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A formalism appropriate for obtaining a self-consistent handling of the strongly coupled two-component

plasma problem is discussed. The divergence of the classical electron-ion pair correlation function is removed

with the aid of a phenomenological "soft-core" potential. The important formal development is the
introduction of partial linear and nonlinear polarizabilities, their interrelations, and the linear and nonlinear

fluctuation-dissipation theorems satisfied by them. The formalism is used to generalize existing strongly
coupled one-component plasma theories for the two-component situations. Both the schemes based on the first

Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) equation and the fluctuation-dissipation theorems, and the

scheme based on the second BBGKY equation and the decomposition of the triplet correlation function are

developed into self-consistent two-component equations. Algebraically, the equations appear as a set of three,

coupled, nonlinear integral equations for pair correlation functions or polarizabilities.

I. INTRODUCTION

The problem of strongly coupled electron plas-
mas has been attacked by various groups' ' and
through different approaches with a considerable
success ~ The methods can be classified accord-
ing to whether they rely on the first Bogoliubov-
Born-Green-Kirkwood-Yvon (HBGKY) or on the
second BBGKY equation. The former can be char-
ac ter ized as cons ider ing the die le ctric function as
the central object, deriving an expression for it
from the first BBGKY equation, and then guaran-
teeing self-consistency through the use of fluctua-
tion-dissipation- theorem (FDT) —type relations.
Hubbard, ' Singwi, Tosi, Sjolander, and Land-'

(STSL), and the present authors and Silevitch'
(GKS) followed this approach in different ways.
In the second BBGKY equation approach the cen-
tral object is the equilibrium pair correlation
function for which the equation i: made self-con-
sistent by the introduction of a decomposition of
the triplet correlation function into clusters of the
pair correlation functions. Ichimaru' and Totjusi
and Ichimaru' (Tl) have pursued this method; it
has, however, been shown by the present authors
and Datta" that the fundamental equation of the
GKS approach can also be derived through the
second BBGKY equation without any further ap-
pr oximation.

All of the different approaches listed above have
achieved important results. The equilibrium pair
correlation function has been calculated by numeri-
cally solving integral equations which result from
the theory-'"'; equations of state have been com-
puted' "; conditions for phase transition have been

estimated'; and the theories have been refined to
the point that original inconsistencies concerning
the satisfaction of sum-rule requirements can be
reduced or removed. 4 ""

In the light of the important progress made in
the field of one-component strongly coupled plas-
mas, the investigation of the equivalent two-com-
ponent plasma systems is much less developed
and our knowledge about their phys ical pr oper ties
is considerably more modest. Nevertheless,
many physical systems, in particular some which
have acquired import"nce recently, cannot be ap-
proximated as a one-component system. Laser-
compressed plasmas, ' electron-hole liquids, '" and
high-Z stellar interiors" are in this category.
Since for an ion gas the coupling parameter y (in-
verse number of particles in the Debye sphere)
is proportional to Z"", in certain cases it can be
argued that the approximation which treats the
ion gas as strongly coupled and the electron gas
as a smeared-out background is reasonable. How-
ever, the electrons are certainly not dynamically
inert. and even if they were, it is not a Priovt,
evident how a strongly coupled ion gas in a weakly
coupled electron background should be treated.

The purpose of the present paper is to develop
the formal theory of strongly coupled two-compo-
nent plasmas. We will adopt the ideas already ex-
isting for electron plasmas and adapt them to the
two-component situations. No attempt will be
made here to introduce new approximation
schemes or physical sirnplifications. The thrust
of the paper is to rewrite the three main electron
plasma approximation schemes, i.e., the Singwi,
GKS, and Ichimaru schemes, into their two-com-
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ponent equivalents. Attempts in this direction
have already been made by Vashishta, Bhatta-
caryya, and Singwi" with regard to the Singwi
scheme; they have not, however, derived full
self-consistent relations. Rather, they used an
ad hoc assumption for the correlation functions.

The two-component system is obviously more
complex than the one-component one, indeed to a
substantial degree so, which already makes the
task of this paper more than trivial. In addition,
the two-component system is fraught with some
special difficulties. The foremost among them is
the divergence of the classical electron-ion pair
correlation functions. This is, of course, a de-
fect of the classical theory, and properly taking
into account the atomic bound states would re-
move it. However, in the framework of the clas-
sical description a modification of the interaction
is required. Such a new phenornenological inter-
action will be introduced and employed in this
work. A problem on a different level arises from
the fact that when the number of plasma species
is greater than one (say, K), the number of
physical polarizabilities is K, but the number of
pair correlation functions in the system is
.'-K(K+1). Thus even for K = 2 the straightfor-
ward application of linear FDT's becomes im-
possible. Instead of polarizabilities, however,
one can work in terms of density-density response
functions, or alternatively, follow Vashishta
et al. ,

"who suggested the use of "partial" polar-
izabilities, describing the response of the system
to fictitious fields which act on the electrons or
on the ions only. This latter method will be
adopted in this paper and will be fully developed
and generalized.

The results of any of the three sehernes appear
in the form of a set of nonlinear integral equations
which can be formulated either in terms of polar-
izabilities or pair correlation functions. The
STLS and TI schemes are fully self-consistent,
but the GKS theory, as presented here, is not,
since it requires a further specified approxima-
tion for the quadratic polarizabilities. Although
such an approximation scheme is fairly straight-
forward, its discussion will be relegated to a sub-
sequent publication, together with the similar
problem for the one-component system.

The plan of the paper now can be sketched as
follows: In Sec. II we introduce the partial lin-
ear and nonlinear polarizabilities, their relations
to the physical full polarizabilities, and connec-
tions between external (responding to an external
field) and total (responding to a total field) polar-
izabilities. Linear and nonlinear FDT's connect-
ing pair and triplet correlation functions with the
partial polarizabilities are established. At the

same time the phenomenological interactions ac-
counting for quantum effects and eliminating the
electron-ion divergence are introduced. In Sec.
III the derivations of the STLS and GKS schemes
from the first BBGKY equations are presented.
The GKS expressions that can also be derived
from the second BBGKY equation are exact, and
exhibit a structure for the partial linear polariz-
abilities in terms of the full physical linear quad-
ratic polarizabilities which represent the first
establishment of such exact relations. In Sec. III
the TI scheme is developed from the second
BBGKY equation.

As we have already emphasized, the results of
this work are formal ~ Solution or approximations
of the equations derived wi]l be the objective of later
works.

II. ELECTRODYNAMIC AND FLUCTUATION-
DISSIPATION RELATIONS

In this section we summarize and display rela-
tions which play a key role in the development
of the formalism for a two-component system.
These relations are partly connections between
"partial" and "full, " or "external" and "total, "
response functions (both linear and quadratic),
and partly FDT-type relations.

First, as was noted in the Introduction, a physi-
cal problem which does not arise in the one-com-
ponent theory relates to the negatively divergent
interaction energy of an electron-ion pair at a
small separation distance. As a consequence, the
pair and higher-order correlation functions di-
verge as the separation distance r - 0. Such a di-
vergence is not only unphysical, but, in an approxi-
mation scheme such as the present one, where the
pair correlation function is ultimately determined
through an integral equation, it also renders the
consistent solution of the integral equation impos-
sible. Qn the other hand, it is well known that
this divergence difficulty, which also manifests
itself in the divergence of the classical plasma,
partition function, is the defect of the classical
theory, and properly taking into account the atom-
ic bound states removes it. A simple phenorneno-
logical treatment of the problem has been sug-
gested by Dunn and Broyles. " It consists of "soft-
ening" the inter ac tion poten tia1 by multiplying i t
by factor 1 —e "", where p,

' is of the order of
the Bohr radius a. As pointed out by Gombert and
Deutsch" a similar modification of the interaction
potential between like particles, where p

' is of
the order of the de Broglie wavelength X, fairly
well describes quantum-diffraction effects. Thus
in this vein we introduce the effective interaction



potentials 4»(k} between particles of species A
and B as

4» (&)= B» (&)4»(&)

y»(k) = Z„Zs 4me'/k',

B»(~) v»/(V'» +~

8 ~„"(kg)

= -2«g g Z .~~'(q},pv)&'(q~)

xEc(pv)5g
p

-, 6((u —p —v) .

To deal with the case where the B(k) functions
are unequal it is useful to introduce partial ex-
ternal charge-density response functions X„,

Although the three characteristic distances p, ,'„
p, , and p, ,' are physicaHy certainly different
(order of A„X; and a, respectively), not much
harm is done by setting p, „,' =g, =a, since under
normal conditions the effect of quantum correc-
tions on the particle interaction is small. Such a
simplification leads to a very substantial enhance-
ment of the transparency of the otherwise fairly
cumbersome formalism, and it will be followed
throughout our dex ivations, although final results
will be displayed for the general B„(k)eB;;(0)
w B„(k)case.

Linear and quadratic (longitudinal) external
polarizabilities, ~„—=n, ,a„are defined, as usual,
as the coefficients of the expansion of the plasma
field h„due to species A (=e, i) in terms of an

applied extexnal fieM E.
In a further publication we shall further employ

the so-called partial external polarizabilities +~
defined by contemplating a perturbation caused by
a partial field E~ which acts on species B only. "
They are useful, however, in the equal-B case
only, when'~

8„"'(k~)= —Q (i„(ku))E (k(u),

p„"'(ku)) = —Q }t„(k&u)Es(k~),

p~l" ( kcu)

= —2«P g g.X~'(qu, pv) &'(qV)
pv

X E (p v)5& ~ &5(~ —p —v) .

(4a)

-ac
BC

(4b)

Total (linear and quadratic) polarizabilities, o „
=—n~, ,a.~ are the expansion coefficients of the
plasma field in terms of the total (plasma plus
external) field, and are related to the external
polarizabilities by

We note that only the projections symmetric under
the interchange of the superscripts and of the argu-
ments of,@„,,lt„c are physically meaningful.

We note the simple relation between partial and
full (physical) polarizabilities,

u„(k(u) = a„(k(u)/e(k(u),

[i+os(q+p, } + v}j,n~(q}~. p v) —o'&(q+p, } + v), ~s(qV, p v)

e(qp, )e(pv)e(q+p, p + v)

e(k&u) = 1+o (k(u) .

Relations similar to (4a) and (4b) exist between
the partial and full total polarizabilities, and thus
in view of (5b) the well-known relation

-( )
2&(qp ~ pv)

e(qV. )e(pv}e(q+p, p+ v)

ls satisfied.
Next we list static (&u = 0) fluctuation-dissipation

theorems which mill be used in Sec. GI. These

are relations between pair and triplet correlation
functions [g»(k} and h»c(qp)] on the one hand
and the previously defined external polarizabilit-
ies on the other hand.

The equilibrium pair and triplet corx elation
functions g», h»~ will be used in the usual way.
With E„, C„, and B„cbeing the full one-, two-,
and three-particle distribution functions, they are
introduced through the relations
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GA'B(x, v„x,v, ) =FA' (v, ) F]]"(v, )[1+gAB(12)],

B~')c( xv„x,v„x,v, ) =F„"'(v,) F/0](v, ) Fc ](v,) [1+g»(12)+g„c(13)+gBc(23)+h»c(123)],

gAB(12) =gAB(lx, —x,I),

h„Bc(123)-=h„Bc([x,—x, (, }x, —x, [ ),

(7)

and g»(k) and h»c(qp) are the Fourier transforms" of g»(12) and h»c(123), respectively.
For the case where B„(k)=B„(k)=B«(k) =B(k), the linear" and nonlinear" " static FDT's are

a„(k) = aAO(k)[5AB + (ZAZB/I ZAZBI )nAgAB (k)],

.a."'(qp) =.ac.(qp)(ZAZB/Zc)[~Ac~Bc+nA~BcgAc(q)+nBfAcgBc(P)+nAfABgAc(P+q)+nAnBhcAB(qp)]

where

(8a)

(8b)

a„,(k) = Z'A4vpnAe'B(k)/k', ,a«(qp) = —i Zc 2vp'nce'B(k)/qp}q p+j,

Z, = —1, Z; =Z, a(k)=-a(k, (d =0), etc. ,

are the linear and quadratic Vlasov polarizabilities of the plasma fluid with the effects of the "soft core"
included. We note that evidently a„=aB, and that in (8b),d)c» is the unsymmetrized external polarizabil-
ity. We further observe that in view of the relations (4a) and (4b) the following total FDT's are formed
from (8a) and (8b):

a„(k) = a„,(k)[1+n„g„„(k)—n„g„B(k)], BgA, (10a)

.h. it(p) =. ..(t)p) (('".
1=q, p, q+p

g„(f)—n, g„(q) —n, g„(p) + Zn, g„(|1+p)

~', (h „,(t(p) -h„;(t(p) -h„,(t(p) +h„;(t(p)] ),

, ;(i(P)=.P;.(t(P)((~; g P;;(i) —;h;.(i() —;P;.(P) ~ —'P. (t( ~ P)
&=q, p, p+ q

(10b)

+n, [h, , ;(qp) -h. ..(qp) -h, „(qp)+h, „(qp)]

For the case of the three B(k) functions being unequal, the a's are supplanted by the X's, and the more
generalized FDT relations now read

X„(k)= (pnAZA'e'/k)[Ei» + (ZAZB/~ ZAZB~) n„g„B(k)], (11a)

2Xc (qp) = ZAZB c(P c / fp)[~Ac~Bc +nA~BcgAc( q) + B~AcgBc(P) +nA~ABgAc(P+ 1) + A B cAB(qp)] '

(11b)

The expressions for the partial polarizabilities
in terms of the full polarizabilities are not obvious
and are model dependent. A set of such relations
has been derived by Vashishta et aI,." In spite of
its appealing simplicity and transparent structure,
it suffers from the general shortcomings of the
Singwi approximation scheme. In contrast, in
Sec. III we derive a general relation from the GKS
approximation scheme which is exact.

III. FIRST BBGKY APPROACH: STSL AND GKS SCHEMES

In this section we present the derivations of the
relations for the partial polarizabilities in both
the STSL and GKS schemes. In conjunction with
the linear FDT relations, the (approximate) STSL
relations provide a full self-consistent set of equa-
tions for the equilibrium pair correlation functions.
In contrast, the GKS relations, which are exact,
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still contain the triplet correlation functions which
ean be traded, with the aid of the nonlinear FDT
relations, for nonlinear polarizabilities. In order
to achieve self-consistency, however, further
hypotheses eliminating the latter would be needed—
quite analogously to the situation in the one-com-
ponent system.

The derivation is based on the introduction of a.

small perturbation in the first BBGKY equation.
The two approaches differ from each other in the
handling of the perturbed part of the correlation
function; however, no explicit use of the second
BBGKY equation is made —hence the distinction
indicated by the titles of this and the next sections.

The first BBGKY equation for type-A plasma
particles is

—t((u —k v) F~(ku), v)+ " E(q )
PE g ~v

q p

,—~ E +%0„,tqI JP Gtk'—j, i;,v',

qk»( f ) ' ~»( qp; k(g; p) .
A g p

(12)

It is the structures of the respective 1"~'s which
distinguish the two approximation schemes from
each other.

A. STSL scheme

n,'(k) = —4 'a„[n;,+u,'(k)]
= —a-'n;, [n„+u';(k)]

= n';(k),

n';(k) = & 'n;,[1+a„+u', (k)] .

(14b)

(14c)
The main fea, ture of the approach of STSL con-

sists of approximating the nonequilibrium equi-
valent of the pair correlation function,

g»(x, v„x,v„ t), by the equilibrium pair cor-
relation g»(12), so that to all orders in E

G»(xiv„x, v» t) = F„(x,v» t) Fa(x,v» t)[1+g»(12)] .

Also, the full electron and ion polarizabilities
appear as

a,(k) = n', (k)+n,'(k)

= S-'a„[1+u', (k) —u', (k)],

a, (k) =a;(k)+a,'(k)

I'» in Eq. (12) then becomes

1'~B'"(q},k~; p) = [1'5-, +g»(p)] n. (q+p, t )

X
&F„(k—q-p, &u —g, v)

Bv
(13a)

= 6-'a„[1+ u', (k) —u';(k)],

6 = [1+a,0+ u,'(k)][1+n;o+ u,'(k)]

(15b)

In this paper only static perturbations will be con-
templated; thus frequency arguments are set equal
to zero and subsequently dropped.

The perturbing electric field ean now be special-
ized to drive type-C plasma particles only, and
the responding distribution function F„t"(k,v)
and density n„~" can be calculated to first order
in the perturbing E

For the case where the three B(4)'s are as-
sumed to be equal, this yields, with the applica-
tion of the linear electrodynamic and FDT rela-
tionships (5a) and (Ba), the following external
po1.arizability expressions:

a,'(k) =4 'a„[1+n;,+u';(k)],

—n„a;, —u,'(k)u';(k) —[a„u';(k)+n;,u,'(k)],

e(-) Z„Z~ v'„1 ~ k ~ q
( )

a„(k —q)
~Z„Ze) k' neV ~ q' n~, (k —q)

'
q

(17)

~A 4~I +A~Ac

and for brevity of notation we have dropped the k
argument in the Vlasov polarizabilities, n„,
=—+„0(k).

Alternately, the results can be cast into the
form of a set of coupled integral equations for
the unknown pair correlation functions:
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n, g«(k) = 4 '[1+et;o+ u,'(k)] —1,
(n, +n),g „(k)=& '[no+ u,'(k)+ u', (k)],

n;g, ;(k) = t), -'[1+o.„+u', (k)] 1,
with u, = a„+n, , and

1
uA(k) = —' —Q . B(e)gAB(k —q)

Q

(18a.)

(18b)

(18c)

(19)

1 /P [dl+usTs) (k)]
n, k'+ x', [1+u, ,L(k)]

g„(k) =g;;(k) =0,
(20)

u (k) = —g, B(q)g„(k —q) .

For 2 =0 (n;-~, electron plasma in smeared out
infinitely heavy ion background), one readily re-
covers the one-component results of STSL,' viz. ,

ingredients of the scheme are (i) replacement of
the G„B's on the right-hand side of (12) by their
velocity averages, (ii) establishment of the re-
lationships between the nonequilibrium two-point
functions and equilibrium three-point functions
by use of statistical mechanical perturbation the-
ory and (iii) linking the three-point functions
through the nonlinear FDT's with the quadratic
polar izabilities.

In order to be able to express the right-hand
side of (12) in terms of nonequilibrium two-point
functions —binary correlations of microscopic
charge densities, &PAAP-)(o)) —it is necessary to
invoke the so-called velocity average approxima-
tion (VAA),

G AB ( XiVi, Xov2, t)

2 A x,v„ t) d v GAB x,v, ) x,v„ t)

For the more general case when the three B(k)'s
are unequal, application of the linear electrody-
namic and FDT relations (3a) and (lla) leads to

~f I, , ;!I fd o„','
f„(xv; t) —= F„(xv; t)/n„(x; t) . (23)

)t', (k) = (x',/4vkh)[1++', ,'+ u';(k)],

)ti(k) =y,'(k) = —(xd/4vkh)[o. ;, + u,'(k)],

)t,'(k) = (K';/4vkh)[1+ a, ' )+ou,'(k)],
where now

u„(k) = Z„ZB 1 k q )t„(k —q)
IZ„Z, I Vns q' )tAo(k —q)

'

&Ao CtAoBAB()t) &1

(B)

XA. = (t/4B)x'A/a .

Equation (19), however, remains unchanged.

B. GKS scheme

(21a)

(21b)

(21c)

(22)

=(ZAZBe') '(P-" - -P-')(~ —v)k-q- p q

—n„(k —p, o) —v)GAB, (24)

one obtains Eq. (12) with

l „B =(ZAZBe ) (P P )(&d —V)
GKS 2 y/ A B BfA( pV, V)

-q p &v

(25)

This is the main assumption of the GKS scheme.
Upon applying (23) to (12) and taking note of the
fact that in terms of Fourier transforms

r
d'v, d'v, G»(k —q —p, q, v„v„~—v)

The GKS approach' to strongly coupled plasmas
relates the linear and quadratic polarizabilities
through self-consistency requirements ~ The

This result is valid to all orders in E.
Contemplating now a static perturbation induced

by a weak external field E acting only on C-type
plasma particles, one finds

SEto) v) Sv tkZ e - - 1Fctl)(k v) A ( A Ec(k)6 d Q Q qp(q)B ( )(
A B)c(1)

k'vmA
q

(26)

Statistical mechanical perturbation calculations provide the link between the nonequilibrium two-point func-
tion and the equilibrium three-point function:

&P" -P-')'"'=(-tP/vt)E'(k)&P" -P 'P' &". -
q q T q

(27)

Upon combining (26) and (27) and integrating the result over velocity space, one readily obtains the partial
density response

Q -Q
B q

(28)
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%'e next expand the ternary correlation function as follows:

(p'TP-„'PT", -„)'"={p'Tp PT", ;&"'T -I - +V(ncZce(p ,'P-" „&"-'I„.-. 5I+nsZ se{p'Tpl, &"'II., 5„-
)9'

+ngZge(p I PI) [T, -, 51 + V'n„nsncZ„ZsZce'5 Qg) . (29)

The right-hand-side correlations in (29) are, in turn, related to the equilibrium pair and triplet correla-
tion functions as follows:

(P T, P--PT, -) ~g qI q„=Z~ZsZce ncFI5m5sc+ns5~sgsc(k}+ns5~cgsc(q)

+nA6scgAc (k I) +nsnAhcs A(q

(P P I)lg =ZgZse ng&[6gs+nsggs(k)]

From (28}-(31)we then have for the partial density responses

n', i"(k) =(iPen, /h)E'(k)II —ai', l[1+n,g„(k)]+a~„'n,g„(k)+v',(k}},

n,' (k) =(iPen, /k)E'(k)[a~own, g«(k) —a~«~[1+n;g&;(k)]+v', (%)],

n'; (k) = —(i/Zen;/h)E'(k)[uIo~n, .g„(k}—at„'~[I+n,g„(k)]+v';(k)j,

n',. (k) = —(i PZen;/h) E'(k) [1—aso'[I +n;g;;(k)]+ uI', l n, g„(k) + v';(k)],

(30)

(31)

(32b)

(32c)

(32d)

where the strong-coupling effects are now introduced through the v„(k) functions, which, in terms of the

pair and triplet correlation functions, are

v'(k) = ——'

v, (k) = ——,IF'

v', (k) = ——,'

[B„(q)g„(k—q)+B„(q}n,h„,(qik —q,) -B„(q)n, h„,(q, k -q}],

[B„(q)g„.(k —q) +B„(q)n;h;;, (q, k —q) —B„(q)n, h;„(q, k —q)],
q2

[B„(q)g„(k—q)+B„(q)n, h„;(q, k —q} —B;;(q)n, h„;(q, k. —q}],
q2

V p ~ IB;;(e)g;;(k -q)+B;;(0)n;h;;;{q,k -q) -B.;{q)n;h;. ;(q, k-q)].
q2

Q

(33d)

When the B(h)'s are equal, application of the linear
electrodynamic and FDT relations (5a) and (Ba} to
Eq. (33) readily gives

a(k)'s in (34a) and (34d) in favor of the correla-
tion functions by use of the linear FDT's (Ba} and

takes account of the symmetry conditions,

a,'(k) = u„[1—a, (k)+ v', (k)]

= [a„/e(k)][1 + a;(k) +r', (k)],

[q', ( k)]= —u„[a;(k) —v,'( k)]

= —[u„/e(k)][a, (k) -r,'(k)],

[al(k)]= —u;.[@.(k) —vi(k)]

= —[a,,/e (k}][a,(k) —r';(k)],

a', (k) = a«[1 —a;(k) + v';(k)]

= [a«/e(k)][1+ u, ( k) +r';(k)] .

{34b)

(34d)

hcs„(q, k —q) = h„cs(k, —q), (36}

one recovers precisely the equilibrium second
BBGKY equations (52a) and (52c) for g„(k) and

g;;(k) (to be considered in Sec. IV). However, as
to (34b) and (34c}, it is clear that these relations
do not satisfy the linear FDT interchange symme-
try requirement that u'(k) =, at(k) [He. nce the

notation [d,'(k)], [d';(k)].j This defect is apparent-
ly due to the VAA, although it does not arise in

the case of a one-component plasma. A clue to
its rectification is provided by the second BBGKY
equation (52b) for g;, in Sec. IV. If we symmet-
rize a,' (and a';},

where the r„(k) functions are related to the
v„(k)'s by

v„(k) =rs(k)/e(k);

they are the generalizations of the function r(k)
used in Ref. 5. Note that if one eliminates the

a,'(k) = ——,
' [a«a, (k) + a„a;(k)

—[u„v';( k) + a;,v';(k)])

= ——,
' [1/e(k)] (a„a;(k)+ a;,a, (k)

—[u„r,'(k) + u„r,'(k)] ),
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agreement with the second BBGKY equation result
is achieved. The full electron and ion polarizabil-
ities can then also be obtained as

n, (k) = [n„/e(k)][1+~,(k)],

n;(k) =[n„/e(k)][l+r;(k)], (38b)

where the evaluation of r„(k) yields the expression..(k) = [1/(2 .)]((2. ..).".(k)

+ (1+n~.}[r~(k}+(ne./n~o) &s(k}j

+ n, .r', (k)}, (39a.)

for A. tB.

Equations (34a), (34d), (37), (38a), and (38b)
should be compared with the corresponding (ap-
proximate) Singwi results, Eqs. (14) and (15).
The difference in the structure, especially r„(k)
oper„(k), should be noted. Nevertheless, it is
easily demonstrated that the relationship

n(k) =[1/e(k)j[n, +[1+x,'(k)+r,'(k)]

+ n;,[1+x';(k) +r';(k)] }
still holds.

Equation (34) now can be rewritten in terms of
linear and nonlinear polarizabilities. By first ex-
plicitly solving Eqs. (34a)-(34d), one finds

n,'(k}= " 1+n„+ ' v'„(k)+ "",[(1+n;,) v,'(k}+(1+n„)v';(k)]
Co 1+n.o " (1+n.o} 2+no~

"f;.i(k) ~ .. !(&)l),2+Qo

n„n;, ) {1+n„)v',(k)+(1+n„)v,'(k) (1+n„){l+n;,) v';(k) v,'{k)

n';(k) = " 1+n„+ ' v';(k)+ " " [(1+n;,)v',(k)+ (1+n„)v';(k)]
~o

gQ (1+n;,) 2+n, )

"f~;. i%I ~ ..'.'t&11)+~o
The full electron and ion polarizabilities are now

(41b)

where the v„(k) functions are then expressed with
the aid of the nonlinear PDT relation (8b):

s(k) ~ p g qE() ~ ~ {
0' n„V q', n„o(k, —q)

'

From (41) and (42) we further note that, similar
to (39b),

n(k) = (1/e, )(n„[l+ v, (k)]+n;,[1+v;(k)] }.

The formulations of the linear external polarizabil-
ities in Eqs. (41a) and (41b) in terms of the quad-
ratic polarizabilities become all the more concise
by noting that

2

v, (k}—v, (k)—;P, B(q) '
n~ q ,n, o(k, —q)

(43)

As we have already emphasized, the QKS re-
sults are exact, but require further specifications
of the nonlinear polarizabilities. No such state-
ment can be made for the results of the STSI
scheme which, however, is self-contained. We
adhere to the philosophy that the GKS method pro-
ceeds not from the second BBGKY equation, but
rather from the first. This is important inas-
much as a self-consistent set of relations among
the linear and quadratic polarizabilities can, in
principle, be guaranteed by calculating quadratic
polarizabilities from appropriately symmetrized
second-order perturbation expansions of Eqs. (12)
and (25).
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n:(k) = (n,./&. )(I + a;.),
u';(k) = (n;,/e, )(I + n, „),

n,'(k) = —n„n;,/e, = a', (k),

u, (k) =n„/e„a, (k) =a;,/~, .

{45)

It is seen that in this limit the pair correlation

It is immediately obvious that in the weak-cou-
pling limit () v„~«I) both STSL and GKS theories
go over into the Vlasov theory, i.e.,

functions reduce to the well-known Debye-Huckel
results

-«', /n,

(
- «'/n

g .~~)~k) =

(
- —«';/k'' (k)=

In the Z=O limit, the GKS strongly coupled elec-
tron plasma results' are recovered, i.e.,

a;(k) = (n„/e, )[I + v', (k)] = (a«/c(k))[l+r', (k)] = n, (k) = a (k) a,'(k)=-0 = a', (k), (47)

We now display the general case where the three B's are different. It can be shown from Equations (3),
(11), (32), and (33) that

(j+a,,'))U', k)+ 1+~,", )v'; k) —1+a,",))(1+~!,") g„g),' k +~. '. k) ~ ~( )

+ &eo + &50

x'(k)
(e) . (5)

Xeo&50 +X50&eo

1
(I +n(e))(I+a[))) nI~)a())

X ((1+a&o))v",(k)+(1+nio))v,'(k) —2(1+a~0))(1+nso))[x„v,'(k)+y;, v';(k)]/(x„n[;)+x;, a~o )
('5)

e0 50

I48b)

(1+a".)v;(k)+(I+n.". )vl(k) —(1+a' )(1+a"')[X-v.*{k)+X.v'{k)]/X Oa'0'

(
50 e

2+ {Xe0 + &50

The expressions for the full response functions are

a& )(1+a,'", ' —a,", )[(1+a&,")v,'{k) + (1+a~', ))v;'(k) —(1+n t'))(1+ as,")(X„v,'+y, ,v", )/X„n[,"]
(1+a,", )(2+ a,", + a[,")[(1+u& ))(I+a[,')) —n[,'n, ', *']

a ~,"(I+ a I,') —n [')) [(1 + u IO) )v,'( k) + (1 + a,",,
)
)v,'( k) —(1 + a ~ 0) )(I + n So) )[x„v,'( k) + x;ov';( k) ]/y;, a,'0 ]

(1+n&,")(2+n[,"+a& ))[(I+a,", )(1+a(„' ) —n(,"n,',"]
(49b)
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and finally

x(k) = x,(k) +)",;(k)

g, o+g o(& o &'0 )+)j' (&„A ) X v (k) ]('. v(k)

'» b(X.oo [~,
'+ X;.~.'0') [(& + n Io')~;(k) + (l . n, o')~,'(k)] - (l + n,'„&)(l + o I,")[X„z,'( k) + „,.„,e(k)])

The z. „(k) functions now are given as

v,'(k) =
Pn, eV

v,'(k) =
/3rz, e P

z';(k) =

U';(k) =
eeV

[fl„(q),. x"„'(k,
q

[&„(q),x,"(l»,
kq

[&. (q)2xi'(k,

[&;;('.) xl'(k,

—zl)+&. , (q).X."(k, —zl)],

—l) +&.,(»i),X."(kz: —~)],

—»i)+8;;(q)., "(k, -»l)],

-»l)+&. (4) X (k, —q)].

(5&a}

(5ld)

IV. SECOND BBGKY APPROACH: TI SCHEME

The STSL" and GKS' approaches to strongly
coupled plasmas involve perturbation (in E;) ex-
pansions of the first BBGKY kinetic equations
coupled with fluctuation-dissipation theorems to
guarantee self-consistency. While only static
(& =0) results were presented in Sec. III, it is
clear that these schemes are amenable to pertur-
bation expansions of the dynamical fir st BBGKY
equations coupled to dynamical fluctuation-dissipa-
tion theorems. Such is not the case for the ap-
proach of TI,"which proceeds from the equili-
brium second BBGKY equation linking the static
pair and triplet correlation functions. The prin-
cipal approximation in the scheme is that the trip-
let correlation has a Debye-like structure and can
be approximated by an expansion of Mayer pair-
correlation clusters. Fluctuation-dissipation
theorems have no place in the TI scheme, except
if one wishes to change from pair correlation
language to linear partial polarizability language.

In this section, we extend the electron liquid
scheme of TI" to the case of ion-electron plas-
mas. We start with the following equilibrium sec-
ond BBGKY equations for g„, g„, and g;, :

(1+z,'„')n,g.„(k)—~~,", n, g„(k) =- —~„",-'+ z,'(k),
(52a)

, !
A, l 8, 2 A, t 8, 2 A, l Q, 2 A, l 8,2

C,3

where the strong-coupling v„(k) functions are de-
fined in terms of the pair and triplet correlation
functions s~(k) and Pz{ qp} by Eq. (33) subject to
the symmetry condition (36).

Solving these equations without any further ap-
proxima. tions one obtains the symmetrized GKS
expressions, relations (34a.), (34d), and (37), de-
rived from the first BBKGY equation.

In order to obtain the Ichimaru approximate solu-
tion we next assume that the h's can be expressed
in terms of g clusters. It is helpful to refer to a
graphical representation as given in Fig. 1 cor-
responding to the algebraic relation

(
&(e)+ & ~)

l+ " ' a, (k) —-'I~'o'~'. .(k)+~'o'a (k)l
A, l A, l

CR 0 Qio
(i ) (e)

+
2 ni ne

1 v,'(k) v', (k)
2 n. 'n; (52b)

FIG. 1, Diagrammatic representation of the cluster
decomposition of the three-particle correlat. ion function
h„~c(123) [cf. Eq. (53)].
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&'~AB=(1-8) =.".4B(12)gA (18)+-"AB(12),"Bc(28) +grec(18);Bc(28) + p g~'x, "»AD(14) BD(24) "cc(84),

with Fourier transform

~4sc(qp) =g~s(q)gac(p) + g~a( q+p) ggc(p) +9~ c( q+p) gac( q) + Q»cg~D(q+ p) ~sa(q)gcc(p) .
D

Bonds between vertices, say (A, 1) and (8, 2) are associated with g„s(12)= g„s(l%, —~, l).
Upon eliminating the h's in (52) in favor of the g clusters by use of (54), we ultimately obtain

,„. (k) =: —A '&'!!f ( —,", n, „.1+ —.,'-!c;; K~ K,
1 + ', f'f q, +; l4 t 1

K' - H' + H'. + H'
2~ 4 t8 tt 'tC ' Pt g R''qq+ . M)

(55a)

RetI k) = A '&e&~t ==~ ~ H'et+ i'-'f, e + = @''i(. ~ ~&'et

j
!.'

~&-';;(k) = —A MPle —~'I,U;; 1+;,E6q, .
Kt1 + ~ lg& ~„, + —,, R'; t

2/; 2A- «e; Ll&',, ; +lO;„+«;q t & «~~+ «;;

The newly introduced «„(k) screening functions are

II

».,s =«,s(k) - &~B(k) -- —, —.. 1&~s(q)l 1+»,g~, (q) l &Bc(q)»~."~c(q)I g~s(k

Ke Rq
1 +,&- ~ w, , + -„—,, N;, ;

K„, K~ big K~
(57)

In general (i.e. , for Z41)„w)„~»K;„.
One can easily verify that when 2 =0 (electron

Plasma!, B:=1, Eq. {o5) and (56) become

» „„=-1-i—Q, [1+»,,g„„!q) lg, „.(k - q)88 ~,
- ~2

=-1+ uT, (58)

l. (1+0 n)tP,
(kI ———

P'l~ Q" + (1 + E4 TI }Ke

V. CONCLUSIONS

The purpose of the present paper has been two-
fold: first, to present a formalism appropriate
for the handling of the two-component strongly-
coupled plasma problem; second, to generalize
the existing formal one-component results for the
case of a two-component system. The first ob-
jective has been achieved by introducing partial

i.e. , the one-component Ichimaru' results are re-
covered. The correct Debye pair correlations
(46) are also recovered for the two-component
plasma in the weak-coupling limit.

linear and nonlinear polarizabilities and the fluc-
tuation-diss pation theorems (again, linear and

nonlinear) they satisfy, and finally by connecting
the partial polarizabilities with their full physical
counter par ts.

The second objective has been accomplished by
the formula. tions of Eqs. (14), (16), (1'f) and (21).
(22), which represent the two-component STSL
theory, of Eqs. (55)-(57}, representing the two-
component TI theory, and by the formulation of
Eqs. (40),l (42) and (48), {51), which yield the two-
component version of the GKS scheme originally de-
rived for a one-component plasma. All of these
relations appear as nonlinear integral equations
for either the three pair correlations functions or
partial linear polarizabilities. In addition, the
GKS scheme still contains the unknown quadratic
partial polarizabilities; how they are to be ex-
pressed in terms of the linear polarizabilities
hasn't been specified in this paper.

The full physical polarizabilities are sums of
the partial polarizabilities, as shown in Eq. (4).
Conversely, however, in general there exists no
simple relation expressing the partial polarizabil-
ities in terms of the full physical polarizabilities.
It is one of the results of the present paper that
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an exact relationship, but one which is explicitly
dependent on the pair and triplet correlations
functions, does exist and has here been derived.

Algebraically, each of the three theories leads

to a set of three nonlinear coupled integral equa-
tions which have to be solved by computer. Dis-
cussion of such calculations have not been given
in this paper and will be presented in a later work.
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