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Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering
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A statistical-mechanical theory of the elastic constants of a liquid crystal based on the Onsager expansion is

reexamined, with emphasis on the terms linear in the gradients of the director. This gives a microscopic
theory of the piezoelectric effect in nematic liquid crystals, and of the spontaneous twisting of a cholesteric.
Model cases of tapered rods, bent rods, and threaded rods are considered.

I. INTRODUCTION

Nematic liquid crystals have uniaxial symme-
try: there is locally a single preferred axis,
whose orientation is conventionally represented
by a vector n(the "director" ). Since these materi-
als actually have quadrupole (rather than dipolar)
ordering, the directions yg and —n are not physi-
cally distinguishable. This implies that the prob-
ability that a, given molecule has a chosen orienta-
tion is a function of the direction cosines (n rn, }
of the director relative to some body-fixed axes
(m,.}of the molecule, but is invariant under rota-
tions of the molecule about the director and is
even in n.

The molecules themselves are much less sym-
metric. The molecules forming a cholesteric
liquid crystal need have no symmetry at all, and
nematogens are expected only to have chiral sym-
metry (i.e., to be nonenantiomorphic'). The rela-
tively low symmetry of the molecules comprising
a liquid crystal does manifest itself in certain
ways. Meyer' first noted that bent or tapered
molecules can exhibit a piezoelectric effect under
the conditions of orientational strain. This sug-
gestion has received subsequent discussion by
Helfrich' and Qruler. ' A microscopic statistical-
mechanical theory of this effect will be given here.

This paper will also give a microscopic theory of
cholesteric liquid crystals. In the usual elastic
theory of cholesterics, the pitch length appears
as a ratio of two elastic constants, one of which
is Frank's twist constant K», and the other of
which is the coefficient in the free-energy density
of terms linear in the gradients of the director. '
This latter coefficient will be calculated here.
The method may be regarded as an extension of
Goossens's calculation' in which it is no longer
necessary to assign molecules to planes.

The common feature of these two problems (pie-
zoelectricity and cholesteric ordering) is that both
involve the linear order response to gradients in
the director field.

The published discussion of these aspects of liq-

uid crystals have been somewhat qualitative: the
relationships between molecular asymmetry and
orientational order have been sought without ref-
erence to the microscopic theories which have
been used to discuss the liquid-crystalline order-
ing. ' " This paper will extend the Onsager' the-
ory to a calculation of the piezoelectric coeffi-
cients of a model nematic, and of the pitch of a
cholesteric liquid crystal.

The extended theory is already in existence; it
has been used previously"'" to calculate the
Frank elastic constants for nematic liquid crys-
tals; however, in these previous discussions the
piezoelectric terms were ignored. A more care-
ful rederivation of that theory will be given here
(Sec. II). The theory will then be applied to some
simple model systems, namely tapered rods (Sec.
III), bent rods (Sec. 1V), and enantiomorphic par-
ticles (Sec. V).

II. THEORY OF THE DISTRIBUTION FUNCTION

Consider a rigid molecule of arbitrary shape,
and let its orientation be specified by the quantity
ur, which may be represented as a triplet of Euler
angles, or as the collection of direction cosines of
a body-fixed axis system with respect to a labora-
tory frame. Following Onsager' we shall define
an orientational distribution f(ur) which gives the
relative probability that a molecule has orienta-
tion in the differential element d&g near &u: if dN(&u)

is the number of such particles in a volume dV,
then

dN(e) = pf(m) da dV.

Since all particles have some orientation, this
distribution function is normalized

f (d G(d= 1~

where the integral ranges over all orientations.
In a distorted liquid crystal or in a cholesteric,

f(&u) is also a function of position; for simplicity
(and without great loss of generality) we will as-
sume that the density remains uniform in these
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cases, so that Eq. (2) holds at each point in space.
The interparticle potential V(&u, 7; r —s), which

describes the interaction of a particle at r of ori-
entation ~ with a particle at s of orientation 7;

is a general function of its arguments, except that
it is invariant under arbitrary simultaneous rota-
tions of u, 7, and r —s. We will also define the
function U(e, r, r —s) = e v~~r —1, which vanishes
for large

~

r —s
~

and takes on the value -1 for con-
figurations in which V is strongly repulsive (i.e.,
overlapping molecules). As Onsager has shown,
the Meyer cluster expansion can be used to ex-
press the Helmholtz free energy in terms of f(u, r)
and U as

=Nlnp+ p f(&u, r)lnf(&u, r)du&dr

——,
'
p ~, r U co, 7', r —s

&fP, ~)d&u d7'dr ds (3)

r
+ 2 p' f(~)B(~, 4f(&)d~ d&

+ —,'p' f e C co, & V, 7 dade

——,p' Jt v,f(~) D(~„~) v, f(r}d~dv+ ~ ~ ~

In this equation,

(4)

&(,~)=-I ()(, ~, ()&(

is the second virial coefficient defined and dis-
cussed by Qnsager7 and others"; the first-moment
vector is

('( ~) = f (U( ~, () &(;— (6)

This expression is actually just the first few
terms of an infinite series; truncating the series
in this way gives a form of mean-field theory sim-
ilar to the Maier-Saupe theory. '

The first two terms of Eq. (3) are local: the in-
tegrands involve the distribution function for a
single point only. It is the last term which couples
the distributions at neighboring points, and the
dependence of the Helmholtz free energy on the
spatial variation of the ordering will be found by
expanding this term in the gradients of f. Writing
g = r —s and substituting the Taylor expansion
of f(s+ $) into Eq. (3), there results E= J 6:(s)d(s),
where the free-energy density 7 is given by"

6'(s) = p lnp+ p f(&u) lnf(ur} d&u

and the second-moment tensor

$;(,U(~, r, ()dh

has previously appeared in discussions of the
Frank elastic constants. "'4 All terms in Eq. (4)
are local; the integrands depend only on s. The
following symmetries should be noted: under ex-
change of labels U(~&7', $) = U(7, ~, -$); conse-
quently B(&u, ~)=B(7', e), C(&u, 7)=-CP, u), and

D;, ((u, T) =D; (7', (())..
The expansion in Eq. (4) has been carried through

terms quadratic in the gradients of f(~, s), and it
is desired to evaluate the free energy to this ac-
curacy. We must first determine the local dis-
tribution of orientations which minimizes the free
energy (4). The first three terms are the Onsager
equation of state appropriate to a liquid of asym-
metric particles; their sum is minimized by a
uniaxial distribution function f,(u, s) whose axis
defines the director n(s). This function is appro-
priate to the undistorted liquid crystal; it has
been studied for particles having C, symmetry, "
and electrostatic quadrupolar coupling, "and a
rank-2 spherical harmonic model. "

Distortion of the liquid crystal alters the equi-
librium orientational distribution function through
the later terms of Eq. (4); this causes the second
and third terms to change to the same order. How-
ever, it proves not to be too difficult to take these
effects into account. We may certainly assume
that the distortions will take place over distances
which are very large compared to the molecular
scale; then the last two terms of Eq. (4) are small
tthe integrals of Eqs. (6) and (7) range over mo-
lecular dimensions]. Now let us write f(~, s)
=f, (&u, s)+g(&u, s)f, (~, s), where we hope that g is
small. This representation is motivated by the
idea that the principal effect of orientational stress
will be to cause the director to vary spatially, but
that at each point in space the distribution function

f will have the same uniaxial form with only the
axis varying. The term in g represents the stress-
induced changes in the distribution function.

Because fo minimizes the sum of the first three
terms of Eq. (4), that sum will be stationary with
respect to small changes in f: the corrections of
order g to the second and third terms cancel, and
only corrections of order g actually arise. There-
fore in order to calculate the free energy to sec-
ond order in the gradients of the director it is
sufficient to calculate the orientational distribution
function to linear order only. Calculation of g to
this order proceeds as follows. A Lagrange mul-
tiplier term (A + A, }f(u, s) d(() is added to Eq. (4)
(to ensure normalization), and a variational de-
rivative is taken with respect to f to find the On-
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sager equation

lnf—( )=),+X, +p I ()z), i)f(i)di

+p2 C (d7 'V T

where the term involving D has been dropped be-
cause it is quadratic in V,f. Substitution off
=f,(1+g) gives

= plnp+ p

+gP o (d B (d)T () 7 d(dd7'~

which is the free-energy density of the unstrained
nematic;

which is linear in the gradients of f„. and

+p B(d, Tg 7 7 dT +pp~~ (dg & C (d, 7' '7 7' d(dd7

+ p
J

C((d, 7) v', fo(r) dr, (9)

where terms of order higher than linear in the
gradients of f have been deleted; the bracketed
terms are the Onsager equation for f„which can-
cel. The remaining terms give an inhomogeneous
linear integral equation for g(&o). Because both f
and fo are normalized, g is orthogonal to
fo[ ffo((d, s)g((u, s) d(d = 0]. The parameter X, in

Eq. (9) is to be chosen so that this relationship
holds.

The strain of the liquid crystal enters Eq. (9)
only through the term V,fo(m, s), but f, depends
on position only through the spatial dependence
of n(~) itself: f, is the equilibrium distribution
function with axis along n Thus Eq.. (9) will even-
tually be written in terms of the gradients of the
director. It is appropriate to note at this point
that it is always possible to choose a coordinate
system such that at any given point r in space,
n(r) =x and

V (n(r) m)=(N+sy+fr)(m y)

where b, s, and t are, respectively, the ampli-
tudes of bend, splay, and twist. Equation (9) thus
relates these strains to g, which is the micro-
scopic response to the strain. In particular, if
the molecules carry a dipole moment, then the
degree of alignment of these dipole moments is
described by a moment of g. Thus we are finally
led to a theory of the piezoelectric effect.

In order to see clearly the effects of distortion
on the free-energy density of the liquid, let us
also substitute f=fo(1+@) into Eq. (4), eliminating
terms where possible through substitution of (9).
There results

F(~) = F, + P, (s) + F,(s).

Here

which contains the elastic constants.
If F, does not vanish, the liquid crystal will

spontaneously distort. Thus it is expected to be
nonzero only for cholesteric" materials (see
Sec. V). The first term of 9', represents the
"clamped" elastic constants (no alteration of f
allowed) and is a positive term, despite its ap-
parent sign, and the second term is the effect of
relaxation of the distribution function and is ex-
pected to be negative.

In principle the definitions and equations of this
section permit a calculation of the elastic con-
stants for an arbitrary system. Caving to the ne-
glect of the higher-order virial terms, the re-
sulting values cannot be expected to be very accu-
rate; and in any case the interparticle potential
is poorly known. The chief value of the theory is
to give a better understanding of how the elastic
constants arise and depends on the molecular sym-
metry.

In the ensuing sections some model cases will
be considered. Consistent with the understanding
of the role of theory outlined here, the models
will be chosen more for their tractability than for
their accurate description of liquid crystals.

III. TAPERED RODS

Consider a hard rodlike particle of length I,
whose diameter tapers smoothly from D+ 6 to
D —4. The position of one such particle is speci-
fied by the position r of its midpoint, and the
orientat;ion n~ of its symmetry axis. The condi-
tion that two such particles be overlapping [so
that U(r„r2; nz„m~) = -1j is approximately that
g = r, —r, can be written as

E = xm, —ym 2+ zm 3, (15)

~~~~~ I~I&&+~(x+y), lxl «2&, lyl «2f ~=~«
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and ))z z
= (z)z z

x n) z)/ ~
m z

x m,
~

(if m, and m, are not
parallel; ni, is an arbitrary vector perpendicular
to nz, otherwise), as illustrated in Fig. 1. This
form is not a rigorously accurate representation
of the geometry of tapered rods, but corresponds
to it in the sense that if one rod is moved parallel
to its axis (thus increasing x or y), the distance
between their axes at which first contact occurs
(the upper limit on z) increases. The integrals
for the moments of U are readily done to give

B(z))„n),) = 2DL'fz)zz xzzzz f)

C( n„zzzz) = ', m'(zz)-, —m z) I
z)z, x n"

D(zzz„)zzz) = ', DL ()z—zzzr(z+)zzzzzzz)

+ (zD Lz+ ()DttzLz)mzmz,

(16)

(17)

(16)

—g(nz) = X, + p B(nz, h)f, (n ' h)g(h) dh

where ~n, ~7~, is the tensor product of ns, with it-
self." Study of the expressions for B and D shows
that they are not significantly different from what
would be obtained for untapered rods (which are
the same expressions with 6=0). In contrast, C
is nonvanishing only in the presence of taper.

Equation (9) determines g (m):

on the right-hand side of Eq. (19) are even in m.
We may break g(nz) into two parts, even and odd
in rA, and show that they are not coupled in Eq.
(19). The equation for g, (the even part of g) de-
pends only on B, so that f=fo(1+g,) is a solution
to the same equation as f, itself [the bracketed
parts of Eq. (9)]. There indeed are such alter-
nate solutions to the Onsager equation, but they
are of no physical interest. Hence we may take

g, =0, and conclude that

g(m)= —-', ~'p( zzz V, )

x n(s) h m && h
~f,'(h ' n) dh, (21)

where f,' is the derivative of f, with respect to its
argument.

Assuming the tapered rods carry a dipole mo-
ment along their axis (p=pm), the stress-induced
polarization of the liquid crystal is given by

p= (zz( ) kA =p) fj()g( )m, k. z(22)

Now substitute (21) and introduce the representa-
tion n =x and V„(n(r) 'zzz)= (bx+ sy+ tz)(m 'y). Sev-
eral terms can be deleted from the integrand on
the basis of symmetry; the survivors can be written

+ p C(zzz, h) ~ V,fo(n h)dh; (19)
P = —-', dd zpzp(sx+ by)

where zz(s) is the director. However, since f, (n h)
is even in', f,'(h„)h, ~mx h ~m„m, f,(zn, ) d- dh.

C (n z, h) ' V",f,(h) dh

', ~'z)z ~ V, ~nz x h[fo(h'n) dh, (20)

which is explicitly odd in zzz (the other term in C
vanishes in the integration). The other two terms

(22)

The double integral now involves only the equi-
librium distribution function; it is a number of
order unity which is approximately equal to -&S,
where S is the usual order parameter. The in-
teresting consequence of this result is that the
coefficients of s and b (i.e., the piezoelectric co-
efficients e„and e,) are the same. This has not
been anticipated in the qualitative discussions of
tapered rods but is not in conflict with them.
Finally we note that in the Onsager theory DL'p
-5 near the phase transition, and write (now very
approximately) e —

pp tz/60D.
Symmetry arguments also imply that 7, vanishes

identically: then strains enter only quadratically
into the free-energy density, so that the unstrained
liquid crystal is the equilibrium configuration. '

FIG. 1. Geometry of two interacting tapered rods. The
separation of the centers of the rods can be expressed
as $ = xm~ —ym2+sm3, where z is the distance between
the rods' axes. The condition that the two rods intersect
can be approximately stated in terms of inequalities
which x, y, and ~ satisfy.

IV. BENT RODS

Bent rods are intrinsically biaxial: it is not
sufficient to specify the orientation of just one
principal axis. Figure 2 shows a model bent rod,
and suggests that its position and orientation can
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Dq
|I= -m+ (2d, /L)k as

C(nz „Iz„zzz„k,)

= —,'.IzL'(, —,){l},x},l- l~, x

+ —,'.DL'(m, +nz. )f.l},x~, l- I~x }.I) (24)

This form is symmetric under reversal of ns, or
m2, antisymmetric under simultaneous reversal
of k, and k„and antisymmetrie under interchange
of (nz„k, ) and (m„k,); these symmetries are im-
plicit in the symmetry of the particles under con-
sideration. By a, similar argument to that pre-
cedmg Ezl. (21), g(zn, k) 18 given by

-g(m „k,)

FIG. 2. Geometry of a bent rod.

= p C e)„k„nz2, k, '7', 0 m2, k2 d m2, k2

A

be specified by three vectors r, m, and k, where
r specifies the position of the center of mass, m

is the principal axis with smallest moment of in-
ertia, and k is the twofold symmetry axis of the
object. To the extent that h (which measures the
amount of bend) is small compared with v'LD, the
second virial coefficient and the second-moment
tensor are little different from those for a long
rod (although there is a biaxiality effect as dis-
cussed elsewhere" ). The first-moment vector is
more interesting. In the usual approximation
where the segments of the bent rod are taken to
be long and thin and end corrections are neglected,
C can be written in terms of }z=nz+(2n. /L)k and

P=pp kg m, k pm, k dm, k. (26)

Upon substitution of (25) and (24) and deleting
terms excluded by considerations of symmetry,
there results

(where the integration is over all orientations of

m, and k, such that k, is perpendicular to m, ), be-
cause it is odd in k, and the other terms in Eq. (9)
are even; and likewise 6', {s}vanishes.

%e may again calculate the strain-induced po-
larization from (25). In the present case it is ap-
propriate to assume the dipole moment points
along k (p=pk}, so that

2ppLLz 0 m].yk3. k1 ~1 ~2 1 2 1 S 0 27 2 1& 1 2& 2 (27)

This result may be further simplified if we neglect the weak biaxial ordering" (which leads to a, k depen-
dence of f,) and put fo =f0(m 'zz).

P= SPP+J m p, X Q — p X p2 k1 m1 gQ+k1 m1 5$ m2 0 m2 dm1dm2 ~

The terms involving bend and splay are not equiv-
alent, and in fact the term in splay is small.

V. CHOLESTERIC LIQUID CRYSTALS

In the arguments of the previous sections, the
reflection symmetry properties of C played an
important role. One way to study the phenomenol-
ogy of liquid crystals would be to construct various
simple model functions for C, and observe the im-
plications of each. From the definition (6), it is
evident that C is antisymmetric under exchange

(m, -m, )c, (m, -m, )(m, nz, )c,

(m, x nz, )(m, 'mz)c, . . . , (29)

of its two arguments; furthermore, C(~, 7) should
not be purely odd in z, or else F(~) and the last
term of Eg. (9) will vanish identically, giving no

physical consequences. If we restrict our atten-
tion to the case of molecules whose orientation
is specified by a single vector rn, some possible
forms for C(nz„nz, }are
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where c is an arbitrary function of (m, —m, )'. The
first two examples are equivalent to the tapered-
rod geometry, and lead to the same consequences.
The third case is new and more interesting: since C
is an even function of~ and m„reasons of symmetry
no longer force F, to vanish. Thus we must consider

x (m, xm2) ' V,fo(n m2) dm, dm2. (30)

In order to proceed further, we again use the rep-
resentation (10). The terms in b and s vanish,
but the term in t does not. Then since the free-
energy density contains terms linear in the twist
strain, its minimum occurs for a twisted geometry
such that t= K,/K», -where

x (m, m, )[(m, xm, ) z]
x m fo(m „)dm, dn) . (31)

This equation determines the equilibrium pitch
length p, =2vlt If c(m, 'm. ,) is just a constant,
the integral may be performed to give t = ,p'ckTS'/—
K», where S is the usual order parameter. Ref-
erence to previous theory'4 shows that K» p'kT,
but is relatively insensitive to variations in S;
thus this theory predicts that as the phase transi-
tion is approached, p, increases just because S
is decreasing.

Although this conclusion is in qualitative agree-
ment with experiment, there is in this case a quan-
titative test available: Dupre and Duke" have mea-
sured K» and P, as a function of temperature and con-
centration for the solutions of poly(p-benzyl L-gluta-
mate) in dioxane. If this system reasonably approxi-
mates a gas of long rods, this and previous theory"
should give a good description. Experimentally, how-

ever, K» is only slightly dependent on concentration
(quite distinct from the theoretical K„-p'), and the
cholesteric pitch rather accurately obeys a power-law
dependence on concentration (P, p"). These d-ata

can be combined to give K,. -p', which is consis-
tent with (31); but since the prediction for K»
comes from much the same sort of theory, the dis-
crepancy forces us to conclude that the interpar-
ticle interactions are not as simple as have been
assumed heretofore.

The theory is readily extended to mixtures of
liquid crystals, with the conclusion that the elastic
constants K, and K» are each quadratic forms in
the particle densities. Then the pitch length is
the ratio of two such quadratic forms, as has al-

FIG. 3. Geometry of two threaded rods. The upper rod
may approach the lower most closely if its principal axis
is rotated clockwise with respect to the axis of the lower.

ready been suggested by Stegemeyer. » Bak and
Labes" have shown that putting K, a quadratic
form in the mole fraction (and ignoring any con-
centration dependence of K») already gives excel-
lent account of the dependence of pitch on concen-
tration in mixed-liquid-crystal systems.

In order to complete this theory of the choles-.
teric phase, it is desirable to give physical inter-
pretation to the form assumed for C(m„m, ). One
method would be to postulate that U(m„m„ t) con-
tains terms like (m, .m, )(m, xm, ) $f((), which
gives c(m„m, ) =~3m f~ f($)$4d( (independent of
m, m, ). Alternatively, we can try to give a geo-
metric interpretation, as was done in the case of
tapered and bent particles. Consider, for exam-
ple, a threaded rod (Fig. 3). Technically this is
a biaxial object, but we will assume that these
particles rotate freely about their longitudinal
axis, so that most of the consequences of the bi-
axiality average out. However, one consequence
that remains is that C(m„m, ) does not vanish,
and indeed has structure somewhat like that as-
sumed above. Figure 3 demonstrates that the
minimum approach distance of a pair of threaded
rods depends on the sign of m, x m„and we may
estimate C(m„m, ) ——,'L'Dh(m, x m, )(m, m, ).

VI. CONCLUSION

The unifying theme of this paper has been the

attempt to exploit the information contained in
the first moment vector C. This is a particularly
interesting average of the interparticle potential
because it is sensitive only to the asymmetry of
the interaction. It has then been shown how the
first-moment vector is implicated in piezoelec-
tricity and the cholesteric ordering in the context
of the Onsager theory. The emphasis has been on
the symmetry of the functions under discussion;
to the extent possible, integrands have been sim-
plified by deletion of explicitly vanishing terms
and averaging about known axes of symmetry.
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~There are cases in which chiral molecules form a
liquid crystal which does not exhibit a cholesteric
twisting. This should be regarded as a degenerate
cholesteric of infinite pitch, rather than a special
nematic.
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