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Constant-coupling theory of nematic liquid crystals
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The mell-known constant-coupling theoryof ferromagnetism has been adapted to the problem of the nematic
liquid crystal. A cluster variational formulation of the theory is developed. The calculations are based onan
effective pair potential which is derived from the most general form of interaction by taking suitable averages.
Expressions for the long-range order, short-range order, energy, and free energy are derived. Numerical
calculations have been performed for a variety of effective interaction potentials. The temperature dependences
of the order parameters and thermodynamic functions have been determined. As required by experiment, the
theory is found to display a first-order nematic-isotropic phase transition. The results of the present theory are
compared to those of previous calculations; questions concerning the validity of the mean-field theory have
been clarified. The numerical results are also compared to a variety of experimental data.

I. INTRODUCTION

The statistical mechanics of nematic j.iquid cry-
stals is not nearly as advanced as the correspond-
ing theories of other ordered phases. The statisti-
cal mechanics of the va, rious magnetic phases and
of their critical behavior, for example, is very
highly developed. For nematic liquids on the other
hand, the only theories available include the hard-
rod model, "various forms of the mean-fieM ap-
proximation, ' ' and some Monte Carlo calcula-
tions. " In this paper we describe a new statisti-
cal treatment of the nematic phase based on the
well known "constant- coupling" theory of ferro-
magnets.

The constant-coupling theory was initially intro-
duced by Kasteleijn and Van Kranendonk" to pro-
vide an improvement over the Weiss mean-field
models. The precise relationship of this theory
to the rigorous cluster expansion treatment of
ferromagnets was subsequently demonstrated by
Strieb, Callen, and Horwitz. " Numerous ap-
plications of the theory to problems in ferromag-
netism and antiferromagnetism have appeared, ""
and in all eases the results are found to be more
representative of real magnets than those given
by the mean- field approximation. The eonstant-
coupling trea, tment provides more a,ccurate esti-
mates of the critical points, gives a more realis-
tic temperature dependence of the magnetization,
heat capacity, and high- temperature susceptibility,
and is capable of accounting for many of the ef-
fects of short- range order.

With its basis in statistical mechanics thus
firmly established, the constant-coupling theory
appears to be a natural candidate for the extension
of the theory of nematic liquid crystals beyond the
mean-field approximation. In Sec. II we will de-
velop a cluster va, riational approach to the con-
stant-coupling theory of the nematie phase by fol-

lowing the formulation of this method given by
Sma, rt." The effective pair interaction potential
used is derived from a general form of inter-
molecular pair potential by taking suitable aver-
ages. Expressions for the long-range order,
short-range order, energy, and free energy are
then derived and the self-consistency of the theory
is explored.

In Sec. III we describe the results of the theory
obtained by numerical solution of the equations for
a variety of effective interaction potentials. The
temperature dependence of the order parameters
and thermodynamic quantities are of special in-
terest. As required by experiment, the theory is
found to display a first-order nematic to isotropie
liquid-phase transition.

Section IV is devoted to a comparison of the
results of this theory to those of the mean-field
treatxnent, the Monte Carlo calculations, and
several other models. The difficulties encountered
in other attempts'"" at the cluster variational
approach are also examined and resolved. We con-
clude this paper in Sec. V by comparing our
numerical results to experiments on some real
nematic materials.

II. FORMULATION

A. Pair-interaction potential

The most general form of pair-interaction po-
tential v» between two axially symmetric mole-
eules can be written in. the form of the Pople ex-
pansion"

v„(r, (9„@„8„@,)

=4m Q Q Qu~ ~ (r)
Il-o I2-0 m

"&&,.(~l, vD~*...(~l, wl) .
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Here r is the distance of separation between the
centers of the two molecules; 0,', 0,', y,', y2' are the
polar angles of the two molecules defined as shown

in Fig. 1; Y~ (8, rp) is the usual spherical har-
monic; * denotes complex conjugation; and u~ ~, (r)
are functions of r that vanish for ]m ~)L„L,
Since v» is a real and even function of y,' —y2', the
functions u~ ~ (r) have the property that uz ~ (r)
=u.~ ~ (r).

A rigorous theory of a fluid system based on the
general form of pairwise interaction potential of
Eq. (1) is impossibly difficult. A simpler approach
is to derive an "effective" pairwise interaction
potential which can be obtained from Eq. (1) by
performing certain averages. That "effective"
pairwise interaction potential will then be the
starting point of the theory presented in this paper.

In order to derive an effective interaction po-
tential, we first express v» in terms of a polar
coordinate system based on the director of the
nematic phase n as the polar axis. The coordinate
axes for the molecules 1 and 2 must be rotated
from that shown in Fig. 1(a) to that shown in Fig.
1(b). The unprimed angles now describe the
orientations of the molecules with respect to the
new rotated coordinate system. In the new co-
ordinate system v» has the form

v12 = 4& +L&L2, & DP
10 L20 m

x Y,(8„y,)(D,„)*

x Yz,(8„y,),
where the D~~ are the elements of the Wigner ro-
tation matrices. " Now we take two successive
averages of v„. First, we average over all orien-
tations of the intermolecular vector r. Next, we
average v» over all values of the intermolecular
separation r. The combination of these two aver-
ages will remove all dependences of v12. On the
intermolecular vector r. Such a double average

(denoted by (( ) ) ) has been carried out by Hum-

phries et al. ' The resulting effective interaction
potential V» can be expressed as a series in

Legendre polynomials PL:

V„=—((v„))= g CIPI(cos8») .

v0 n L PL cos0»
L(even)

(4)

It should be noted that n2 -=1 and v, & 0 by definit
ion.

B. Cluster variational approach

Our task now is the formulation of a theory so
that the thermodynamic properties of the system
can be calculated from V». The simplest ap-
proach is the mean-field theory, which would

further reduce V» into a one-particle potential
(denoted as V„) by averaging over a.ll possible
orientations of molecule 2. Since the single-
particle orientational distribution is expected to
be axially symmetric about the director n and

therefore independent of y, such an average yields

V =- V„=—v, Q o.~ (P~) P~(cos8, ),
L(even)

where 0, is the angle of molecule 1 with respect
to the director n; and (P~), the average value of

PL, can be regarded as the order parameters of
the problem. If each molecule has z neighbors,
then the total mean field felt by the molecule is
z V„r. Given the form of V„F as in Eq. (5), the
order parameters (P~) can be determined by the
self- consistent equations

Here CL's are constants, and 0» is the relative
angle between the long axes of molecules 1 and 2.
In the following we will assume that C, &0 and that
the interaction potential V» cannot distinguish be-
tween the heads and tails of the molecules, which

implies that only the even L terms will be included
in the sum. If we further define v, = ~C, ~, n~—= C~/
C„ then V» can be put in the form

. /I,

8 f, P~(cos8, ) exp[ Pz VMr(cos8, ) ]d(cos8, )

f ' exp[ pz V„r(c—os8, )] d(cos8, )

(b)

FIG. 1. Coordinate systems required to describe the
interaction between two axially symmetric molecules:
(a) the intermolecular vector x is the mutual polar axis
and (b) the director n is the polar axis for each mole-
cule.

where P —= I/kT, k being Boltzmann's constant and

T the temperature.
In another development, Qguchi" has invented

a method in which a pair of molecules interacting
with V» is placed in an effective mean field of
its neighbors. If each molecule has z neighbors,
then the total interaction energy of the pair is
given by
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V~~——(a —1)[VMF(cosg,)+ VMr(cos82)]+ V,2

= —V eL Z —1 PL
L {even)

x [P~(cos8,) + P~(cos 8,) ]

+ Pg(cos8~2) j,

where cos8» = cos8„cos8,+ sing, sing, cos(y, —p,}.
In the Qguchi method the long- range-order param-
eters (P~) are determined by the consistency con-
ditions

fo f, f, P~(x) exp(- P Vo,„,h;) d$ dx dy

f'f' f' exp(-PV~„„;)dgdxdy

where x:—cosg„y = cos82, and $ —= (y, —rp, )/2w
The Qguchi method also yields short-range-order
parameters 7L:

fo fo fo P~(cosg„) exp(- PVo ~;)d(dxdy
f'f' f' exp(- P Vo,~) d) dxdy

(9)

The cluster variational method can be obtained
by synthesizing the mean-field theoxy and the
Qguchi method. %e assume that the general form
of the mean field as felt by molecule 1, say, can
be written

V„r(cosg, ) =- v, P o~[T, (P~)]P~(cosg,), (10)
L {even)

where &r~[T, (Pg] is a general function of T and

(P~)(V„v specializes to V„r if a~= n~(P~)) In.
order to determine the value of oL at every tem-
perature T, we note that given V„F, there are
two ways to calculate (P~). One way is to use the
mean-field theory, Eq. (6), where in place of V„r
we substitute V„~. Another way is to use the
Qguchi method in which the total interaction en-
ergy is now given by

Vo~,~ = (a —1)[VMr(cosg, ) + VMr(cosg, ))+ V„

g (z —1)o~ [P~ (cos8,)+ P~(cosg, )]+o'~ P~(cosg») . (11)
L(even)

(P~) can then be determined by using Eq. (S) with Vo~,h; replaced by Vo~,„;. Following Smart, "the con-
dition that we are going to impose on the o's is that the two ways of determining (P~) have to yield identical
results. That is,

1 1p(*)exp'Esp()drjsxp'zgap(x))d*
0 L(even) 0 L(even)

1 1 1 p
PL x exp 0 ~ —~ oL PL x +PL & + ~LPL cos~12

0 0 0 L(even) L(even)

1 1 1 I 1
0 z 1 OL PL x +PL y + nLPL cos~12 d$dxdy

0 0 0 L(even) L(even)

(12)

Here cosg„=xy+ [(1—x')(1 —y')]'~' cos2vg. Equa-
tion (12) is the heart of the cluster variational ap-
proach. There is one equation for every even L.
In every one of these equations ~ and nL's are the
inputs and oL's are the unknowns. Simultaneous
solution of all the equations yields the dependence
of o~'s on the reduced temperature kT/v, . Once
the crL are known, the long- range-order param-
eters, (Pg and the short-range-order param-
eters, ~L, can easily be determined in the same
manner as in the Qguchi method. Namely, we can
use Eqs. (8) and (9}with Vo,~ replaced by Vo,„d„.

C. Statisticai thermodynamics

In order to determine the internal energy of the
system in which the pairwise interaction between

the molecules is given by V», we note that the in-
ternal energy for a. single pair E~ is given by

Ep= —'U0 QL PL cos6}12 = —50 QL TL .
L(even)

Here ( ) denotes thermodynamic averaging. If
each molecule has z neighbors, then for each
molecule we count z pairs of interactions. There-
fore, the total internal energy E of the system is
given by

1 1E= g NZEP ———P V0NZ nL 7L,
L(even)

where N is the total number of molecules and the
factor & arises because each interaction has been
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counted twice.
Next, we write down the free energy F of the

system. The free-energy function must satisfy
two requirements: (i) Setting BF/Bo~=0 should
give Eq. (12), the consistency condition for the o~.
(ii) B(pP)/Bp, evaluated at those values of oz which
satisfy Eq. (12), should yield E Th. e first require-

ment follows from the fact that the solutions de-
termined from Eq. (12) must be those that repre-
sent the extrema of free energy. The second re-
quirement follows directly from thermodynamics.
It is easily vex'ified that a free-energy function
which satisfies these two requirements can be
wx itten

NAT
=(z —1) ln

1

exp ' z Q a~P~(x) dx
uT L (even}

)

exp (* —1) E )p ( ) p (7))+ E p ( osp ) )) x)dVI+c 08t.
0 'kT I (even} 1.(even}

The question arises as to whether there are
other free-energy functions which satisfy the
same two requirements. In other words, are the
two requirements stated above sufficient to unique-

ly determine the free-energy function& In the
appendix we show that the two conditions are only
sufficient to determine (to within a constant) the
free energy PF at those values of cr~'s which
satisfy Eq. (12), denoted as oz(T). Therefore,
the answer to the uniqueness question is that up
to a constant, the values of PF as given by Eq.
(15) is unique over the domain of crQ~(T).

III. NUMERICAL CALCULATIONS

In this section we present results of numerical
calculations based on an interaction potential in
which only the leading term of V» is retained.
Namely, we will let

equations will have n, = 1 and all the other n~'s
equal to zero. The values of v~'s at each reduced
temperature kT/vQ can then be obtained by the
simultaneous solution of all the equations. How-

ever, from the mean-field theory it is expected
that if V» is of the form expressed by Eq. (16),
then the mean field experienced by molecule 1
would mostly be of the form P, (cos8,). That is, o,
is expected to be much larger than all the other
0~'s. This expectation is borne out by calculations
as shown in a later section. Therefore, for sim-
plicity we will retain only &r, and o, in Eq. (12) and
set all the other 0~'s equal to zero. In this man-
ner we have reduced the problem to two simul-
taneous equations for the determination of cr, and
0'4.

P( )xf, ( )xdx

12 Q 2( 12) '

The effect of including one higher-order term,
P,(cos8»), in V„will also be investigated.

(16)

P~(x) f, (x) dx

P, (x) f,(x, y, () dx dy d$, (17a)

A. Thermodynamic properties

Theoretics. lly, V„given by Eq. (16) can be di-
rectly substituted into Eq. (12). The resulting where

1 1 1

P, x f, x, y, ( dxdyd$, 17b
0 0 0

)
exp((v, /k 7')z[a,P, (x) + o,P,(x) ]jj' expovQ/k7')z [o,P, (x) + o, P,(x)]]dx '

exp/(vQ/k T) [(z—1)[o,P, (x) + o,P, (y ) + o~P, (x) + v4PQ(y)]+ P, (cos8»)]jj' j' j' exp/(vQ/kT)[(z —1) [o,P, (x)+ &&,P, (v) + p,o( )+xo,P,(y)]+ p, (cos8„)]]dx

dydee

The solution of Eqs. (17a) and (17b) for a given z
yields values of a, and cr, at each reduced temper-
ature kT/vQ. Once these values are known, we
can calculate the long- range-order parameters

(P,) and (P,):
1

(P, ,) = P, ,(x)f, (x) dx.
0

(19)
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The short-range order ~, is obtained similarly,

T2= f
1 1 1

P, (cose») f,(x, y, f) dx dy dg.
0 0

(20)

The free energy can be obtained by using Eq. (15),
which can be cast in the form

F 1—=-—,
'

v ozr, —kT (z —1) f, (x) lnf, (x) dx
N 0

TABLE I. Constant-coupling theory results using the
potential of Eq. (16). (P2)c is the long-range-order
parameter at the transition temperature &c, while 72"(&

andy2 are the short-range-order parameters of the
nematic and isotropic phases, respectively, at Tc. DS
is the entropy change at the transition. The column for
z = ~ represents the results of the mean-field theory
(Ref. 4j.

10

+ const.

~"f.(*,w, 8 d*&v &t)

(21)

(P2~ c

(n)
2

~( i)
2

0.356

0.393

0.320

0.382

0.298

0.189

0.399

0.264

0.134

0.405

0.245

0.103

0.429

ZS/N 0.210 0.282 0.323 0.346 0.418

kI'c /zv 0 0.1740 0.1933 0.2011 0.2055 0.2202

where the first term is the internal energy per
particle and the second term is the entropy con-
tribution to the free energy.

It should be noted that v„cr, = 0 is a solution of
Eqs. (17a) and (17b) for any value of kT/v, . This
is the disordered phase, the isotropic liquid. At
large values of kT/v, this is the only solution.
However, below a certain reduced temperature two
more solutions appear. The equilibrium solution
in that temperature range is then determined by
the criterion of minimum free energy. The cal-
culation is done on a computer using Gaussian in-
tegration techniques and Newton's method in lo-
cating the solutions. In Fig. 2 we present the
variation of (P,) and r, vs kT/v, for z= 6. The
accurate values of (P,) and 7, at the transition,
the transition temperature, and the entropy dis-
continuity ~S are given in Table I for z = 10, 8, 6, 4.
The results for z =~, the mean-field theory, are
also presented for comparison. Since in liquid
crystals z is the "average number" of nearest

neighbors, z can take on nonintegral values. In
Figs. 2 and 4 we show the variation of k T, /v, and
the transition entropy dS/Nk as a function of z,
treated here a,s a continuous variable. It should
be noted that a.s a function of z, the nematic-
isotropic phase transition tends to be more
"second-order-like" as z decreases. More
specifically, the discontinuities in (P,) and r, at
the transition become smaller, and ~S decreases
rapidly as z decreases. The vanishing of transi-

2.4—

2.2—

20—

18—

Z$6

14—
kTc

12—

10-

.4—

. 2

o I I I I I I I I

4 .5 6 .7 .8 .9 I.O I. I 1.2 1.5 1.4 I,5 1.6
kT /vo

0
I 2 3 4 5 6 7 8 9 10

FIG. 2. Temperature variation of long- and short-
range order for z =6. (P2) is the solid curve while T2

is the dashed curve.

FIG. 3. Dependence of the first-order phase transi-
tion temperature Tc on effective nearest-neighbor num-
ber z.
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.8-

0.40—
MEAN FIELD
THEORY

=0.2

0.30-

020—

kTc/vo = 1.687

I I I I I I I I

.8 .9 1.0 I. I 1.2 I 5 1.4 1.5 1.6 1.7 l.e I.9 2.0
kTc/ve

o. lo—

FIG. 6. Temperature variation of the long- and short-
range order for z =8 with n4 —+0.2. (P2) is the solid
curve while T'2 is the dashed curve. The dot-dashed
curve is g'2) for z = 8 and +4=0 for comparison.

B. Effect of the P4 term in intermolecular interaction

tion temperature at z =2 is understandable since
the system has to be one-dimensional for z =2,
and it is a vrell-known fact that one-dimensional
systems cannot have phase transitions at finite
temperatures. In Fig. 5 we show the variation of
the specific heat C,

C z de
Nk 2 d(kT/vo)

'

as a function of temperature for z =6.

(22)

2 3 4 5 6 7 8 9 lo
z

FIG. 4. Dependence of the entropy discontinuity 68
on effective nearest-neighbor number z.

The calculation mentioned above can easily be
adapted for a V» of the form

V» = —II,[P,(cos8»)+ a, P,(cos8»)] . (23)

We replace P,(cos8„) in Eq. (18b) by P,(cos8»)
+ &, P(c os8») Then t.he solution of Eqs. (17a) and

(17b) yields values of o, and o, at every kT/v0 In.
Figs. 8 and 7 we show (P,) and 7, as function of
kT/v, for z =8 and n, = +0.2. It is seen that the
values of transition temperature, (P,), and r, are
all raised for a, =0.2 and are depressed for e,
= —0.2. (P,) for o.,=0 is also plotted for com-
parison.

Z=6

.8-
Z= 8

o4= -0.2

75-

I

0 I I I I I I I I I I

.5 6 .7 .8 .9 I.Q I. I 1.2 I.g 1,4 1.5 1.6
kT/ve

FIG. 5. Temperature variation of the heat capacity
for z =6.

k Tc/ve = I. 54 5

0 I I I I I I I I

.8 .9 I.Q I.I l.2 1.3 l.4 I.5 1.6 1,7 I.S I.9 2.0
kT /ve

FIG. 7. Temperature variation of the long- and short-
range order for z =8 with n4-——0.2. {P2) is the solid
curve while 72 is the dashed curve. The dot-dashed
curve is (P&) for z = 8 and n4 —-0 for comparison.
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C. Paranematic susceptibility

When a magnetic field is applied to a nematic
liquid crystal in its isotropic phase, a small
amount of nematic order will be induced due to
the diamagnetic anisotropy of liquid crystal mole-
cules. The amount of order is proportional to the
square of the magnetic field

magnetic anisotropy for a single molecule. This
potential has to be added to the mean field each
molecule experiences from its neighbors. There-
fore, in the self-consistency condition, Eq. (12),
we have to replace

' Z (JLPL X
kT

L(even)

(P,) =qH', (24) by

)1~(T- T,*) ', (25)

where T,* is a temperature lower then T„ the tran-
sition temperature, and can be interpreted as the
temperature below which the supercooling of the
isotropic phase becomes impossible. In the mean-
field theory we have the relation

T,*=0.9082 T, . (26)

Experimentally, T,* is about 0.99 T, . Therefore,
there is a wide discrepancy between the mean-
field theory and the experimental result. In this
section we examine the temperature dependence
of g and calculate the magnitude of T,* in the con-
stant- coupling theory.

When a magnetic field H is applied, each mole-
cule experiences an orienting potential of the form

W„=——,H'Ay P, (cose), (27)

where 8 is the angle between the long axis of the
molecule and the field direction, and ~y is the dia-

where the proportionality constant g always in-
creases in magnitude as the transition temperature
is approached from above. In fact, in the mean-
field theory and the Landau-deGennes theory g is
given as

L(even) 0

on the left-hand side of the equation and replace

(z 1) Q a~[P~(x)+Pz(y)]
L(even)

(z —1) g og(Pg(&)+Pg(y)]
L(even)

H'&y(tP, (x)+ P, (y)]
3vp

(, )
. (... *y)

IV0 H 4y
2kT ' 3Vp

with

(28)

on the right-hand side of the equation. Since the
quantity H'd. y/v, is usually small for H& 10' Oe,
we can assume that the o~ will also be small (since
in the limit of H-0 all oL-0 in the isotropic
phase). As a result exponentials of these quanti-
ties can be expanded, yielding

1 1 1
Vp

0 0J (y'. (*)~ y'. (y))* o oy E,y', (oo o,.))d(d dy
L(even)

1 1 1
vpX O
' E P ( ooo„))d(d*dy

0 0 0 kT L (even)

(28)

From Eq. (28) it is easily calculated that

H'&X

3v, 5I —(5I —2)z
' (30)

which q diverges, from Eq. (32) we obtain the
equation

I(T,*)= '-, z/(z —1) .

Substitution of Eq. (30) into Eq. (28) yields

5I
15k T 5I —(5I —2)z

Comparison of Eq. (31) with Eq. (24) gives

(31)

15kT „5I (32)

Since T,* can be defined as that temperature at

The values of I at various temperatures have been
calculated on computer for the case of V1p
= —v,P, ( sgc»o). In Fig. 8 we plot 1/)7 a,s a function
of kT/v, for z =6. The curves are extended below

kT, /vo for the sake of illustration. It should be
noted that 1/q is no longer a linear function of T,
although the deviation from linearity is small.
Also, we note that the value of T~ obtained from
Eq. (33) is a function of z. For z =6 we have T,*
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0.4— 1.02—

1.00

Z=B

0.01

0.3—

hX I

I5v, g

0.2—

.98

.96
("&

.94

.92

—-0.02

—-0.03
4

CTp

—-0.04

—-0.05

0. 1

0

kTc
Yo

1.2 1.3
kT/va

1.4 1.5

~/yo

~ 90' I I I I I I -0.06
.9 1.0 I. I 1.2 1.3 1.4 1.5 1.6 1.9 2.0

kT/yo

FIG. 9. Temperature variation of the variational
parameters 02 and 04 for z = 8.

FIG. 8. Temperature variation of the reciprocal
paranematic susceptibility 1/g for z = 6.

=1.097 v, /k=0. 9457T, and for z = 8 we have T,*

=1.510 v, /k=0. 9385T,. Therefore, in each case
the ratio of T, /T, has been ra. ised above that of
the mean-field theory. However, the increase
is not enough to explain the experimental result.
Similar improvements in T,*/T, have been obtained
by Madhusudana and Chandrasekhar" using a some-
what different technique which also includes short-
range- order effects.

D. Magnitude and the form of the mean field

It is seen in Sec. II that if V» ——v, P, (cos8»),
then, in the mean-field theory, the mean field as
experienced by molecule 1 due to molecule 2 is
given by

VMr = —vo(P, ) P, (cos8, ) . (34)

Two features of VM~ should be noted. First, the
magnitude of V„r is proportional to (P,). Second,
the form of VMF as a function of cos6), is given by
P, (cos8,). In this section we examine the accuracy
of these two approximations by using the constant-
coupling theory.

In Sec. IIIA it is shown that in the constant-
coupling theory the mean field as experienced by
molecule 1 can be approximated by

V„r = —v, [o,P, (cos8,)+o,P,(cos8,)], (35)

where the values of o, and 04 at each reduced tem-
perature kT/v, are determined by Eqs. (17a),
(17b), (18a), and (18b). It should be remembered
that we have dropped all terms higher than

P, (cos8) in the expectation that they are small.
In Fig. 9 we show the results of the calculation
for z =8. It is clear from the graph that v, is not
proportional to (P,). The ratio of o,/(P, ) is a
decreasing function of temperature, reaching the
value of -0.92 at the transition. We also see that

the form of the mean field is not strictly P, (cos8, )
but contains a. relatively small portion of P, (cos8, ).
04 is always negative, and the absolute magnitude
of the ratio o, to o„~o,/o, ~, is a. decreasing func-
tion of temperature, reaching -0.025 at the transi-
tion. It should be noted that the sharp increase
of o,/(P, ) and ~o,/o,

~

below kT/v, = 1.1 may be
caused by the omission of P,(cos8, ) and P, (cos8,)

terms in the series for V». However, the figure
is indicative of the general trend for these quan-
tities and offers an estimate of the accuracy of
the mean-field approximation given by Eq. (34).

Before leaving this section, we point out that in
all the numerical calculations the n~ and z have
been treated as temperature-independent quan-
tities. In the realistic case this assumption may
not be valid since in liquid crystals the constituent
molecules do not have fixed positions as in a
solid, and as a result, the average environment
(such as the average number of nearest neigh-
bors) of a molecule may vary with the temperature.
In view of such possibilities, the temperature in-
dependence of the n~ and z should be regarded as
a first-order approximation. Further study is re-
quired to establish the relationships, if any, be-
tween the a~ and z on the one hand and T, the
short- range order (and/or long- range order) on
the other.

IV. COMPARISON WITH OTHER THEORIES

Qualitative and quantitative comparisons of the
results of the constant coupling approach with
those of the mean-field theory have been given
throughout the previous sections. With both
methods the nematic-isotropic transformation is
found to be a first-order phase transition. The
constant coupling theory, however, yields lower
values for the transition temperatures, latent
heats, entropy changes, and long-range-order
parameter discontinuities in all cases. In addition,
the present calculation also provides a larger value
for the parameter T,*/T,

An improvement over the mean-field theory was
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attempted by Lebwohl and Lasher' using Monte
Carlo techniques for the case of z = 6. A first-
order phase change was observed here also. The
critical temperature was found to be 1.124vo/k
(in our notation), while the entropy change and
long-range-order discontinuity were 0.097Nk
and 0.33, respectively. The critical temperature
compares favorably with our value of 1.160',/k
(Table I). The long- range- order discontinuity com-
pares well with our value of 0.382 and is likewise
lower than the mean-field result of 0.429. The en-
tropy change obtained in the Monte Carlo calcula-
tion, however, is much smaller than our value
0.282Nk. In Sec. V we will see that the experi-
mentally determined entropy changes compare
favorably with the constant coupling values.

Raich, Etters, and Flax" and Schultz" have
raised the question of whether the first-order
phase transition predicted by the mean-field mo-
del is merely a spurious result of the mean-field
approximation. Based on a cluster variational ap-
proach simila, r to ours but using a separable po-
tential function [V»-—V(8,) V(8,), where the 8,. give
the orientations of the molecules with respect to
some external axisj, Raich et a/. "failed to obtain
a phase transition of any kind. With a different
kind of statistical model, but again using a separ-
able potential function, Schultz" also failed to
obtain a, phase transition. Priest, "however, has
shown that the inability to observe a phase change
is caused by the adoption of a, sepa, rable form of
potential. The separable form is unphysical in
that it destroys the rotational invariance of the
original potential function, and leads to qualita-
tively different results. Taking a quantized model
of a nematic system but using a proper rotationally
invariant pair potential, Priest" was able to re-
cover the first-order phase transition.

In this paper we began by assuming a perfectly
general pair interaction potential and proceeded
to simplify it by making a set of reasonable as-
sumptions which naturally retained the rotational
invariance property. Using this simplified po-
tential a,s the basis for the constant coupling cal-
culations we then obtained first-order phase
transitions as required. The results of the mean-
field theory, furthermore, can be approached from
the present formulation by passing to the limit of
very large z. We therefore conclude that the first-
order transition of the mean-field theory is not
spurious; the theory gives correct qualitative pre-
dictions because it does indeed contain the basic
elements of the physics of the problem. The situa-
tion here is thus no different from the ca,se of
magnetism where the relationship of the mean-
field model to more general theory is well estab-
lished.

V. COMPARISON WITH EXPERIMENT
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FIG. 10. Comparison of theoretical results and ex-
perimental data on the temperature dependence of the
long-range order for PAA and PAP.

Calculations of the entropy discontinuity at the
phase change were made in Sec. IIIA based on the
simplest potential function, Eq. (16). The results
for z=4, 6, 8, 10 are presented in Table I. 4S/Nk
ranges from about 0.2 to 0.35. Experimental
values of 4S/Nk can be computed from compila-
tions of latent heat and critical temperature data. "
Representative values of AS/Nk include 4-methoxy-
benzylidene-4'-n butylaniline (MBBA), 0.16; 4-
ethoxybenzylidene-4'-n butylaniline (EBBA), 0.29;
4-butoxybenzylidene-4'- ethylaniline, 0.15; 4-
cyanobenzylidene-4'-n- octyloxyaniline (C BOOA),
0.27; anisylidene-p- aminophenylacetate (APAPA),
0.39; anisylidene-p- aminophenyl-3- methylvalerate,
0.15-0.3; 4-n-pentyl-4'-cyanobiphenyl (PCB),
0.155-0.3; 4-n-nonly-4'- cyanobiphenyl, 0.15-0.5;
4-n-pentoxy-4'-cyanobiphenyl, 0.15; 4-4' di-
methoxyazoxybenzene (PAA), 0.12; 4-4'-dieth-
oxyazoxybenzene (PAP), 0.34; and 4'-4'-di-n-
heptyloxyazoxybenzene, 0.25-0.4. It is seen that
the measured values are in good accord with those
given by the calculations.

Calculations of the temperature dependence of the
long-range-order parameter (P,) were considered
in Sec. III A and III B. We have made a comparison
of our theoretical results with experimental data"
on PAA and PAP using the potential function of
Eq. (23). A graphical compa. rison is shown in Fig.
10. We have arbitrarily chosen z=6. The constant
vp is then effective ly e lim inated by exp re ssing both
theory and experiment in reduced temperature
units, T/T„and forcing the calcula, ted and ex-
perimental critical temperatures to agree. This
leaves n4 as the only remaining parameter to be
adjusted. Excellent fits to the data, were obtained
by choosing @4=0 in the case of PAA, and n4 ——3
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C z dT, dT4
Nk 2 d(kT/)' d(,!Tl',) )

' (36)

Figures 11and 12 display the comparisons of
theoretical and experimental" orientational heat
capacities for PAA and PAP, respectively. The
only fitting done for these figures was the estab-
lishment of the base line for the experimental
points. That is, a roughly constant contribution
to the measured heat capacity (representing the
nonorientational components) was subtracted from
each of the data points. The magnitude of this
subtracted portion was chosen so that the lowest
temperature data point in each case agrees with
the theoretical value. The agreement between
theory and experiment is reasonable considering
that no further adjustment of potential parameters
was made. In particular, the theory is seen to
accurately predict the width of the transition re-
gion. A more quantitative agreement on the low
temperature side of T, could certainly be obtained

18
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12-

~
I
I

IO-
C
R 8-
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in the case of PAP. A more precise fitting could
have been made by the simultaneous adjustment
of z and a4 in a rms procedure and by taking into
account the temperature variation of vo. We do
not feel, however, that such embellishments are
instructive considering the approximations al-
ready made in arriving at the potential function,
Eq. (23).

The most stringent test of any theory of ordered
phases is the comparison of calculated and mea-
sured heat capacity. Having determined the values
of the potential parameters for PAA and PAP from
the long-range-order data we can now compute the
heat capacities without any further adjustments in
the constants. For the potential function, Eq. (23),
the heat capacity is obtained from Eq. (14) by
differentiation

24—
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FIG. 12. Comparison of theoretical results and ex-
perimental data on the temperature dependence of the
orientational heat capacity of PAP,

by simultaneously fitting (P,) and C data through
the adjustment of z and n4 and taking into account
the temperature variation of v, . The data on the
high-temperature side of T„however, cannot be
accounted for quantitatively. As is well known

from the example of magnetism, "the constant
coupling theory cannot be accurate above the
transition temperature where long- range order
has disappeared. In this regime the mean- field
component of the potential vanishes and the po-
tential function reduces to that of isolated inter-
acting pairs. A theory of isolated interacting
pairs is, of course, incapable of modeling a highly
interacting cooperative system.

The theory presented in this paper has been
based on a model in which the interaction poten-
tials a.re assumed to be volume (temperature) in-
dependent (constant vo). An immediate consequence
of this restriction is the absence in the theory of
the small experimentally observed volume dis-
continuity at the phase transition. The absence
of the volume discontinuity then influences the
magnitude of the theoretical latent heats and en-
tropies of transition. In addition, the neglect of
the volume (temperature) dependence of the inter-
actions influences the precise temperature de-
pendence of the order parameters and thermo-
dynamic functions. Thus, though our calculations
are in reasonable agreement with experiment, a
thorough and more realistic fitting of experimental
data will require the inclusion of the volume (tem-
perature) dependence of the interactions potentials
in the formal development of the theory.

I

.9I .92 .93 .94 .95 .96 .97 .98 .99 I.OO l.02 I.03
T/ Tc

APPENDIX

FIG. 11. Comparison of theoretical results and ex-
perimental data on the temperature dependence of the
orientational heat capacity of PAA.

Here we show that at any particular temperature
the value of PF given by Eq. (15), with the o~ de-
termined from Eq. (12), is unique up to a constant.
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bottom of the trough is traced out by the loci on
the O,-P plane as shown in Fig. 13. Suppose now
we want the value of PF at the point P. Let the
value of PF at P=O, a, =0 be a constant C. The
value of PF at P is then given by

PF(atP) =C+ o, + P dS, (A1)
' s(PF) - s(PF) - . -

o

where the integral is along the path indicated by
arrows in Fig. 13. a„Pdenote unit vectors along the
0, and P axes, respectively, and dS is a line ele-
ment along the path of integration: P df= dP,
0, .dS = do~. Since on the path of integration,

s(pF) 0 s(pF)
80, ' BP

(A2)

as discussed in Sec. IIC, it immediately follows
that

FIG. 13. Schematic representation of the loci of the
solutions to the self-consistency condition, Eq. (12).
The arrows indicate the path of integration in Eq. (Al).

PF(at P) = C+ E[oz(P), P] dP.
0

(A3)

Figure 13 shows a schematic drawing of the loci
of the solutions to t;he self-consistency relation,
Eq. (12). For simplicity of illustration we have
only shown the loci in the a,-P plane. However,
the arguments presented in the following are
equally applicable to the general case. We note
in Fig. 13 that o, = 0 is a solution at all temper-
atures and that two more branches of solutions ap-
pear only below a certain temperature. The free-
energy function, PF, can now be defined on the a,-P
plane as a surface whose distance above or below
the a,—P plane at any particular point gives the
value of pF at that point. On this free-energy
surface there is a trough formed by the local
minima of the free energy. The position of the

Here P~ is the value of P at point P as shown in
Fig. 13, and o~(P) denotes the values of the o~
determined by Eq. (12) [o2(P) gives the loci on the

o,-P plane as shown in Fig. 13]. Since the value
of E is well defined at every point of the loci, Eq.
(A3) shows that up to a constant, the two con-
ditions as given by Eq. (A2) uniquely determine
the values of PF on the loci. Since the function PF
as given by Eq. (15) satisfies these two conditions,
this proves our assertion.

Note that we have only proven the uniqueness of
the PF values on the loci of the solutions to Eq.
(12). Indeed, different functions of PF may be
found which have identical values on the loci [and
therefore satisfy the two conditions given by
Eq. (A2)] but differ elsewhere on the o,-P plane.
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