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Nuclear-polarization energy shifts are calculated for the low-lying levels of muonic 'He and 'He. In 'He, the
shift of the 2s, &, level is found to be —3.1 meV, in agreement with the result of Bernabeau and Jarlskog. The
corresponding shift in 'He is —4.9 meV. Other corrections to the energy levels are calculated, with the
improved result that the total theoretical 2s, &,-2p3/2 energy difference in He is 1.8131 —0.102 r ' ~ 0.001 eV,
where r is the nuclear rms charge radius (in femtometers). Together with the measured value 1.5274 ~ 0.0009
eV, this implies r = 1.674 + 0.004 fm, which is consistent with available electron scattering data.

There has been considerable recent interest in
the energy levels of very light muonic atoms. This
interest has arisen principally from the promise
that modern muon beams and tunable lasers hold
for precisely measuring differences between some
of these energy levels. These experiments are
quite similar in character to the classic atomic
tests of quantum electrodynamics (QED); however,
the region of space explored is quite different.
The Lamb shift (2s-2P energy difference) is here
dominated by vacuum polarization rather than ver-
tex corrections, and the level ordering is re-
versed. In addition, electron- muon universality
is tested, as well as the nuclear polarizability. '

At the present time, the 2P, &,-2s, &, energy dif-
ference in 'He has been measured' and compared
to theoretical predictions. The major uncertainty
in these predictions arises from the nuclear charge
radius, which must be obtained independently (e.g. ,
by electron scattering) if a, test of the other com-
ponents of the theory is to be made. Another rel-
atively uncertain contribution is the nuclear po-
larization, ' ' which is the primary subject of the
present work. This correction is the subject of
some dispute in the literature. Two detailed cal-
culations have so far been made, by Bernabeu
and Jarlskog' (hereinafter referred to as BJ), and

by Henley, Krejs, and Wilets' (hereinafter re-
ferred to as HKW). The results of these two cal
culations are in substantial disagreement. In an
effort to illuminate the sources of this disagree-
ment, the present work provides an independent
calculation of this effect. In addition, it considers
both the computational methods employed and the
nuclear properties which are input into the pre-
vious calculations, so far as practical. The com-
putational method of HKW is investigated by re-
peating that calculation with a somewhat simplified
version of their nuclear model. The assumed nu-
clear properties are addressed through compari-
son with the He photoabsorption cross sections,
which provide the most directly pertinent experi-
mental information available from other sources.

I. THEORY

In order to compute muonic-atom energy levels,
it is useful to first approximate the true muon-nu-
clear electromagnetic interaction by a suitable
electrostatic central potential, in which the muon
radial Dirac equations can be solved to provide the
zeroth-order eigenvalues and eigenfunctions.
These solutions may then be used to account for
various neglected effects in perturbation theory.
Many of these effects are quantum electrodynami-
cal in nature, for which unambiguous calculational
prescriptions have been given in the literature.
Others arise from the zero-order static, central-
field approximation to the true electromagnetic
interaction. The most important of this second
class of corrections is the nuclear polarization,
which is here taken to be the two-photon exchange
diagram in Fig. 1, in the Coulomb gauge with
transverse interactions neglected. Implications
of this approximation are discussed later, and
similar higher-order processes are assumed to
be negligible. The intermediate states in Fig. 1
include all internal nuclear excitations.

In the present work, the nuclear polarization is
computed in noncovariant second-order perturba-
tion theory. The sum over intermediate nuclear
states is carried out explicitly. The sum over in-
termediate muon states is carried out implicitly

He

FIG. 1. Nuc tear-polarization correction.
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(H, E,)—4, =0,
(H E)4'—,+ (H, —E,)4', = 0,
E, =(4„HP,),
E, = (4„(H, E,)4,),

(1)

(2)

where 4',. and E,. are the ith-order wave function
and energy shift. The method consists of solving
the (differential) equation (2) directly for 4, rather
than expanding +, in terms of unperturbed wave
functions. The second-order energy E, is ob-
tained from Eq. (3). Since the muon is assumed
to interact only electromagnetically, it is always
possible to formulate a muon Hamiltonian, given
a nuclear model which specifies form factors,
transition strengths, and excited-state energies
and quantum numbers. Since the nuclear Hamil-
tonian is not as well known as its spectrum, the
nuclear perturbation is constructed in the more
conventional way a.s a sum (or integral) over un-
perturbed excited states. Thus Eq. (2) is regarded
as a differential equation in the muon coordinates
only, with the interactions in H, and H, depending
upon the nuclear states under consideration.

The unperturbed muon wave function is con-
structed from two-component spinors

I
Km), with

(following McKinley's' notation)

using knowledge of the exact muon Hamiltonian,
which is equivalent to knowledge of the complete
muon spectrum. The method used has been attri-
buted to various people, ranging from Green to
Dalgarno and Lewis. ' It appears to have been used
first in the present context by Chen. ' It is pre-
scribed by writing down the ordinary perturbation
equations for a perturbation H, on H, :

(12)

—G'""'(y)
dy'

G(nn) (y) + [M + E(nn) V(o)(y)]j(nn)(r)
y

Solution of these equations provides the spectrum
of muon eigenvalues E„'""'.

The nuclear states are denoted by
I
yIM), with

H„IyIM& = E&""IyIM&,

1 ~ ll»M & =I(I+ 1) l»M &

I, IylM& =M
I
ylM&.

(14)

(15)

(16)

Coupled spinor states are

(Krl; 8:K& = (KmIM IKI'6K& IKm& IrIM&,

with

KrI;FK&=(j+ 1)'(j+ 1) IKy

= F(P+ 1)
I
KyI; 6'K&,

F, IKyl; FK&=KIKyI; FK&.

(17)

(18)

(19)

Since it is the total muon angular momentum

j = IK
I

—o which couples to I, the coupling coeffi-
cients are the same for I+ Km). We use the follow-
ing shorthand:

l~ "&=
I ~Knr, I„&,Kn&. (20)

and where V")(r) is the (central) potential which
provides the zero- order muon-nucleus interaction.
We require (H, —E&„""))(j)&"")= 0, which yields the
usual radial Dirac equations

d E(nn&(y) E& nn)(y) + !M E(nn&+ V(o)(y)]G(nn&(r)K

dy' y' jI

1 1
I
Km& = l (l + 1)

I
Km),

o' o
I Km& = 3

I Km&,

j ' j I
Km& = (1 + ~ o)' (1+ o o)

I
Km&

j(j+ 1) IKm)

j,l.m) =ml. m&,

—(1+&) 1) IKm) = KIKm),

0' y KPl = — —KPB

The four-component muon spinor is

(4)

(5)

(6)

(I)

(8)

(9)

@(„.) /(1/y)G(""(r) I0&
0

(('/ )E'""( )I- o
(21)

The general first-order correction, which depends
upon n and IO), is

(22)

The initial zero-order coupled state is constructed
from I+0) = I+Koyofoi 6'oKo&:

(„„) / (1/r)G&"")(o.) IKm) )
!

&((i/r)E&"") (r)
I
-Km& f

and the unperturbed muon Hamiltonian is (R= c = 1)

V~0~ y +M„O'p
o.p V&o) (r) —M„j

where

with g&"n)(r) and f &" n)(r) to be determined. We now
need to solve Eq. (2), with

H y(no) (H +H )@&no) (E (no) +E&o))+&no) (28)

and H, = V —V&o) (r), where V is the true muon-nu-
cleus interaction. One straightforwardly obtains
the radial equations for the first-order correc-
tions
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f(»(r) «f & «)(r)+ {IrI + V&o){r) E&no)+E&«& E(o')/o("«)(r)+&&(I V V&o){r) E(no) Io&G( o)(r)
K

r // N 1

—g("«(r) = ——«g(n«)(r)+ (M —V"'{r)+E'"o' E(«&+ E&o&)f&"«'(r) &K
I
V V' «(r) E'"O'

I
0&E&no&(r)

K

cog N E l

(24)

where we have used & kIV V"'(r) —E',""I—0&

(r) —E&&no& IO) . In terms of the functions
E(""(r)and G'""(r), which are appropriate solu-
tions of E&/s. (13), and the solutions f '""(r) and
g&~&(r) of E&/s. (24), the second-order energy shift
due to the intermediate state Ik& is

Ion 00

E(n«& dr &y
I
V V(o) (r} E(no)

I
0)

X [ E( no)( r)f ( n«(&r) +G(no&(r)g(n«&(r)] {25)

where the normalization is J, dr [E'""(r)'
+ G&""(r)')= 1. As usual, any multiple of E&"o& and
G ""may be added to f '" ' and g'"" without af
fecting this second-order energy shift, since

E(ffO) g& P y y(O) & O y(nO) & 2+0(ffO) & 2

(26)

So far the interaction V is unspecified. %'e now
take it to be the static Coulomb interaction

V(r)= —&&. td' ' (27)

where p(r') is the one-body nuclear charge-density
operator and e = ~, is the fine-structure constant.
This neglect of the transverse interaction is gen-
erally a good approximation for muonic atoms,
which are inherently low-momentum systems. Im-
plications of this appxoximation are discussed lat-
er. The needed matrix elements are obtained by
expanding Ir- r'I ' in spherical harmonics, yield-
ing

&~IVI0)=g &/ IV, Io&

( I)/o+oo+/«o/o &/o &[I+ ( 1)&o+)+I«] ' 0 '' « ' Io o o ' Io
2l+1 ~O a ~O~&

)=0

&r, I, II J", d" p(.-)v, (.- ),„II &,I,&.

We now define the potential V"'(r) to be

( "'(r) -=(0()', , (0) = — JO'or'O'"(F')r' (OO)

where p" '(r') = &Io/(/Io
I
p(r') I Igloo & is the initial-state

nuclear charge distribution. The coupling matrix
elements (it

I
V- V"'(r) —E&&""

I
0}distinguish them-

selves by whether they are diagonal in the nuclear
states. If not, then V'o'(r) and E,"o' do not con-
tribute and may be discarded. If Ik& and I0) do
include the same nueleax state, then

tions diagonal in the nuclear states and discard
the coupling terms &k

I
V"&(r)+E&&""

I
0).

For muon coordinates outside the nucleus, the
reduced nuclear matrix element appearing in Eq.
(22) is the same as that which specifies the elec-
tric transition strength

B(E/; 0-0) = {2I, + 1) '

x (y, I, I I
dr' (Pr')r" I( &'r)

I I solo &
'.

&uIV V&'&(r) E&"'&IO&=g &@IV, IO) E&"&~ .

For nuclei with I~=I, ~ 1, these matrix elements
may be nonzero and thus contribute to the second-
order energy shift. For I„=I,&1, E',""is identi-
cally zero, as are all &I&

I V, I
0& with / && 0. Thus in

the helium isotopes (Io = 0, o) we ignore perturba-

If this quantity is known experimentally, the re-
duced matrix element in E&I. (28) resulting from
any modei calculation can be renormalized to pro-
duce the appropriate B(E/). In this way the asymp-
totic form of the transition potential can be speci-
fied uniquely by experiment. A more uncertain
part of the transition potential concerns the way
in which it is cut off inside the nucleus. This de-



14 IN MUO HELIUMNUCLEA~ OLAB I ZA T ION
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tive to the cutoff, since the integrand diverges
as r- 0. We approximate G~"'i(r) by the value of
the 2s nonrelativistic point-nucleus radial wave
function at r = 0. Averaging and summing over
initial and intermediate angular momenta, we ob-
tain for l40

(3'/)

where R is the cutoff radius. Combining this with
Eq. (34) gives

IO=

I=

0.5-

CV

500

E
IOO

LLI

~50

I

R
X

5

+

OJ

(„g) a'
E ), /' (2/ —1)!(2/ —2)!

1r'R' ~4 (/+ 1)!(/ —1)!

x dE o (/, E)(RE)
0

If we evaluate this expression for 4He and E = 1,
using the known 0, sum'

(38)

I I I I I I I I I

0 lO 20 50 40 50 60 70 80 90 l00
E(Mu)

pIG. 3. Numerically computed functions W, (E).
M&=938 MeV is the nucleon mass.

o, =—

J
dEE 'o(E)=0.007 fm'/MeV

0
(39)

B. Results

Figure 3 shows the numerically computed func-
tions W, (E} for /= 1, 2, and 3, for the 2s, i, state
in both 'He and 'He. The multiplicative factors in-
cluded in the plots were chosen to absorb most of
the / dependence in Eq. (34), as well as to reflect
the fact that for higher multipoles, &r(/, E)/o(1, E)
tends to be of order (E/MN)' ', where M„ is the
nucleon mass. The difference between the curves
for 'He and ~He is due primarily to the different
nuclear form factors, although there is a contri-
bution of order 3-4/o from the change in muon re-
duced mass. The ground-state form factors
(Oip(r) i0) used were two-parameter Fermi func-
tions with parameters c and a adjusted to repro-
duce approximately both experimental rms radii
and the 90-10% skin thickness of a Gaussian dis-

and'setting R = 1.6 fm (femtometers) we obtain

E,"~"=7 meV, a value not far from the correct
one. The approximate l dependence of the energy
shift due to excitations in a small range about a
given energy E may be noted from Eg. (38). This
dependence is clearly quite strong, coming pri-
marily from the factor (RE) ". If R = 1.6 fm and
E= 25 MeV, the explicitly l-dependent factors are
about 100 times larger for l=2 than for l=1, im-
plying that small admixtures of l )1 photons in the
predominantly dipole cross sections can have large
consequences for nuclear polarization. A careful
numerical calculation of the energy shifts reduces
the above factor of 100 by a considerable amount,
presumably because the approximations leading to
Eg. (38) become progressively worse as / in-
creases.

tribution with the same rms radius. The values
of these parameters are given in Table I. The
transition charge density (k ip(r) i

0) was taken to
be

(40)

TABLE I. Nuclear form-factor parameters.

3He 4He

c (fm)
a (fm)
a (fm)

&r')'/' (fm)

1.94
0.30
1.53
1.87

1.57
0.30
1.35
1.65

Although these form factors are perhaps not the
most appropriate to use here, the energy shifts
they yield for the most important excitations (di-
pole) differ by less than 5% from those computed
with similar Gaussian distributions. Numerical
errors in the calculation were investigated care-
fully using both computational methods described
in the appendixes in addition to the usual variation
of numerical parameters. These internal checks
suggest that such errors contribute less than 1%

to the result. In addition, results from the same
program have been compared with other nuclear
polarization calculations appearing in the litera-
ture for other elements' with good agreement.

The photoabsorption cross sections of the He
isotopes have been investigated extensively. ""
The total dipole, bremsstrahlung-weighted cross
sections adopted here for the purpose of computing
the energy shifts are shown in Fig. 4. Experi-
mental uncertainties in these cross sections are
typically of order 10%. Sums o„=—f dEo(E)E" a,re
listed in Table II. In 4He, there is currently a
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56 p4
v...(3,E)-2025—„4v, ,(1, ),

(41)

where p is the final proton momentum and p, is its
reduced mass in the proton-deuteron system. The
higher-multipole contributions to the three-body
breakup are more obscure. They are expected to
be no larger, with a similar energy dependence
which arises principally from the long-wavelength
approximation. Thus, as an estimate of the total
higher-multipole contributions, we apply E|ls. (41)
to the total cross sections.

Although this prescription is not necessarily ap-
propriate for any of the processes occurring in the
4He breakup, it is nevertheless consistent with

dispute over the relative size of the (y, P) to the

(y, n) cross section. "'" Most of the present evi-
dence indicates that these are equal, "which we
have assumed here. In addition, we assume that
the three- and four-body breakup processes are
negligible. For 'He, both the two- and three-body
processes contribute.

Higher-multipole contributions to the cross sec-
tions are observed~ at a level of 1-2%. The actual
multipole composition is quite uncertain experi-
mentally, as is the associated energy dependence.
In order to estimate such contributions to the nu-
clear polarization in both 'He and 4He, we make
use of a simple model calculation of Gibson and
O' Connell" for 'He. This model provides good
agreement with the observed angular dependence
of the 'H(d, 'He)y cross section at 12.1 and 15.3-
MeV excitation. " Expanding their result in powers
of the photon energy E, we obtain for the (y, P}
cross sections

v„~(2,E)=—,v„~(1,E)
5 p2

available experimental data" and has a reasonable
energy dependence. One might expect the higher
multipoles to contribute less in the more tightly
bound nucleus, but the internal structure as mani-
fested in the observed resonances in the cross
section may produce significant higher-multipole
components.

There is at present no well-established evidence
for l = 0 excitations in 'He. In 4He, a prominent
l = 0 resonance has been observed" at 20.1 MeV,
with matrix element (k

~ J d'rp(r}r' ~0) = 1.1
+ 0.16 fm'. We incorporate this state explicitly
here, with the form factor

(k~p(r)~o) / d
—~'d &o(p(r)~o& ~ (42)

v(E) Ev(E )
E E2+ (E2 E2 )/T'2 (43)

The parameters E„, I', and v(E ) are given in
Table II. These represent an approximate rather
than a precision fit to the data. The functions
W, (E) are also fit over appropriate ranges by ana-
lytic forms:

((2f +1) l ( j'll', (E) = &(E./E)'.l
(44)

The parameters K, c, and E, are given in Table
III. These fits are all accurate to within a few
percent over the range where the integrand in Eq.
(34) is significant.

The energy shifts computed for the 2sy/2 state
by means of the above prescriptions are given in
Table Dj'. To within 1%, the computed ls shifts

The connection between this and the actual form
factor is probably purely imaginary. Fortunately,
this state does not contribute much to the total re-
sult.

For the purpose of computing the energy shifts,
the cross sections v(E)/E in Fig. 4 are fit linearly
from threshold to 10 MeV for 'He and to 23 MeV
for 'He. Beyond that, they are each represented
by a Lorentzian,

Z oolo—

N
E

43

~ 0.005—
b

I

0 IO 20 30 40 50 60 70 80 90 l00
E(MeV)

FIG. 4. Dipol, e, bremsstrahlung-weighted photoabsorp-
tion cross sections adopted in the present work.

3He 4He

Photoabsorption
threshold (MeV)

E (MeV)
o(E ) (fm )
r (MeV)
ao (fm MeV)
o, (fm')
o 2 (fm /MeV)

5.5
i5.0

O. i80
1.5.8
3.9
0.20
0.0i 3

20.i
26.0
0.365

i9.3
8.0
0.23
0.0074

TABLE II. Adopted photoabsorption cross-section
parameters and the resulting sums.
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are larger by a factor of 8, while the 2P shifts
are less than 0.01 meV. An overall uncertainty
of the order of 10 to 20 /0 should be assumed.
This uncertainty comes primarily from uncer-
tainties in the form factors and the multipole
composition of the photoabsorption cross sec-
tions, and from the neglect of the transverse in-
teraction. It is seen that the total shift (3.1 meV)
for 4He is in agreement with that of BJ, who ob-
tain the same result. The primary physical dif-
ferences between the two calculations are that BJ
neglect the spatial variation of the muon 28 wave
function, while it is treated exactly here; and that
BJ include the transverse electromagnetic inter-
action, which is here neglected. They note that
the first approximation makes their result too
large by about 10%. They claim in a second
paper" that neglect of the transverse interaction
produces a result which is also too large, but by
about 20'%. Both of these estimates are con-
sistent with the present calculation. However,
one might expect a somewhat smaller contribution
from the transverse interaction, since at most it
should be of order v-', with v some typical velocity
in the excited nucleus [e.g., v'- (2 x 30 MeV)/
(900 MeV) - 0.07]. The actual contribution of the
transverse interaction depends in detail upon the
behavior of the structure functions at small three-
momentum transfer. One may as easily interpret
the results of BZ [their Eqs. (18), (19), and (24),
and Fig. 4] to estimate a 10% contribution from
the transverse interaction. In fact, any such con-
tribution between 0 and 20% is consistent with the
present results.

The computational differences between the pres-
ent calculation and that of BJ are significant. They
avoid an explicit multipole expansion and the con-
struction of transition charge densities, but es-
sentially the same physical information must be
specified in their structure functions. The good
agreement which is obtained is convincing evidence
that this information is accounted for adequately,
both in the experiments which provide it and in the
calculations. It should be emphasized that all the
inherent ambiguities in either calculation are as-
sociated with only about 20~/~ of the result; most

of the energy shift is given unambiguously by the
dipole photoabsorption cross sections.

The present results are in poor agreement with
HKW. This is due primarily to the errors in their
model, which are manifested in values of the photo-
absorption sums 0„, and 0 „which are too large
(also discussed in Ref. 15). This may be seen
most easily by noting that the transition strengths
B(EI) for f40 are specified by the asymptotic
forms of their transition potentials as r - ~ [ see
Eqs. (28) and (31)]. From their Eqs. (All) and
(A12) and their Table I, one may obtain for their
state (11,10)

B(E1)=0.830 fm', 'He

= 0.866 fm2, 4He .
Using Eq. (33)and their excitation energies 11.9 and
17.2 MeV, we see that these exhaust the TRK sum
rule o, = 6HZ/A MeV fm', as required. However,
the other sums 0, and 0 2 are much larger than
the experimental ones, whose values as adopted
here are noted in Table II. For example, we ob-
tain from HKW for 4He 0, =0.35 fm' and 0,
=0.02 fm'/MeV. In Table II, these sums are
0.23 fm' and 0.007 fm'/MeV, respectively. In
the approximation Eq. (38), the energy shift is
proportional to cr, [o, is proportional to the
classical electric polarizability a (pol) and is
numerically equal if o.(pol) is in fm and o 2 is in
mb/MeV] . In the exact numerical calculation, the
energy shift is more nearly proportional to 0'

y 7,
thus, we should a priori expect their result to be
too large by a factor of 2 to 3. They allude to this
problem by adjusting their excitation energies up-
ward; however, they do not alter their model
enough.

There is a further difficulty with HKW in com-
parison to the present work. In the above manner,
the values of B(El) may be extracted for each of
their /+0 excitations and used to normalize transi-
tion potentials. If this is done and shifts are com-
puted by the present method, the results are all
smaller than theirs by about 35%. If their mono-
pole transition potentials are used as given, the
results are also smaller by the same factor. The

K (meV/fm")
E, (MeV)
C

53.9 7.4i 6.54 25.7 6.53 7.89
5 5 5 20 20 20
0.6i 0.27 O. i4 0.70 0.40 0.27

TABLE III. Parameters for the approximate repre-
sentation of the functions l (l + i) f(2l + i )!!] W, (E).

3He He
1 2 3 i 2 3

He 4He

0
i
2

3
Total

-2.9i
-i.55
—0.39
-4.9

—0.26
-2.38
-0.4i
-0.03
—3.i

TABLE IV. Nuclear-polarization energy shifts (meV).
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origin of this discrepancy is not clear. Using
their Gaussian form factors instead of Fermi
functions decreases the discrepancy, but by only
a few percent. In the most important (dipole) case
it is possible to reproduce their term A. , either
with finite-nucleus relativistic wave functions or
with point-nucleus nonrelativistic ones, which
differ negligibly. It may be seen from Fig. 2 that
HKW require a considerable degree of cancella-
tion between their terms A and B in order to obtain
the true perturbation accurately. If the present
results are correct, the agreement for term A.

implies that they have calculated 8 to be too
small, by about 35'% in the dipole case.

A. Vacuum polarization

The Serber-Uehling" [a(Za)] and Kallen-Sabry"
[a2(Za)] vacuum polarization corrections are by
now straightforward to calculate. " The values
listed in Table V include ladder iterations of the
n(Zn) electron diagram. The a(Zn)s vacuum
polarization may be calculated in the point-nucleus
approximation using prescriptions available in the
literature. ~ Finite-nuclear-size corrections are
insignificant. ~ For the present purpose, we have
used Blomqvist's series~ for r/l, ~ 0.2. For
large ~, we have approximated Vogel's tabulated
function~ by

III. OTHER CONTRIBUTIONS TO THE ENERGY LEVELS ( ) ( )~
56.1 —5.65x
x+ 5.13@' (45)

Further corrections to the low-lying energy
levels are summarized in Table V. Although it
is not of primary interest here, the 1s, &, state
has been included for illustrative purposes.
Slightly less refined (but essentially indentical)
versions of these results have been published
previously. ' The calculational methods used
here follow generally those outlined elsewhere. "
It is helpful to recall that for the 1s state, the
muon Bohr radius is about 130 fm, while for the
n= 2 states, it is about 500 fm. Thus, the radial
scale of the problem is of the order of the electron
reduced Compton wavelength 4, = 386 fm. Except
where noted otherwise, all of the corrections dis-
cussed below include nuclear finite-size effects
calculated using Gaussian charge distributions
p(r) ~ e '" ~s', whose parameters are given in
Table I. None of these corrections varies by as
much as 0.1 meV when the nuclear parameters
are altered within a reasonable range.

where the potential is in electron volts and x= r/
4,. This function is used here where it is positive
and x&0.2, and is set to zero where it would
otherwise be negative. It is accurate to better
than 5% over the range 0.2 «x ~ 1. It clearly be-
comes progressively worse for larger x; however,
most of the contribution to any of the energy shifts
comes from the region in which the function is ac-
curately represented. With this estimate, the ef-
fect. contributes about 0.02 meV to the 2s-2P dif-
ferences. The vacuum polarization of order
a'(Za)' is expected to be of comparable size, ~
although no attempt was made here to calculate
it. Both of these effects should be calculated more
carefully if the experiments are improved by an

order of magnitude.

B. Vertex corrections

The vertex correction of order a(Za) is well
known, the only uncertainty being in the evalua-

TABLE V. Corrections to the muonic helium energy levels (meV).

Level 1 sg/2 2 Si/2

~He

2Pi/2 2p3/2 1S2 2 S1/P

4He

2p3/2

Vacuum polarization
o. (Zn)
o.2 (Ze)
0. (Za. )3

Muon e (Za)
Vertex corrections

n (Zn)
0. (Zn)2

Recoil
Nuclear

polar ization

Total

-18475.6
-135.6

0.3
—2.6

80.8
1.6

-23.8

—39.2

-18 594.1

-2042.0
—14.9

0.0
—0.3

10.4
0.2

-1.7
-4.9

-2053.2

-400.7
-3.5

0.0
0.0

-0.2
0.0

-1.3

0.0
—405.7

-400.4
-3.5

0.0
0.0

0.1
0.0

-1.3
0.0

-405.1

—18 804.4
-138.0

0.3
-2.6

83.3
1.6

-18.0

—24.8

-18 902.6

-2077.8
-15.2

0.0
—0.3

10.7
0.2

-1.3

3 ~ 1

-2086.8

-412.0
-3.6

0.0
0.0

-0.2
0.0

-1.0

0.0
-416.8

-411.7
-3.6

0.0
0.0

0.1
0.0

-1.0

0.0
-416.2
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Kc (MeV fm)

M& (MeV)
M, (MeV)
M(3He) (amu)
M( He) (amu)

1/137.036 04(11)
197.328 57(51)
105.659 48(35)

0.511 0034(14)
3.016 03
4.002 60

tion of the Bethe sum. ~ For the n=2 states, the
point-nucleus values are probably adequate, since
the average excitation energy (17 Ry-0.2 MeV)
corresponds to a wavelength large compared to
the nuclear radius. For the 1s state such an ap-
proximation may be nearly as good. It gives an
energy shift within 5-10 meV of the mean of the
Bethe-Negele sum-rule limits. ~ The entries in
Table V make use of the point-nucleus sums"
and include contributions from the anomalous
moment (-5 meV for ls and 0.6 meV for 2s).
The only other change from the electronic-atom
treatment is in replacing~ the value of the muon
wave function at the origin by the expectation
value of p(r), the nuclear charge distribution.
This reduces the contribution by about 10%. The
n(Zn)' vertex correction has been calculated for
electronic atoms in the point-nucleus approxima-
tion. ' If we scale these results we get the en-
tries in Table V, which are about half as large
as an estimate which has been made previously
for finite nuclei. " This prescription of one-half
of the original finite-nucleus estimate has been
adopted elsewhere for routine analysis. " The
a'(Za) vertex corrections amount to about 0.04%
of the n(Zn) vertex in electronic hydrogen, "and
most are probably of comparable magnitude here
(-0.004 meV), although the vacuum-polarization
insertion may be substantially larger, as much
as -0.1 meV. As with the electronic vacuum po-
larization, these effects will bear further study
if the experiments are improved substantially.

TABLE VI. Some special constants used in the energy-
level calculations. 1 amu= 931.504 MeV.

C. Other corrections

It is well established that the bound muon-
helium nucleus exists in the 2s state with no
atomic electrons present, ""so that no correc-
tion to the energy levels due to such electrons
is required. Indeed, any atomic electrons present
would lead to immediate depopulation of the 2s
state through monopole Auger-electron emission.

A further correction which must be applied is
that due to nuclear recoil, which is not accounted
for by using the muon reduced mass. This effect
is calculated here from the Breit equation, '7 using
the prescription of Friar and Negele~ for finite
nuclei. For the p states, the point-nucleus result
[of order (Zn) M„/M„j suffices. For the s states
there is an additional correction which may be
calculated for a uniform nucleus to be

~(2s) = — 9 (Zn)'ROM~~/M~+ 0((Zo.') ROM„/M~),

(46)

where Rp is the nuclear radius and M~ =& x 931
MeV is here the nuclear mass. This amounts to
about —0.28 meV in 'He; a more refined numeri-
cal calculation gives —0.25 meV.

D. Uncertainties

The important constants used to calculate these
energy levels are taken from the 1974 particle
properties tables, and from the 1971 mass
tables. " They are listed in Table VI. The pri-
mary uncertainties in the predicted energy levels
arising from the constants come from the muon
mass and n. These together contribute about 5

ppm, which is presently insignificant in the 2s-2p
energy differences. More important uncertainties
in these energy differences arise from the nuclear
polarization, to which we assign an overall uncer-
tainty of 20%, and from the vertex corrections,
which may be incorrect by as much as a few
tenths of an meV. Thus the total theoretical un-

TABLE VII. Theoretical binding energies. For any nuclear rms radius r, B=Bp —c(r —r„). Bp is given both with
and without the corrections in Table V.

rp (fm)
Level 1 S1/2

He
3.51135

2 S1/ 2p1/2 2p3/2 1S1/2

4He

2.73375
2 s1/2 2p1/2 2p3/2

Bp (eV)
No corrections

Bp (eV)
Corrected

c (eV/fm )

10 842.9086 2711.1146 2711.4662 2711.3218

10 861.5027 2713.1678 2711.8719 2711.7269
0.7904 0.0988 0.0 0.0

10 941.2329 2735.6265 2735.9084 2735.7628

10 960.1355 2737.7133 2736.3252 2736.1790
0.8154 0.1 020 0.0 0.0
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certainties in the 2s-2p energy differences are of
order 1 meV.

Finally, it is necessary to account fox' the direct
effect of the finite nuclear size upon the muon en-
ergy levels. This is accomplished here by solving
the Dix ac equation in the field of a Gaussian charge
distribution, for several different values of the
radial parameter R mhich are close to the elec-
tron scattering value. &4' The results are ex-
pressed in terms of the nuclear rms radius by the
formula and parameters in Table VQ. It should
be noted that these values have been checked for
numerical accuracy through the use of tmo sepa-
rate and independent computer programs. They
are not far from the results of other morkso for
the total 2s-2p splittings, although values of some
of the corrections differ. The principal difference
is in the o&(Zn) vacuum polarization, which was
computed here (and in Ref. 5) including both finite
nucleax' size and higher-order iterations of the
basic diagram. It appears that neglect of the
latter in the other mork30 is the source of the
current disagreement, as these highex -order

. iterations contribute about 2 meV to the 2s-2p
energy differences.
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APPENDIX A: ZERO-ORDER SOLUTIONS

The zero-order muon radial wave functions
[solutions of E(ls. (13)] are found by standard
shooting techniques using a convergent sequence
of estimates for the eigenvalue E&. Asymptotic
solutions at very small and at very large radii
are constructed by assuming that the potential
V(o&(r) is locally constant in both cases, so that
F(r) and G(r) are Riccati-Bessel functions with

appropriate boundary conditions. Starting from
an initial estimate of the eigenvalue and these
approximate solutions, Eels. (13) are integrated
outward and inward to a matching point R in the
positive-kinetic-energy region. The equations
are solved using the variable-order, vax'iable-
step Adams-method differential- equation- solving
package ODK." The potential V(o&(r) is provided
at arbitrary radii by an analytic formula outside

the nucleus and tabular (cubic) interpolation inside.
At the matching point 8, an improved estimate
of the eigenvalue is made using the following
formula from first-order perturbation theory:

E' =8+E,(R)GO(R) —F,(R)G, (R) .
In the above, & is the old eigenvalue, &' is the
improved estimate, and E,(R),G, (R) and Eo(R),
Go(R} are the interior and exterior solutions, re-
spectively, evaluated at the matching point and
normalized so that E';(R)+ G', (R) =Eo(R)+ Go(R),
E,(R}Eo(R}+G, (R)Go(R) & 0, and f~" [E'(r)+ GA(r)]dr
=1.

APPENDIX B: FIRST-ORDER PERTURBED SOLUTIONS

The first-order perturbations [ solutions of E(ls.
(24)] are found in the present work by two dif-
ferent methods. The first is similar to the shoot-
ing technique used to find the zero-order eigen-
value. Approximate solutions are assumed at
small and 3t large radii, and the equations are
solved (with oDE) outward and inward to a match-
ing point. In addition to the desired solutions of
the inhomogeneous E(ls. (24), there exist in gen-
eral tmo spurious solutions of the homogeneous
part, since E„'"0'-&„'~'+&„'0' is not an eigenvalue.
One of these is unbounded at r =0 and the other is
unbounded at r = ~. Because of the rapid growth
of these functions, numerical solutions of Eqs.
(24) obtained by stepwise construction inevitably
contain linear combinations of these solutions to
the homogeneous equations. These solutions can
be constructed and removed by matching at B, so
long as they are not so large that the small per-
turbation is lost in the finite-accuracy arithmetic.
This removal process makes the assumed boundary
colldl'tlolls fol' g and f arbitrary 111 pl'lllciple. FO1'

moderate to large Z, the nuclear excitations are
usually of comparable magnitude to the muon
binding energies, so that the size of the spurious
solutions is not a problem. In the case of helium
however, the energy E„'~'- &„'~'+E~o' is too far
below any eigenvalue for the perturbation to survive
unless arithmetic of extraordinax'y accuracy is
used.

A second approach may be used in this case.
This involves obtaining the desired solutions at
a number of points simultaneously, with the ap-
propriate boundary conditions built in. Vfe ap-
proximate Eqs. (24) by the second-order difference
equations

—[f,"» f " ] = —"[f," +f," ]+[~ + y&o)(r) E(no) +@&A& @(o)][+ &n»&++ (n») ] + y (r)G(no)(r)
48

[ +&n»& &n») ] ~ [ &n»&+ (nA)] + [~ y&o)(r)+E(no) E(A)+E(o) ][f(n»)+f (n») ] 1& (r}F&no)(r)



28 G. A. R INK E R 14

where h is a radial increment, f, =f (r= ih), etc. ,
and the functions involving r are to be evaluated at
r=(i —2)h. In the above, V,(r) is the surviving
multipole potential from the matrix element
(k

~

V- V"'(r) —E,'""
~0) . The above equations

are rearranged and assembled as a (large) set
of simultaneous linear equations for all f& and g,.
from i =0 to some appropriately large value. If
n radial points are chosen, the result is 2n —2

equations, so that the expected two boundary con-
ditions may be specified. In order to eliminate
the unbounded solutions, we specify one of the
functions at r = 0 and one at the maximum radius.
Since f(0) =g(0) =0, we may specify either at r= 0;
we prefer to choose g because it is the large com-
ponent and thus contributes more to the energy
shift. At large radii we also specify g through the
extreme nonrelativistic reduction Eq. (35), the

validity of which has been discussed earlier in the
present paper.

The computational problems of inverting a large
matrix are not particularly severe in this instance,
since the matrix has band structure with no more
than four nonzero elements per row. When the
solution is obtained, it is found in general that
f(0) 40. The resulting magnitude of f(0) is a mea-
sure of the accuracy of the finite-difference ap-
proximation and the large r value specified for
g. In the present work the solutions have been
obtained using as many as 1800 radial points
between r=0 and 300 fm, with a coarser mesh
beyond. The accuracy obtained was sufficient
that the nuclear-polarization energy shifts changed
by less than 0.01/o when the boundary conditions
at r=0 were varied, e.g., to f(0) =0 or f(0) =-g(0).
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