o

where

(12)

y,. = V, r)g, r)dr,

ancI

field analysis. The Helmholtz free energy and
other relevant thermodynamic functions will be de-
rived and expressed in terms of a small number of
parameters.

We begin by defining an internal energy function-
al'h and an entropy functional 8 in the usual way,
and cluster expanding the latter. The results are

now depend on temperatures and volume —not so
much through the dependence of g,.(r) on T and v as
through the direct temperature dependence of the
last term in Eq. (18). However, the Maier-Saupe
theory, which yields latent heats off by a factor of
as much as 3, cannot be repaired by simply allow-
ing y2 and y4 to depend on T and n, since such a
move would necessarily render inconsistent statis-
tical and thermodynamic [Eq. (24)] definitions of
the entropy.

From Eq. (17) we recognize that 5 depends on

f(8) explicitly through the second term, and im-
plicitly through o, and 04. The minimization of 5
with respect to f(8) leads now to the usual trans-
cendental equations made up of Eq. (5) and

8 = S,.d„, Nk lnp-+ k lnN! —Nk f(8) lnf(8) dA
B, = py, o;/kT, . (19)

—z Npk g„(r) lng, (r) dr+ (14)
with

We shall not go beyond the terms explicitly shown
in Eq. (14). The last term is all important, as we
shall soon see. A free-energy functional 7 may
now be defined. A few steps of algebra ensue, in
which g, is expanded in powers of V,/V, and V, /V„
or equivalently V, /kT and V, /kT since V, =kT
Equation (4) allows us, then, to write

1
Z =— exp[- B,P,(cos8) —B,P, (cos8)]dQ.

4m
(21)

The Helmholtz free energy F is given by the mini-
mized 5, or

f(8) = (I/4oZ) exp[-B, P, (cos8) —B,P, (cos8)] (20).

Z is a normalization constant:

g, (r) =g„(r)+o',g, (r)+o',g, (r). (15)

Such a.n expansion is valid since V, and V, are from
the outset assumed weak compared to V„and thus

F = (Fo NkT In4p)-

+( NkT lnZ -—&Npy, o,' —aNpy, o,')
—:F, +F,. (22)

g,(r l (V, + V,o', + V,o,'),'kT) g, (r l V, /k—T)
g, (r t V„/kT)

Finally,

(18)

Thermodynamic definitions of pressure and en-
tropy then yield

0 1 2 2 2P = — " + 2 p'(y, o", +y,o,')
apl

7 = 5,+NkT f(8) lnf(8) dn

1 1+ —,Npy2CJ-,, + 2Npy, g,', (17) =—I', +F2

+ZP' O q+ —Cr4

(28)

where F, simply gathers all terms which do not
vary with the distribution function f(8), and

y,. = g„r V,. r)dr+ g,. r V, r dr
$= — —

' +Nkln4naFO
aT .

+ kT g,.(r)[1+lng, (r)] dr. (18) + Vk lnZ+ (Npy, o', +Npy, o'—,)

That Eq. (17) has the same functional dependence
on the order parameters, as the Maier-Saupe theo-
ry came from the fact that 8 was expanded in pow-
ers of V, /kT and V, /kT It preserves for. us the
correct prediction of order-para. meter discontinu-
ities at transition. There are, however, major
differences in interpretation. The entropy func-
tional, as seen from Eq. (14), no longer contains
Nk Jf(8) lnf(8) dQ alone. Also, y, and y, in Eq. (17)

Y N Y

:—S, +S„ (24)

where lnZ depends on f(8) and vanishes when o,
= 0'4 ——0.

The "constant-volume phase-transition point" at
given temperature T ca.n now be determined by
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equating E, and E„. Since E»=E, and E„=E,+E„
we require E2 to vanish. In particular, at the
transition temperature T» „,

(26)

where p = p»= p

III. MEAN-FIELD THEORY AND INPUT

EXPERIMENTAL DATA

Let us now summarize our procedure for carry-
ing out the mean-field analysis. It is clear that at
every T and p, by specifying y, and y„we can
solve Eqs. (6), (19), and (20) simultaneously to de-
termine the parameters B„B„o„ando,. Sub-
sequently, Eq. (22) can be used to evaluate E,. If
the T and p chosen happen to fa, ll on the transition
curve, E, should vanish. In particular, this should
be the case at T» „and p . If not, something must
have gone wrong in choosing the effective interac-
tion parameters y, and y, . Also, the order param-
eter o, at transition is rather well known experi-
mentally, and should be reproducible from the
mean-field analysis. Using as input the experi-
mental data Tg «, p [ pg(TI «) = p«(TI «)], and

o,(T,.„), we determine y,(T, „,p ) and y, (T, „,p*)
by requiring the calculated E, to vanish and the
calculated o, to agree with experiment. This con-
cludes the first stage of our analysis.

If y, and y, were independent of temperature and

density, the extension of the above procedure to all
T and p should complete the story. Equation (18},
however, indicates that such is not the case. We
must once again rely on experimental data for de-
termining these dependenees. The task turns out
to be simpler than might be expected. First of all,
as we mentioned earlier, most of the temperature
and density dependence of y,. enter through the last
term of Eq. (18). The reason is that, while g, {r)
does depend on T and p, the variations in its value
are small since we are not considering a very wide
range of T and p. Also, such dependences enter

y,. indirectly, whereas in the la.st term there is a
direct, linear dependence on T. In principle, then,
we should ignore the density dependence and write
y, in the form {a,. +b,T) Experiment. ,

' however,
indicates that it is preferable to write

For the transition curve ean be fitted quite well by
the relation

with I' in the range 4-5. Also, along the transi-
tion curve, o, rema, ins virtually constant. ' In an-
ticipation of the dominance of the o, and B, terms
over the o, and 8, terms, respectively, Eqs. (6)

TABLE I. Input information.

PAA

02
Infer r ed: (T&

B2 /0-~

&4/04
T» p (K)
&» =~ ~ (cm ~/moIe)
If, (10 ~~cm~/dyn)

P (1o-' K-')
l

O.35-O.4O "
0.067—0.099

-4.622 —-4.571
l.503-0.430
408 '
225'
7 58
90
4.0 ~

0.31-0.35
0.044-0.067

—4.680 ——4.622
3.374-1.503
318
260 f

4.87"
8.7'
4 7h

Reference 10.
Reference 9.
Reference 11.
Reference 12.

Reference 13.
Reference 14.

~ Reference 15.
Reference 8.

and (20} then imply that B, remains virtually con-
stant. Equation (19), when rewritten in the form

p= (&,~/o, )T/y„ (28)

and compared with Eq. (27), subsequently requires

y, to take the form (26), with

o = 1 —1/I'.

Since the range of T and p considered is rather
small, it is immaterial as to which form is the
most appropriate for y;. We accept the more con-
venient form (26), which is also that preferred by
experiment. Thus,

This concludes the second stage of our analysis.
Finally, as input to thermodynamic work to be

discussed in Sec. IV, we need experimental data
on. the compressibility x =I{.»=v~ and the coeffi-
cient of thermal expansion P = P» = P~ near the tran-
sition. All input data are listed in Table I for PAA
and MBBA, along with references. The inferred
mean field parameters are shown in the same ta-
ble.

Even though a large body of empirical informa-
tion is called upon, none has been, or indeed can
be, contrived to fit the phase-transition properties
(volume change, latent heat, and maximum super-
cooling temperature) desired. To a large extent
the information quoted in this paper was known to
previous authors, but has not been put to proper
use.
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IV. PHASE-TRANSITION PROPERTIES and since

The rest of our analysis relies heavily on the aid
rendered in Fig. 1. The curves labeled I and N are
presumably molecular theoretic results if one were
to actually calculate them. Both curves contain un-
physical portions (shown as dashed curves). The
actual isotherm, with its transition region greatly
exaggerated, is depicted as the continuous solid
line. The flat segment (2'C') comes out of an
equal-area, or Maxwell, construction.

The volume change at transition is given by

&v/v -=(v, —v ~) /v

= wr(Pc —Ps) +~~(Pz —P~) = II:(Pc —P~)

&S 8P p
Bp & ~T „K

we find

[(S~—Sc) —(S~ —S~)]= (P/&)™
with P = Pz =P„near transition. Equation (24),
which yields

S —S„=S,(p*) —[S (p ) + S,(p )]

g ('Y2&2+'Yq&g)

+2 * ~2 gT +04

(37)

(39)

85
Sc -Sc=(vc -vc)—

7 C
(35)

8$
SA. —SA (vx —v A) ~~r~ (36)

I

A',
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

FIG. l. Isotherm near the I-K transition (not to
scale) .

(32)

where the P's denote pressures calculated via Eq.
(23) at the subscripted points. K =K(=K„results
from the narrowness of the transition region.
Equations (23) and (30) yield

P —P„=P,(p~) —[P,(p*) +P, (p*)]

= (- i/2v*')(~, ~l+r,c,')
Next, the latent heat is given by

4H = T[(Sc -Sc) —(S~, —S„)]+T(Sc —S~) (34)

where the S's denote entropies calculated via Eq.
(24) at the subscripted points. But since

now gives us b H with the aid of Eq. (31).
The definition of a maximum supercooling tem-

perature requires a bit of reasoning. %'e shall be-
gin by expla. ining the physica, l meaning of the point
C in Fig. 1.

Let us imagine a hypothetical experiment being
carried out at fixed temperature T» „and decreas-
ing volume. The state of the system mill move
leftward along the isotherm labeled I in Fig. 1,
toward the point O'. As it reaches C', there is
nothing to tell the system that a phase transition
should occur. Each molecule looks around itself
and finds the volume allotted to it being decreased;
but as long as its specific Helmholtz free energy
continues to favor the isotropic phase, it mill re-
main on the I curve. The breakdown takes place at
C, where E~ becomes lower than E». Thus at C
the system must go over to the nematic pha. se.
vc(T), or v*(T), is thus the sma. liest volume that
the system can attain in the isotropic phase at
temperature T» „.

Now, construct a series of such "isotherms" at
decreasing temperatures T„T„.. ., all below
T» „. There will be some temperature T* at which
the smallest attainable isotropic volume v*(T*)
equals vc, at temperature T, „, i.e. , v" (T*)
=vc, (TJ „). Had we started the system at C' and
decreased temperature at constant volume, the
system if undisturbed mould have remained iso-
tropic all the way down to T*. At T*, however,
the comparison between E, and E~ requires the
system to turn nematic. Thus T* is the maximum
supercooling temperature at constant volume,
starting from T» ~.

In actual experiments, sometimes it is more
reasonable to look at the maximum supercooling
temperature at constant Pxessm'e. In that case,
we identify yet a, different temperature T', T, N

&T'& T*, at which the maximum pressure Pc(T')
barely touches the flat segment of the actual T, ~
isotherm, i.e. , Pc(T') =Pc,(TJ „). Starting from
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TABLE II. Calculated results vs experiment.

Gale. Expt. Calc,
MBBA

Expt.

»/~ (%)
DBz „(J/mole)

0.32-0.41
635-821
2.6-3.4

0.30-0.36
574-760
3.3'

0.11-0.14
280-360
0.8-1.0

0.11-0.14
284-381
0.8'

~Reference 9.
Reference 12.
Reference 14.

Reference 17.
Reference 18.
Reference 16.

5'0 dt, &

2 dT ~I-N
(40)

and is shown in Table II. Actually the so-called
maximum supercooling temperature is often de-
fined as the temperature at which the correlation
length of scattering intensity diverges in a light-
scattering experiment. Since this is rather out-
side the present scope of investigation, we publish

C' at T» ~, then, reducing temperature at con-
stant pressure moves the system leftward along
O'A', intersecting all the while the dashed portions
of the isotherms below T~ ~. At T', the system
turns nematic spontaneously.

In order to compare with the experiment of Ref.
16 (Table II), it is not totally clear as to whether
T* or T' should be used. Since the two values are
reasonably close, and we are seeking only an or-
der-of-magnitude agreement for this quantity,
either will be satisfactory. T*, being easier to
identify and calculate, is given by

it elsewhere. "
The collection of data and the calculation are

done for the two most popular nematogens: PAA
and MBBA. The phase-transition properties ob-
tained are seen to be in excellent agreement with
experiment. What we have presented is then a new

scheme based on the mean-field model for check-
ing consistencies among experimental —or pre-
dicting phase transition properties where none has
been measured. We propose that measured prop-
erties for other nematic and cholesteric liquid
crystals be subjected to similar analyses as pre-
s ented here as soon as sufficient thermodynamic
data are accumulated.
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