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The weak plasma turbulence theory recently formulated by one of us is applied to parametrically unstable
plasmas. A dispersion relation for normal modes of the turbulent plasma is derived. The condition of marginal
stability of these modes provides a nonlinear equation describing the quasistationary turbulent spectrum. Two
classes of nonlinearities arise: (i) Diagonal corrections, similar to the renormalized frequencies and damping
rates of usual weak turbulence theory but which must be computed using the frequencies of the coupled
parametric modes, and (ii) coupling saturation corrections which are renormalized mode couphng coefficients
related to spectral cross coupling coeAicients such as ( E(k, e)E(k —ko, co —coo)). The coupling saturation
theory is applied to the electron-electron decay instability (ao-2' ) and strongly inhibits the conversion of
pump radiation into plasma waves.

In this paper we apply the space-time formula-
tion of plasma turbulence theory recently formu-
lated by one of us' (hereafter referred to as I) to
the nonlinear theory of parametric instabilities
in plasmas. ' We adopt a model in which the driv-
ing pump field E, cos(&o,f —k, r) which modulates
the properties of the plasma is the only coherent
field in the problem. The parametrically excited
waves are excited from thermal fluctuations and
are taken to be incoherent. Such problems have
been treated in the past' '0 by essentially straight-
forward application of the usual weak-turbulence
techniques" "involving the random-phase ap-
proximation (RPA). In the present paper we take
into account the phase correlations between
Fourier modes intrinsic to a parametrically driven
system and show that new effects arise. The most
important of these we call coupling saturation
which results in a modification of the mode-cou-
pling coefficients by the turbulence generated by
the instability. In the cases which we have investi-
gated, the turbulent modification of the mode-cou-
pling coefficients seduces the parametric growth
rate causing a saturation of the instability.

The formulation of plasma turbulence theory
developed in I is based on the concept of the re-
sponse function of the turbulent plasma to an infini-
tesimal, localized external perturbation. This
infinitesimal response function describes the
normal modes of the turbulent system. The theory
is developed as an expansion in powers of the as-
sumed small ratio of the incoherent wave energy
to the particle kinetic energy. It is also assumed
that while the wave fluctuations are weakly cor-
related, strong coherent fields may also be pres-
ent which make the system arbitrarily nonstation-
ary in time and inhomogeneous in space. The
equations were therefore developed in physical
space and time rather tha, n in Fourier space. This
formulation was shown to be equivalent to the

well-known theory of Kadomstev in the case of a
quasistationar y, infinite homogeneous plasma.

The major consequence of the imposed coherent
fields is to invalidate the HPA, i.e., modes with
different values of k and ~ are now correlated.
In the present paper, the only imposed field con-
sidered will be the sinusoidal pump field E, cos(&ug
—k r) which drives the parametric instability.
The parameters of the pump field will be taken to
be given constants; i.e. , we neglect pump deple-
tion.

In Sec. I, we examine, in a general way, the
consequences of the symmetry breaking by the
pump field which couples together modes whose
wave vectors and frequencies differ by integra, l
multiples of k, and ~„respectively. We do this
by computing the infinitesimal response d'(1, 1')
= 4x5(f'(I))/5p„(1') of the average electrostatic
potential (U(I)) at the space-time point (1)—= (r, , f, )
to an infinitesimal test charge perturbation 5p, (1')
at (1')~(r,', f,'). This infinitesimal-response func-
tion yields a dispersion relation for the normal
modes of the pump-Chiven tgxbglent plasma. This
dispersion relation is formally identical to the
familiar linear dispersion relation for parametric
instabilities except that the parameters —e.g. ,
mode frequencies, damping rates, and mode-cou-
pling coefficients —become prescribed functionals
of the turbulent wave intensity. These results do
not depend on any particular approximation of
weak-turbulence theory.

In Sec, II, we compute the nonlinear contributions
to the polarization response q'(1, 2). These con-
tributions produce dominant terms which describe
induced scattering from ions and resonant decay
of Langmuir waves into Langmuir waves plus ion
waves in the weak-turbulence theory of stationary,
homogeneous, infinite plasmas. It is the only
nonlinearity which arises to first order in the
wave intensity if particle effects are neglected—
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i.e. , in a fluid theory. In the pump-modulated
problem, however, this nonlinearity produces a
new effect in addition to the familiar damping and

frequency shifts associated with induced scattering,
This new effect, which we call coupling saturation,
produces corrections to the mode-coupling coeffi-
cients, which are porportional to the cross-cor-
relation products (Ef „Ef „„- „„„,). We emphasize
that coupling saturation occurs in the same order
of the weak-turbulence expansion as the familiar
induced-scattering nonlinearity, and is a result
of the breakdown of the HPA because of pump-
induced correlations between modes.

In See. III, we examine the case of parametric-
deca, y instabilities in which only two coupled modes
are resonantly excited by the pump. A steady-
state wave-fluctuation spectrum is obtained by
imposing the condition of ma, rginal stability on the
potentially unstable modes of the pumped, turbu-
lent system.

In Sec. IV, we apply the theory to the electron-
electron decay (or two-plasmon decay) instability
where (d, —2m~. The saturation of this instability
has been considered by Pustovalov, Silin, and
Tikhonchuk (PST)' and others, "but not taking into
account the coupling-saturation effect. We show
that this is, in fact, the dominant saturation effect
which greatly reduces the conversion of pump
radiation into plasmons over that previously com-

puted.
We briefly discuss the application of this theory

to other parametric decay instabilities in Sec. P.
We conclude that such a weak-turbulence expan-
sion is inapplicable to modulational-type instabili-
ties such as the oscillating-two-stream instability
because of intrinsic divergences in the theory
which arise in this case.

I. INFINITESIMAL RESPONSE FUNCTION

The nonlinear dispersion relation of the param-
etric system ca,n be found from the infinitesimal
response which obeys the general space-time equa-
tion

V,'d'(l, l') = 54(l —I')+ d2q'(1, 2)d'(2, 1').

The intense pump wave which drives the param-
etric instabilities modulates the particle trajec-
tories in a coherent way. In this paper we will
consider mostly traveling pump waves of the form

K, cos((o,f —k, .r). (1.2)

This coherent modulation leads naturally to the
following Fourier series-integral representation
for any quantity depending on two space-time
points:

A(1; 2) =A(r„t„r„f,)
CO 00 w 3

,exp-i &f,, -t, -k r, -r, e -i le t+t, —k, r+r, A k co. 13

This representation automatically satisfies the
space-time translational symmetry imposed by
the pump

A(r„t, ; r„t,)
2mnko 2en 2gnko 2'-A r, + (- (, , t,+;r,+

)
), „t,+

(1.4)

This periodicity imposed by the coherent pump is
a fundamental change in the space-time transla-
tional properties of the plasma. We assume that
in the absence of the pump the plasma is homo-
geneous in space and stationary in time. If A(1, 2)
is a real quantity t such as d'(l, 2) or q'(l, 2)], it
is clear that

A, (k, ~) =A*,(-k, —~").
If we substitute the transformation (1.3) for each
two point function in (1.1), it is readily seen that
the following coupled set of equations is obtained

for the coefficients:

'd', k+ ko ~+ ~o

)I

l+ l' 1+ l'

This set of equations can usually be truncated to
a set of two or three coupled equations depending
on how many modes of the system can simulta-
neously be on resonance for a given choice of
ko, a, . These arguments are familiar in the
linearized theory of parametric instabilities and,
since they are essentially unchanged in the present
theory, we will not discuss them in detail. It is
sufficient for our present purpose to consider the
set of three coupled equations: (for simplicity we
will often write the arguments (k, &o) of Fourier
transforms simply as ~, suppressing the k depen-
dence where this cannot cause confusion. )
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—k'd;((d) = 1+q'G((o)d;((d) + q', ((d - -, ~G)d;(~ - -, (d, ) + q', (~+-, G3,)d', ((o+ -, (d,),

—(k —k,)'d;((d ——,
' ~,) = q', ((d —(d, )d;((d ——,

'
(0,) + q', ((d ——,

'
(d, )d;((d), (1.6)

—(k+ kG)'d', (or+-,'(dG) = q'G((d+ (dG)d'2(sr+ —,
'

G3G)+ q', (&u+ —,(oG)d;(~).

d;((o) (1.7)

The second equation is obtained from (1.5) with I =1 and shifting k, (d to k —k„ur —(dG, the third equation by
setting l = -1 and shifting k, co to k+4„&+co0. We can write these equations in matrix form which makes
clearer the connection to previous work:

(k+kG)'e„.„, q', ((d+-,'(dG) 0 d', ((d+ —,
'

&u, ) 0

q', (~+ —.'(d, ) k2t„q', ((d --,' u), ) —1

0 q', (&u ——,'(uG) (k —kG)'i„„, d;((u ——,'(uG) 0

where Zf„= 1+qG((d)/k'. The same arguments
which applied in linear theory for truncating this
at three modes cu, ~a cu0 apply here. Note that now
the q„'s contain not only the renormalization effects
of the pump but also nonlinear corrections arising
from the turbulence level. We will calculate some
of these terms in Sec. II.

The solution for the Fourier coefficients of the
infinitesimal response follows directly from (1.6}.
Note that each component (dG, d;, ) is inversely
proportional to the determinant of the matrix,
where the determinant is

D(k, (4)) = (k+ kG)2(k)2(k —kG) K„, e

—(k+ k,)'Z„, ,q', (~ ——,
' ~,)q'2((d ——,

' ~,)
—(k —k,)'i„„,q', (G)+ —,'(d, )q', ((d+ —,

' ~,).
(1.8)

The condition D(k, (d) = 0 constitutes the nonlinear
dispersion relation of the parametric system. The
complex roots (d(k)„L —iy(k)„„obtained from this
represent the infinitesimal excitations of the tur-
bulent system. The condition y(k)„„=0 for mar-
ginal stability can provide a condition determining
the possible steady-state or saturated-wave spec-
trum of the turbulent plasma.

In this paper we will consider only the steady-
state excitations of the plasma (assuming a
steady state exists). Thus the coefficients in the
expansion (1.3) are time independent, the only
time dependence being that imposed by the pump.
In a time-dependent inhomogeneous theory, which
we will consider in a subsequent paper, the expan-

sion coefficients A, (k, (d) become slowly varying
functions of t, on the time scale 2s/~„and slowly
varying functions of r, on the scale of 2s/kG. It
should be noted that the issue of accessibility of
the final steady-state solutions of this paper is
being studied by direct numerical integration of
the time-evolution equations in this time-dependent
theory and will be reported elsewhere.

II. NONLINEAR PROCESSES

The nonlinear physics is all contained in the
generalized susceptibility functions q'(1, 1') and
noise source S(1,1'). In I we derived expressions
for q'(1, 1') and S(1,1') in weak-turbulence theory
which are valid for arbitrary macroscopic space
and time dependence imposed by coherent fields.
The procedure to adapt these expressions to the
present problem is straightforward. The propaga-
tors G,(1,2) are replaced by the propagator-obey-
ing equation (32) of I for electrons in the oscillat-
ing pump field E0 The effect of the pump on the
heavy ions can be neglected. The space-time inte-
grations in Eqs. (62), (63), (65), and (70} of I
can be carried out giving expressions for q'(1, 1')
and S(1,1').

The resulting general expressions are very
complicated, and we have no need to present them
here. We have restricted our considerations to
the weak-pump case

k '
U0' « I, u, = eEG/m4~G.
0

In this case Eq. (32) of I for the propagators can
be iterated as follows:

G(1, 2) = G'(1 —2) ~ —( 33 G'(1 —3) E,(3)G(3, 2)

2
=G'(1 —2) ~ J d2G'(1 —3) E,(3)G'(3, 2)~, d3 fd4G'(1 —3) E,(3)G'(3 —4) E,(4)G'(3 —2)+

(2.1)
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where G'(1 —2) is the pump-free propagator,

d'0 d(d exp[ik' (r, —r, )] exp[ —i(3)(tl —f,)]
(2s)' 2s M —k' v+ sO+

(2.2)

and E (1)=E (r, ,i,), the pump field EG(1)
= EG cos((3)Gfk —RG rk).

This means, for example, that in the matrix
elements v(1, 2, 3) which occur in the "mode cou-
pling" terms q', and 8, [calculated in I, Eqs.
(62) and (70)], neglecting terms of order (k uG, )j
(G„we can use the matrix elements [I, Eq. (86)]
which are appropriate for the system without the
pump. Similarly„ to this order the propagators
6, in the expression for the "nonlinear Landau
damping" terms can be replaced by their zero
pump values.

The same is obviously not true for the field-
response functions d' and correlation functions I.
These functions are modified by the pump in a way
which is not expandable in powers of E, to produce
the parametric instability.

From I, Eq. (62), we have the expression for

the mode-coupling nonli. near contribution to q'

2'(l, l'), ——J d2 d2' d3

d3 p 1,2, 3 e 2', 1', 3' d' 2, 2' I 3, 3' .
(2.3)

We can write (1.3) in the form

—k, (r, + r, )])A, (1 —2), (2.4)

where A. , is a function of space-time difference
variables only. Such an expansion can be used for
f(2, 2') and d'(1, 1') in Eq. (2.3), and we also re-
place v(1, 2, 3}by its pump-free value [see Eq.
(86) of I]. The result of this substitution is

" d'0' " d'k" I /' I" I

(2.5)

where the matrix elements v were derived in I:
4ge'

s(k, k', 3")=, Jd's[G(k)'k'G(l")'k"

+G(k) k"G(k') k']E, (v) .

(2.6)

Here we use the redundant notation v(k, k', k")
=v» „where v» „ is given by Eq. (86) of I. In

these expressions the 4 notation of Eqs. (85)
and (86) of I is used. In the zero-pump case
only the l= 0 components of all functions survive
and we recover Eq. (85} of I. Equations (1.6),
(2.5), and (2.6) specify the infinitesimal response
of the pumped system completely in terms of the
components of the wave intensity. Just as d&, is
related to d, it is possible to relate I„to I,. To
begin with, we have the definition

I(1,1') = (6 U(1)6 U(l '))

, Jd'2 Jds fd'3'] d 'exp[ (t, —k, )(p(k, -)rr'(k , '))]sxp[ (''t', -k",')[. {ll)-'
In the usual random-phase approximation of weak-turbulence theory without the coherent-pump field one
takes (U(k, &G)U(kd, G)t)}= (2s)'6(G)+ (3)')52(k+43)fk-, i.e. , one assumes that different Fourier components are
uncorrelated. An important difference in the present theory is that pump induces strong correlations be-
tween Fourier components which differ by multiples of ~, and k, :

(U(k, (3))U(k', (d')}= p (2]})'5(&u+ (G'+ n(dG) 6'(k+ k'+ nkG)8„(k, (3)). (2 8)

When this is substituted into (2.7), we obtain

t(l, l')=, Jd'2 —J d I sxp[-',
' [,(t, ~ t') —k, (,+,')]}

x 8„(k,&u) exp[- i[(G)+ —,'n(dG)(t, ftl) —(k+»nk, ) (r, ——rd)]}. (2.9)
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Comparing this with (1.3), we can identify the
Fourier coefficients I, (k, &u):

I, (k, &o) =8,(k+-,'Ik„~+-,'l&u, ). (2.10)

We need to compute the ratio of various Fourier
components. For example,

(U(k, ~)U*(k —nk„~ n—&u, )) 8„(k,ur)

(U(k, ~)U*(&, ~)) &.(k, ~)
'

relating Fourier coefficients is discussed in Ref.
2. The ratio of Fourier coefficients can be found
from the homogeneous equations M U = 0 because
we are interested in resonant excitations for which
D(k, (u) = DetM= 0. [Thus the source-driven equa-
tions M' U = S (represents the fluctuating-noise-
source components) has the solution U„=Z C S„/
D(k, e), where C is the cofactor of the element
AI . In the 2 x 2 approximation for example, we
have

U(k —fk„&u —f~,)/U(k, ~) =R, (k,-~) (2.12)

—q,'[(u ——,
'

(u,]
(k —ko) e(k —k„ur —&,)

(2.13)

which is obtained using the bottom rom of the
matrix. A rigorous proof of this procedure for

can be computed from the coupled mode equations
M 'U=0 if we assume that the nonlinear disper-
sion relation DetM= 0 is satisfied. Here M is the
matrix of Eq. (1.7}. For example, from (1.7) we
find

)
U(k —k„(o —(u, )

U(k, ~)

U„„U, C„S,+ CP,
but since

11 22 ™IP21™»» 21 21

&2 12 22 22

we find U, /U, = -M»/M». Similar results hold in
the general case. ]

The contributions from q„»~(1, 2) [Eq. (65) of
1] can be worked out the same way. Again, since
only the pump modulation of the factor I(3, 4) will
be taken into account we find, using (1.3) and Eq.
(65) of 1:

qi(&}.ir~ =—4xe' f ' d4 kt.I d'vale ~ lie, ) (iT' ~ l )i[kg&") ik-lu)@ i lii) (K- u.)-
+ G(}t")~ (k —~ Iko}G(—,

'
fko —it,")~ (k —~ Ik, )]E,(v)I, (k').

(2.14)

III. NONLINEAR DISPERSION RELATION FOR DECAY
INSTABILITIES

%e will discuss here the application of this for-
malism to the decay instabilities. In this case, we
have only two coupled modes, at ~ and ~ —~,.
That is, in Eq. (1.6}or (1.7), we assume the anti-
Stokes response d', (&u+-,'&u, ) is small and neglect
the first row and column of the matrix. Then,

d;(k, (u) = (k —k,)'K„„/D(k, (o),

1

d;(k--,'k„(u--,'(u„)= q', ' ' d;(k, &u) (3.1)(k- ko) &~-~

= R, (k, ~)d, (k, ~),

D(k, ~) = k'(k —k,)'Z„i„„-q', (+ —
& ~,)q', (~ —

& ~,).
(3.2}

The equation D(k, ~) = 0 has the same general
structure as the dispersion relation of a paramet-
ric instability in the linear (nonturbulent) theory
(see, e.g. , Ref. 14).

Vfe write q„q„q, as the sum of a linear term
plus nonlinear terms, i.e. ,

qJ(k, &u) =q', (k, ~),+ q', (k, &u), + q', (k, ru)„»~,

(3.2a)

where the linear contribution q', (k, &u), can be iden-
tified from previous work. " If we shift k to k —&lko
in Eq. (2.5) and use the relations (2.12), we can
write q', [0 —~fko], entirely in terms of I, and do:

d4k' " d4k"
„v(I,I ', I ")v*(u —Iu„u' —I'0„&" —I"&,)2x/ ~ 2%/t

x R f. (k')Rf. (k")I,(k')d;(k")(2v)'5'(k —k'- 0")5. .. .-. (3.3)

From (3.3) we can obtain an expression for q', [0 -zlk, ]. First take f- —f in Eq. (3.3). By making the
transformations k- k —fk„k'- k' —f'k„k —it,'"- Ik, in Eq. (3.3) and using the identities
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R*,(k —fk„)R, (k)=1, I (k —fk )= ~R, (k) ~'I (k), d'(k —$k, )= ~R, (k) ~'d'(k),

which follow from Eq. (2.12), we find that

d'k' " d'k"
q', (k ——;lk,),= —g,—,

' „v*(k,k', k")v(k —fk„k' —f'k k" —l"k, )

&& R, , (k')R, „(k")I',(k') d, (k")(2w)'6'(k —k' —k" )6. . .,. . (3 4)

From this we see that q', [k ——,lk,j,=q'([k ——,lk,],if d;(k") is real, which, as we shall see, is often the
case. To obtain explicit expressions for q„' and q,', we use (3.3) and (3.4) making only the v dependence
explicit for compactness. Then for 3 = 0,

q'.(~)..=—

x v +(K, co, (d ) + v*((d, (d —(do, (d + U)o)

(3.6)

Similarly for l = —1,

q', (k ——,
'
k„&u ——,~„),=

X Vlh(d h)Q'CO Mo, h) i), ,2 —, ' —,+~'(f40 (dQ'CO, (d —(dQil, ,2(k'- kQ) &( —Q) (k -k, ) «~ —&.)

(3.6)

and, from (3.6), (3.4), and (3.3),

q ', (k —2 k„&u ——;~,),=

q', (~"--,'~,)*
(kN —kQ) ( Q)—

(3.6a)

Similarly from (2.14) we can change integration variables from k' to k' ——,'lk, to obtain

4 ' d'k'
q&(kz~lk )„&&&

= ( —i) . 2- —
&

d v G(k) ' k'[G(k ) ' (k' —ikey)G(k —iko) ' (k —lko)

+ G(k" ) ' (k —lk, )G(lk —k') ' (k' —1k )]F,(v)R f (k')Io(k')

(3.7a)

In particular, for l=1,

4me' . , d'k'
= ——

—, (—i)'
rn' (2x)'

d'v G(k) k'[G(k") (k' —k„)G(k —k,)' (k —k, )+G(k") (k —ko)G(k, —k')' (k' —ko)]

(3.7b)

Again it is possible to show that q', (k —,'-lk, )„,«
=q', (k —2fk, )„*»„if none of the G propagators in
(3.7a) or (3.7b) are resonant.

In what follows we will use the notation q', (k)~~
to represent the sum q', (k)N~=q', (k), +q', (k)„»„.

To simplify Eq. (3.2) we first note that if &u= u,

—iyN„= u« —iyN„ is a solution of D(k, ~)=0, from
the symmetry of (3.2) there is also a root of
D(k, ur) = 0 for ~ = ~ —iyN~ = (uo —&u„„—iyN„. We
now assume that ~N„—iyNL is near one of the roots
of e(k, u) a.nd likewise is near one of the roots of
e(k —k„, ~ —a, ) so that we can approximate e(k, ~)
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in «(k, ~) = «(k, u&) + (1/k')q, (k, ~)NL by (s Re«/s ~„)
x(~ —&u„—iy„) [where Re«(k, ~„)= 0]. The equation
D(k, ur)= 0 is then just of the form of a linear para-
metric decay dispersion relation,

&Re ~ Re
((u —&d, + iy, )((u —(u, + (D2+ iy, )

+

(~ 2 +o) q (~ 2 ~o) 0 (3 8)k' (k-k, )2

E(k, ~)

E (k, ~) E(k, co )

E (k, au)
4L

eRe~„- „t'
2, = (u, + "'

j Reqo(k, v)NLk ',
9 co

~ Reftr, = y, + 2'"' Imq, (k, (u)NLk
' (3.8a)

where the renormalized frequency and damping
are

E ( k -ko, au-co~)

E(k ko
dE

E(k, co )

F (k, au)
4L

r~=r, y, (r, +r, ) '

—F'(r, +y, ) '[1+(n&d)'/(r, +r, )'] '

Here

&2 = G, (k)+ &2(k, —k) —~„

{3.9)

(3.10)

I 2 ql(+NL ~&&)q-1(~NL 2 ~0)
k'(8 Re«„/a&u, )(k, k)'(8 Re«„„„/8&a )

(3.11)

We have assumed I' is real, which is a good ap-
proximation for the example considered in this
paper. In general, an imaginary part of I"' can
occur.

In the absence of the pump, only q', (k, &u), is
nonzero, and in this limit it becomes the familiar
nonlinearity related to induced scattering in
Kadomstev's theory, as shown in I. The existence
of nonzero values of q„(k —2k„, &

' ——2'&u,), in the
presence of the pump can be seen from the follow-
ing arguments: The usual form of the induced-
scattering nonlinearity arises from a two-step non-
linear process (see, for example, Kadomstev"
pages 31-33, and 42-43) shown diagrammatically
in Fig. 1(a). Here two high-frequency electro-
static fields E(k, &u) and E(k', u') can beat together
because of the plasma nonlinearity to produce a
low-frequency nonresonant field $(k —k', ur —u').
This is just the low-frequency ponderomotive force
of the two high-frequency waves driving a low-
frequency density response. The beat field
$(k —k', u —&u') interacts again by the inverse
process to couple E(k', ~') and E(k, u&). Thus Fig.

and m, and y, are the linear values. We have simi-
lar expressions for co„z, where k-k, —k, (d, —~,

Note that the frequency argument of Qp

is ~, the solution frequency. The real and imagi-
nary parts of the solution are

~~ = u&, —A(uy, (y, + y, )

g{k-k, ~-(u }

FIG. 1. Mode-coupling diagrams for (a) dielectric
function corrections and (b) coupling-saturation cor-
rections. The three-line vertex represents the nonlinear
wave interaction with matrix element v(A, 0', 0 -0') for
example. Here $(k —k', —~) represents the low-
frequency heat field (ponderomotive force) of the high-
frequency fields E(k, ~) and E*(k', ~') in (a) or of the
parametrically correlated fields E (k —ko, (d —uo) and
E *(k' —ko, ~ —~ 0) in (b) . Diagram (a) provides a diagon-
al coupling of E(k,~) to itself while diagram (b) provides
a cross coupling between E(k —ko, —~0) and E(k, ~).

1(a) represents a "forward-scattering" amplitude
which connects E(k, &u) to itself. This then pro-
duces a correction to the dielectric function «(k, u)
proportional to (

~

E(k', u')
~

')«{k —k', m —ur') ',
where «(k-k', u& —d) represent the response of
the field $(k —k', w —u'). As seen in (3.8), this
correction leads to frequency and damping shifts
of the linear modes.

In the pump-modulated plasma, however, an
electrostatic componentE(k' —k„e'- ~,) is always
associated or correlated with a field E(k', &u'). The
beat interaction of E(k —k„&u —cu, ) with E(k'
—k„c&' —~,) produces the difference wave number
k —k' and difference frequency (d —', precisely
the same as the beat interaction between E(k, u)
and E(k', &u') considered in the last paragraph.
This produces an additional source for the field
$(k —k', ~ —~') and leads to the process in Fig.
1(b), among others. This diagram, in distinction
to Fig. 1(a), provides a compline between the
Fourier components E(k —k, , u& —cu, ) and E(k, u!)
which is proportional to (E(k —k', &u' —~„)E(k', &u'))/

«(k —k', co —cu'). In the RPA such a cross-correla-
tion coefficient vanishes, but in the presence of
the coherent-pump field it does not. The additional
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I,(k, &u)= '„, 2vI "I5(co' —&u~)
I,(k)

+ 2 27FI(dI5[&d ((do &dK)], {3.13)
I (k)

I I'. " V(p)(cu, ru, (u, ~, au )

E(k, cuj
, ''4L

where y'~/&u~„«1, and

I, k= O'S, (k, &u, )
{aEeD/su), )'y~„(k) ' (3.14)

)~
Eik', ~)

7

,/

V(y) (OP, QJ, 4d CUo, el -Q]0),I I
/

) 'i'.. . .,:,-,. '.
.. , , .',

, E(k, ap)

'%F' %F

FI(3. 2. Direct-coupling diagrams describing the non-
linear contrib!xtions arising from q«+. (a} diagonal
corrects to the dielectric function and (b} coupling sat-
uration corrections. The four-point vertex represents
the amplitude V(@ jw, a', a —~0, ' —~o) defined in the
Appendix.

direct couplings which arise from q„»~ are shown
in Fig. 2. These terms do not involve an inter-
mediate beat field.

Thus, as we have stated several times, the
coupling-saturation effect arises in precisely the
same weak-turbulence approximation as the fami-
liar induced-scattering process, provided pump-
induced cross-correlation effects are taken into
account.

The marginal stability condition yN„(k) =0 will
be used to determine the steady-state enhanced
spectrum of the turbulent fields. This condition
merits some further comments. In Eqs. (19)and
(20) of I we derived a general space-time formula
for the electrostatic-potential correlation function.
We can apply the same kind of courier analysis to
this equation and derive an expression for I,(k, ~)
=8,(k, (u) [see Eq. (2 10)]'"""

I,(k, u)) = S,(k, ~)/ID(k, ur) l', (3.12)

where D(k, ~) is the determinant defined above and

So(k, ~) is an effective noise source term which
includes frequency-mixing effects induced by the
pump as discussed by DuBois and Qoldman" for
the linear theory. In the present case S,(k, &u} is
the nonlinear generalization of these effects. The
determinant has zeros at u= uNL —iy„„, u= uo
—c'L —iyN„, etc. We can expand D(k, cu) about
these zeroes and write, approximately,

with +, =~NL, and ~ =a, —&N . Thus the frequency
spectrum is dominated by resonances at ~N~ and

We also see that

O'S, (k, &u, )'-'"'=
( H.D'/ -', ):I,(.-) (3.15)

and that when the right-hand side of this equation
is much less than unity, for the portion of the
spectrum much enhanced over its thermal value,
we have yNg(k) —0.

Note that the intensities I,(k) are now electric
field fluctuation spectra since we have factored
out a factor O'. It follows from the same type of
argument used to derive (2.12) and (2.13) that the
ratio of the coefficients in Eq. (3.13) is given by

O' I (k) (if(k, —k, (u, —&u~)l')

(k —k, ) I,(k) (II'(k &~ )l')
= IR, (k, ~„}I', (3.16)

where R, is given by Eq. (2.13). This is formally
the same as the ratio of coefficients calculated
from the homogeneous set of coupled-mode equa-
tions under the condition D(k, vN~) =0.

1V. SATURATION GF TWO-PLASMON DECAY
INSTABILITY

As a first application we consider the nonlinear
saturation of the electron-electron decay instability
or two-plasmon decay instability involving the de-
cay of an electromagnetic pump wave into two
Langmuir waves. '"' The nonlinear theory of this
instability has been considered by several authors
but without proper account of coupling saturation. '"
We will show here that this is in effect the domi-
nant saturation effect.

For this problem the formulas in Sec. III apply
where modes 1 and 2 are both Langmuir waves.
We use the notation &u, (O) = (&@~2+ 3O'v', )'~' for the
uncorrected Langmuir wave frequency and y, (O)
for the uncorrected damping including both Landau
and collisional damping. Thus, in this case, we
have

(u, =(u, (k), y, =y, (k),

(u, =(u, (k, —k), y, =y, (k, —k).

The turbulence-corrected ~'s and y's are then
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F2 0 22 (k, e )2 ( 0 1) 0l2
4@~T ~4e p De

The frequency mismatch is

&&a= 00, (k)+ 0l, (k0 —k) —0l0.

(4.2)

(4.3)

For this instability a finite value of k, is neces-
sary. In writing the expression for the coupling
parameter I'p, and in all our considerations here,
we will assume that

I "0I =' IkI so that
—kI. In this limit y, (k)=y, (k, —k). Note that if

y, = y, we have from Eq. (3.9)

&@la(k) = —,
'

&u0+ —,'[0l, (k) —&3, (k, —k)]

=-2'0l0+ -:k k00l~/ko„

0l0 —ld~(k) —= 0lNL(k0 —k).

(4.4)

Because of this

y, (k) =y, +20l0, Imq [k, (ANL(k)]NL

(4.5)

y, (k0 —k)=y, +20l0, Imq, [k, —k, 0l, 0l „(k)]

=y, +20l Imq, [k —k, 0lNL(k —k)]„„.

So lf
I
k, —k

I

=
I
k

I
it is consistent to assume y, (k)

=y, (k0 —k). The marginal stability condition in
this case (see 3.9) is

y, (k) I'
'(8+-'I~ )*) (4.6)

or

[F2 l
(n 8i)2]l/2 (4.6a)

If we write 2(n 0l) = 0&~Z(1 —k'/k'), where Z= (0l,
—20l~)/20l~, we can use (4.6a) to obtain

y, (k) = y, (k)
12(k) Z~
y,'(k

k2 2 ~1/2

(4.7)

The growth rate is then strongly dependent on the
mismatch (k' —k') but less strongly dependent on
the angular behavior determined by the factor
(k, e,)'(k, k, )' in I' [Eq. (4.2)]. Thus it is rea-
sonable to assume, following Pustovalov, Silin,
and Tikhonchuk (PST), that the spectrum is local-
ized at k=k but spreads in angle because of the
nonlinear induced scattering of waves from ions.
This requires that the pump strength not be too
strong, i.e. ,

0l2 Z2/y2 )) F2/y2 (4.8)

and that & is not too small, i.e. ,

calculated using Eq. (3.8a). The coupling parame-
ter I' is determined from Eq. (3.11). In the linear
(nonturbulent) case for which q„(0&) is just q,', (&u)0

we find a familiar result'"":

I » Z» y, /0l (4.9)

243 [P'~2 —1]' y, 0l2, v,' T,
%~2 P (dpi' c T,

provided

(4.10)

P' ' 1»—"c'v'. /v'
27 f e' (4.11)

The latter condition ensures that the spectrum
is broad enough so that the differential (or deriva-
tive) approximation [PST's Eq. (2.12}]can be used
for the contribution to y, arising from induced
scattering from ions. In addition to some obvious
notational changes, we have replaced their param-
eter p = E,/E „by the corresponding 2'enoymaliz ed
pump parameter which in our notation is P' '.
Note that PST consider the case of "spontaneously"
or unpolarized pump radiation, where

(4.12)

In this case I'/y', = P sin'28, where P= I'(k, 8
= 42')/y2l and 8 is the angle between k and E,. We
denote by k the unstable wave vector with

I
k

I

=k and
I 8I =~ll. From our point of view these

expression are incomplete since P is itself a
function of I(k), and as it will turn out, a function
of W. Thus Eq. (4.10) is actually a nonlinear equa-
tion to be solved for W. To establish these equa-
tions, we need to work out the expression for
P(W).

To do this return to Eq. (3.13) and (3.16}. In the
present case

I,(k)
IIt I, I q, (k —2k, lv„(k) ——'0l, ) I'

I (k) '
(k k )'

I e(k —k„0lNL(k) —0l0) I

' '

(4.ZS)

Since 0l~(k) —lll0= —0l22, we can expand the Res
about its root near 0lN„—&u0= 0l, (k0 —k). Then using
expression (4.4) we find

I,(k) I"2

I (k) a 60l + y', '

where

(4.14)

PST calculate a steady-state saturated spectrum
assuming the only nonlinearity in the contribution
to Z, is due to nonlinear induced scattering from
ions. The required expression for y, is obtained
by combining (4.5) and (3.5). They do not consider
coupling saturation which we will show is a domi-
nant effect. We can use their results for the total
Langmuir wave energy without including coupling
saturation to compute the resulting energy with
this effect included. Their results are

d'kW=, [I,(k)+ I (k)]
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1 q, (k ——,'k„~~(f/) ——,
'

ur, ) I
'

4 (k -k )'&'

According to Eq. (4.6) this ratio is unity for
marginally stable waves. Thus we can write

f,(k, ~}= 2(21/I ~
I
/f ')f(k)6[~' —re~(k)],

where f(k) =f,(k).
Next we substitute (4.16) into (3.6) and take Id

= &l/1n (k). Since &l/' = 1v1z (k'} we have generally
{d"«(o~. Thus the arguments of the first two
matrix elements in (3.6) have two high-frequency
and one low-frequency arguments. If w" «k"e, we
find from Eq. (2.6) (see also Ref. 11}

(4.16)

v(1v, &e', 1e")=(e/m)(k k')k' n/ 1d~

provided Ik. I

"Ik I, Ik'
I

in (3.6) has three high-frequency arguments and is
smaller than the other two. Furthermore, in the
denominator E(k' —k„u' —&u&} is near resonance at
1v, (k2 —k'). However, the c(k" —k„&d —cu, ) in the
second term is far off resonance. Thus, only the
first term in large square brackets in (3.6) is
impox'tant. With the relation

I' (k)= —,'&11~q, (k —2k„&v„„——,.' u&, )(k —k2) '.
we then can reduce the contributions of (3.6) and

(3.7) to the form

~ (k) T (k)
e'k2n, (T,/T, )

m2~~(1+ T,/T,).
&')'2' (k 2')2f(k )I' '(k )'

- (21/)' ~1v(k')/1vt, —2fy, (k')/1d„

(4.17)

where I',(k) is the linear (zero-turbulence) value.
Details of this reduction are given in Appendix A.
Here we have also taken

g'(kN 1d4) ~ [f lt2g(kll 1dll)] 1 (y2 + /
2 ) 1

since
~-=-'~{k-k} kP.-.«~-v, (~-=Ik k I},

provided v, !e«(m, /m;)' '. Now, in the approxi-
mations of PST, f(k') is peaked at k= k„, where
Are(k') is zero, and we can set k'=k in I' (k'). We
also have from the marginal stability condition

" d2O' I(/2')W'=
(2z)' 41/nT,

'

Since d+ (k', 1d') is real we have I', (k)= I' (k)*,
and

(4.20)

I'.(k.)I' (k.)»
y,2 4y,2p(1+ T,/T, )'

(4.21)

ox'

1 1d/2 W'(T, /T, )2

4 y,'(I+T,/T, )' ' (4.22)

which relates the renormalized pump parameter
P to the unrenormalized P = I",(k„)/y,2. We insert
this expression into (4.10) to obtain an equation
determining W:

p(P 1 /2 1)2/P 1 /2 (4.23)

243 y m) v2 T)
p e

21~/ (d22 m2 c T2

Since p/W»1 this has a solution

W= 2(y /1d )(P —I)'/'[(T + T&)/T.l .

{4.24)

(4.25)

This is generally much smaller than the value
which we call 8'»~, obtained by PST

W», ~,. p (P'"-I)' ~„p
Note that the weak-turbulence condition W «1 now

restricts

(P-1)'"«[(T,.T,)/T. ] ', /y,

so that the theory is applicable for P»1, unlike
the theory of PST. The condition for the applica-
bility of the derivative approximation must also be
tested. The solution (4.25) corresponds to P = 1.
To find (P' ' —1) to higher accuracy we iterate
Eq. (4.24) to obtain

(Pl/2 1)2 W/p

where W is given by (4.25).
Substituting this into (6.11) we obtain

I
I 2I1/2 P1/2 (4.18) v W/Wp» —",, e'v,'/v'„ (4.26)

Since k «kD, we have replaced y, by the k-inde-
pendent collisional damping y, =

& v„.. Finally, we
assume that X{k', 8) is strongly peaked about the
angle 8= + 4m. We can therefore extract from the
integral a factor I' (0 ), where k„ is the most
unstable wave vector, and therefore obtain a sim-
ple algebraic relation for I' (k ):

or, using (4.25) for W this provides a condition on
po

'~'mc' m T. + T- '~'

2V 2y. T. m' T. T.
(4.27)

which is easily satisfied in practice. We therefore
have shown that the coupling satuxation gveatly
reduces the energy in the turbulent-wave spectrum
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and, as a result, greatly extends the range of P
values for which the weak-turbulence theory is
applicable.

The spectral width is found from

&/4

60—
Pl /2

1/4 y + y 1/4
yc e+ i (~ 1)1/8 ( I

(dp P Te
(4.28)

The considerations given here demonstrate that
coupling saturation plays an important, even domi-
nant, role in the saturation of the 2~~, decay in-
stability. However, we do not regard the results
above as completely representing the nonlinear
stage of this instability for several reasons.

(i) The rather narrow spectrum of Langmuir
waves peaked near k is probably unstable to
further decay into Langmuir waves of k& ~k

~

and
ion acoustic waves. The conditions for this are
e, (k ) = &u, (k)+ &u, (k —k), where &u, is the ion
acoustic frequency with the threshold condition
g & 16(y,/~~, )(y,/~, ). If we use (4.25) for W, the
condition for further decay instability of the com-
puted spectrum translates into

m]

(P l)i/2& 8 &a Te+ Ts

(da ~e
(4.29)

which is easily satisfied if T, » T;. If T, = T, ,
then y, /&u, =1 and we require J' & 17 for further
decay instability. We will not attempt here to
treat the two- (or three-) dimensional problem
which arises in computing the wave spectrum
arising from this additional decay (see, however,
Ref. 6).

(ii) The steady-state spectrum including the
additional decay mentioned above may become
modulationally unstable for sufficiently high-tur-
bulence levels. If the resulting Langmuir spec-
trum is sufficiently broad with a width &k the con-
dition for modulational instability in the theory of
Vedenov et al." is

In this case energy from the turbulent spectrum
is converted into an unstable low-frequency longer-
wavelength mode involving ion motion. This un-
stable mode is conjectured to break up into local-
ized "caviton" excitations. " It appears, however,
that there may be a range of lower-pump powers
where the spectrum is modulationally stable.

(iii) We have assumed that a steady-state wave
spectrum is developed. Computer calculations of
the time development of the spectrum indicate
that a steady state may not be attainable. Instead
a time-oscillatory saturated state develops. How-
ever, we believe that coupling-saturation non-

linearities must be included to treat the time
development of the spectrum properly.

V. SUMMARY AND SUGGESTIONS FOR FURTHER WORK

Let us summarize the main conclusions of this
paper:

(a) We have shown that the dispersion relation
for small excitations of the turbulent plasma in
the presence of the pump modulation can be writ-
ten in the same form as the linear theory of para-
metric instabilities. However, in the nonlinear
theory the mode frequencies, damping rates and
mode-coupling coefficients become prescribed
functionals of the turbulent-wave intensity.

(b) The coupling-saturation effect arises be-
cause of pump-induced cross correlations be-
tween modes. This effect arises in the same ap-
proximation of weak-turbulence theory which leads
to the well-known nonlinear induced-scattering
corrections to the mode frequencies and damping
rates.

(c) Coupling saturation was shown to greatly
reduce the turbulent-wave energy produced by the
2w~, decay instability when compared to calcula-
tions which have not included this effect.

This theory has been applied to the electron-ion
decay (EID) instability for T, » T, and will .be re-
ported elsewhere. " This application is greatly
complicated when one tries to assess the com-
bined effect of coupling saturation and transfer in
k space due to induced scattering from ions or ion
acoustic waves. In this case again coupling satura-
tion appears to play a dominant role in saturating
the wave energy.

There undoubtedly are other candidates from
the long list of parametric-decay instabilities con-
sidered in the literature for which coupling satura-
tion will be important. Hopefully, this paper will
stimulate some interest in these applications.

Finally, we want to demonstrate the inapPlica-
bility of the type of theory presented here to the
OTS instability. For T, = T, the threshold for OTS
is only slightly higher than for KID but for T,
» T,. it is higher by a factor of ~,/y, . The OTS
instability can be regarded as a electrostatic
modulational instability of an electromagnetic
pump. It is tempting to try to handle this insta-
bility by the same techniques used for the decay
instabilities. For this one could go back to the
3&& 3 system of equations in Eq. (1.7). The linear
theory of OTS instability can be obtained from this
set. The formulas for q„q „q still apply. The
problem arises with the response functions
d', (k", &g") which occur in these expressions. As
before ur" = ~,(k') —~«(k) but the parametric mode
frequencies are now
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3 ko'k
&0&e (k) = «),+-

Dc
(5.1)

and this means that co~ will also be a resonant
frequency

(5.2)(o' = &d~(k) —(d„L(k') =—&d„„(k—k').

Thus the response functions d;(k", &u") are always
on resonance. If, in addition, we assume that
there is a finite range of k of marginally stable
waves, l.e., 'y„„(k')= 0 fol k~ -2+k( k"(km+ yak,
which correspond to the enhanced portion of the
spectrum, we see that the integrals for q, and q„
are divergent. That is, the integrals are of the
form

E(k, k')

ys&,(k —k~)

where y„~=0 over a finite range of k'. It would

appear that waves with the dispersion relation
(5.1) can never be treated by a weak mode-cou-
pling theory. If a large amplitude wave of this
type is excited with wave vector k, it can beat
together with itself to form 2k and up„L(2k) = 2(dN„(k)

will also be a xesonant mode. Higher harmonics
will grow by a continuation of this process pro-
ducing a broad spectrum in k and permitting the
formation of a localized excitation in space. If
we start with two waves with k, and k, not colin-
ear a very rich spectrum spreading to higher k
in two dimensions can be produced.

In Ref. 18, mode-coupling theory was considered
and a saturated spectrum was derived from a
marginal stability condition. However, instead
of the complete response function d;(k", ur"),
which appears in our theory, in Ref. 18 only the
unrenormalized [k"'c(k"', &e')] ' was used. In this
approximation the above divergence was not ap-

parent. In our opinion this divergence, which
arises from the exact response of the plasma is
an intrinsic feature of this type of theory. Note
that this divergent behavior will occur for any
modulatioma/ instability as well whose dispersion
relation satisfied (5.2).

The question remains as to whether or not this
divergence can be xemoved by further renormal-
izations in the theory. We believe this divergence
is related to the tendency of the plasma to form
localized "caviton" excitations" ' "above the thresh-
old for the OTS instability. If so, the correct
treatment of these problems requires a significant
change in our assumptions concerning the coher-
ence properties of the system.
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APPENDIX: INTEGRAL EQUATION FOR SATURATED

COUPLING

Here we present some of the details leading to
the integral equation (4.17) for the saturated-cou-
pling pa. rameter I".(k). As stated just before
(4.17), only the first term in (3.6) has a large
resonant contribution. If we add this to
q, (k —~k„ur ——,'(d, )„», from (3.7b) we obtain an
integral equation for the total q', as defined in
(3.2a):

q', ((d —~ &uo) = q', (&e —2(d ) — , I (&d')(n"((d, (d', &d")&)(&() —(d , «)' —(d„ &u")d'((d") —V„)(m, &d', &d —«), (d' —«(,)j

(Al)

We identify the quantity V&» from (3.7b) to be

+G((d") ~ (k- k,)G(~, —~'). (k'- ko)]+,(&).

The matrix elements v are well known,

&)((d, &d', (d") = (e/m) (k ~ k') [X (k", &u ")/«)~ l (k")

&)((u (d„(d' —&0„(d")= (e/m)(k —k,) ~ (k' —k,)

&& [X.(k", ")/ ' ] (k")',
(A3)

where the last equality applies to the case (d"
«k"v, . To evaluate V,3) we note G(~)
= —i((d- k v+i0+) „&sdanintegrate by parts rel-
ative to the B„operator in the first factor on the
left of the integrand, G((d). The s„operator in the
factor G(&d") operates on the third G in the pro-
duct as well as on F,(&)). If we assume ~0 —&o'
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» lk. —k'I'. »d ~o —~"lk. —kl~. which i»alid
for the RED instability, we can write

V&»(u, v', cu —uo, v' &u }

(k k')(k- k ) .(k' —ko) (k„„)(~„)3
2 4 Xe

pn (dp

The form involving the second velocity derivative
of F,{v) vanishes identically in this case. Here

k, (k, )=, , f k G(k, ) kF,()
is the usual collisionless susceptibility. Next we
replace do (k", (u") in (Al) by (k") '&(k", &u") '
and combine terms to get

)f'k(~ —r)k)0) = Kk(~ —x~0)0+
FPl (dp~

l
Eo((u')(k k')(k- ko) (k' —k ))(,(k", (u")

e(f", ~") (k' —ko) e(&u' &uo)

(A5)

Note the familiar combination X,'/e —}t,=y, ()), /& ])
= —X,(1+ y,.)/e results from the two terms in
curly brackets in (Al). The first term we recall
arises from q, nonlinearity whereas the second
arises from q„»„.

We use the static approximations ){, ,(k", &u")
= !2o k /0 and assume ko((0, 0 'to obtain

Next, we use (4.16) to compute the integral over
(d' and use the relation

1" (k) = —,'~~, q, (k ——,
' k„~„„—~&a,)(k- k,)

' (A7)

to change (A6) into the integral equation for I' (k)
given in (4.17). To obtain (4.17) we have also
used the near- resonance approximation
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