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A semiclassical approximation to the off-shell T-matrix elements t,(p, p';E) for potential scattering is
deri~ed for the case of local potentials. The approximation satisfies the off-shell unitarity relation. The
advantage of the semiclassical description is twofold: It permits fast numerical calculations and allows also a
classical understanding of the matrix elements. Classically allowed (oscillatory) and classically forbidden

(exponentially damped) regions in the p, p' plane are discussed. Numerical examples are presented for purely
repulsive potentials.

I. PITRODUCTION

Inelastic or reactive scattering of three or more
particles can be conveniently described by equa-
tions, which are completely based on the off-
shell matrix elements of the two-body T operator.
Exact equations like the Faddeev equations for
three-particle scattering' or approximation
schemes like the multiple- scattering expansion'
or the impulse approximation' are of this type.
Therefore, an understanding and an effective
calculation method of the T-matrix elements is
very important for an understanding and a solu-
tion of problems involving three or more parti-
cles.

Considerable effort has been devoted to the cal-
culation of off-shell T-matrix elements: For the
Coulomb potential the matrix elements are known4

and for a few other potentials the s-wave part has
been obtained in closed form. ' An analytical ex-
pression for potentials consisting of a chain of
rectangular wells has been given by Van Leeuwen
and Reiner' and for arbitrary local potentials an
effective calculation method based on this work
has been presented recently. '*' Approximate
methods are rather rare and confined to varia-
tional-type calculations, ' which do not naturally
lead to an "understanding" of the matrix elements,
and to a Qlauber approximation to the full T ma-
trix without an angular-momentum decomposi-
tion.

The semiclassical approximation derived in the
present paper is assumed to meet two require-
ments: The derived formula is a reliable and
easily applicable approximation and allows also
an interpretation in terms of classical paths. It
may therefore lead to a better insight not only
into the two-body but also the three-body problem.

The general semiclassical theory, i.e., the
limiting ease of quantum mechanics, when h is
small compared with the classical action func-
tions, is one of the most successful approxima-

tion schemes in atomic scattering. " A detailed
discussion of this approximation can be found in
the excellent reviews by Miller" and by Berry
and Mount. " The semiclassical theory has a close
connection with the principles of ray optics: the
"rays" in semiclassical scattering are the classi-
cal trajectories. The phase is determined by the
classical action along the path and the intensity by
the density of paths. The superposition of several
contributing paths gives rise to an interference
structure in the classically allowed regions. Dur-
ing the last years the idea of complex-valued
classical trajectories for classically forbidden
processes has been developed and successfully
applied to a variety of problems. "" Complex-
valued trajectories will also appear in the semi-
classical approximation to the T matrix.

Section II gives the basic formulas for the T
matrix. In Sec. III the semiclassical approxima-
tion to the T matrix is derived and a few numeri-
cal sample calculations are presented. Comments
and conclusions appear in Sec. IV.

II. GENERAL THEORY

In this section we give a brief outline of the well-
known T matrix formalism. The T operator for
potential scattering is defined by

T(E) = V+ V(E —H, ) 'T(E).

Here H, is the kinetic energy operator and V is the
potential, which is assumed to be local and spheri-
cally symmetric. The energy E is allowed to be
complex. For positive real E the limit 8+i&, &-0
(e &0) is understood.

We are interested in the calculation of the matrix
elements of T in momentum space (p I

T(E)
I
p'),

where the momenta are allowed to be off-shell,
i.e., they may differ from pz = (2mE)'~' (m is the
reduced mass). It should be recalled, that the on-
shell matrix elements (i.e Ip I

= Ip'I =p~)»e "I-
rectly related to the differential cross section by
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„„(p-p')=~ —4z'mg(p~ &(E) ~p') ~', (2)

with the normalization (p ~p'} = 5(p —p'). The usual
partial- wave expansion

T-matrix elements are listed, which should be
satisfied by a reasonable approximation. The
energy E is assumed to be real and positive.

(a) The scattering phase shifts )I, are connected
with the on-shell T-matrix elements by

&p~ I'(E) ~p'&=
4 g (2I+ I)t)(pip'iE)P)(p p')

l=o

defines the partial-wave matrix elements t, (p, p', E)
(p=~p ~, p'=~p'~), which can be written

2
t, (p, p', E)=, j,(pr/k)V(r)((), (r, p', E)dr,

7T PP 0

t,(pz.pz; E) = —(I/vrmpz)e'"& sing, .

(b) The T-matrix elements are symmetric:

t,(P', P;E) =t, (p, p', E).
(c}The half-shell quantity

&)(p pz}=' '"'t((p pz'E),

(10)

(12)

(4)

where j, is the Riccati-Bessel function. " The
"off-shell wave function" ((),(r, p, E) is a solution
of the inhomogeneous differential equation' '

(&- &( ))),(,);~)(
d' E'I(l+ 1)

dr2 y2

=(p'. p')I', (pr/-~). (5)

This equation reduces to the well-known Schro-
dinger equation for p =pz. The ((),(r, p; E) are the
coefficients of the partial-wave expansion of the
M@ller operator II, which is defined by

T(E) = VII(E),

in a mixed coordinate-momentum representa-
tion' '

(ri n(E) ~p) =

&& g i'(2l+1)((),(r,p; E)P,(r p}.
l=o

whichwas introduced by Baranger et al. ,
" is real.

(d) The most important equation is the off-shell
unitarity relation, which is

Imt, (P~P'; E) = —vmPzg((P, Pz}(P,(P', Pz}, (13)

in terms of the (p,(p, pz); i.e., the imaginary part
of the off-shell T matrix is determined by half-
shell quantities.

III. SEMICLASSICAL APPROXIMATION

In our semiclassical approximation we follow
the formal development outlined in Sec. II. First
we obtain a semiclassical (i.e., WKB-type) ap-
proximation to the off-shell wave function
&u, (r, p; E). The second step is the asymptotic
(h -0) evaluation of the integral (4) using the
method of stationary phase. The resulting ex-
pression for the t,(p, p', E) is then interpreted in
terms of classical paths. The energy is assumed
to be real and positive.

The off-shell wave function &u, (r, p; E) satisfies
the boundary condition

(u, (r, p; E) „=j,(pr/ft) —zmpt, (p, pz; E)h;(pzr/ft),

A. On-shell and half-shell T-matrix elements

The semiclassical approximation to the on-shell
T matrix is easily obtained by inserting the WKB
phase shift

(8)

where h; is the Riccati-Hankel function. " Equa-
tion (8) is easily derived in direct analogy to the
usual derivation of the on-shell asymptotic of the
solution of the Schrodinger equation"

(u, (r,pz; E) „„=j,( pzr/If )

—zmpzt, (pz, pz; E)h;(pzr/h )

"=a ~P(}-P.~" — 'a'' "2 2
rO

with the radial momentum

p, (r) = [pz —2m V'(r) —L'/r ']' '

and the classical angular momentum

L = (I+ z}h

(14)

(15)

(18)

which is the on-shell version of Eq. (8}.
In the following some useful properties of the

(9} into Eq. (10). r, is the classical turning point. In
view of what follows we note here the well-known
WEB wave function belonging to the boundary con-
dition sin(pzrlh —2 tv+ ri, ) at infinity:
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(17a)

p, (r') dr'+ —,
g"' is exponentially decreasing in the forbidden region x&z0. %e also need the %'KB wave function be-
longing to the outgoing boundary condition exPi(Pzr/h ——, br+ )I)) at infinity

Z $ 1
exp —— pg g dg + exp — p) 'Y d'v

~ /&A 2

X/2
r0 0

()( ((„}-((*
)

exp g —
p& x dh' +—,7'&F0 ~

0

(17b)

In the half-shell case (p'=ps) &u) is identical with

the usual radial wave function, which is approxi-
mated by the %KB wave function with the correct
normalization of Eq. (9}:

r
II,(r) = P,(r') dr'

0

Pr' —I' '/' —I. cos '—
Pr (23)

(r p .E) — e((l))((1()( )r (18)

%e further use the asymptotic form of the Riceati-
Bessel function for large values of index and ar-
gument"

-. Pr j.
-

1
j) —= „,cos I+ — (tanp- p) ——

(sin p) 2 4

(19)

where

The upper + index of I, refers to e" and the lower
s index to II,. Integrals (22} are evaluated in the
limit of small h using the method of stationary
phase (or equivalently the method of steepest de-
scent if the stationary points are complex):

J
2

d (.( )exp —/( ))d*h

[f((( )[
g( g)

cos p= I./pr (20)

i)(P Pz E}=
2 q P 'LPEj

x [I„'+I —i(I; —I,)],
with

(21)

zs(i /)()//+(( ) (22)
( I //)[p) (r)si(np)

remains finite in the semiclassical limit 8 -0.
The asymptotic formula (19) is valid for r&I /P
In the "forbidden" region r & I, /p, a different
asymptotic equation must be used. It can be
shown without difficulties, that the forbidden re-
gions r&I./p and r&r, give vanishing contribu-
tions to the integral (4) for the T-matrix elements
in the semiclassical limit. Inserting Eqs. (18)
and (19) into integral (4), and rea. rranging the
terms after rewriting the trigonometric func-
tions as exponentials, we obtain for the half-shell
T-matrix elements

x exp —f(z,)+ — ——arg f"(z,) . (24)

The point z, ("saddle point" or "stationary point")
is determined by f'(z, ) = 0. z, must be a point on
the integration path y and the real part of (i//I) f(z)
must have a strict maximum at z, along y. If
these conditions are not met (for instance if z, is
not a. point on y), then the integration path must
be transformed aeeording to Cauehy's deformation
theorem. The evaluation of integrals by this meth-
od is one of the central points of the semiclassi-
cal approximation scheme. "" I,ooking for the
stationary points ~; we find

d 2-1//2

II,(r) = (p))r+ lp— = 0 (25}
rs $

There is no solution of this equation in the H,
case, and so the integrals I' give no contribution
in the semiclassical limit. For I', Eq. (25) can be
conveniently written

p' p' = 2m I/(r,—);
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i.e., at the stationary point x, the kinetic energy
is equal to p'/2m. In the following discussion we

will assume for simplicity, that the potential V(r)
is purely repulsive, i.e. , monotonically decreas-
ing. In this case Eq. (26} defines three regions:

(I) p &p,.„classically forbidden (r, & r,);
(II) p,,&p&pz, classically allowed (r, &&;);
(III} pz &p, classically forbidden (&, complex);

where

p...= I,/r, (27)

t,(p, p, ; E) = z'"& ImX, (p, Pz),
where Imx, is the imaginary part of

(29)

m[2»mkpp Jp, (&;)V'(r,}~]"'

—.exp[f(rl, (p) --.v)], p&p, .;
„(exp&(&} (P) — »)'r, P;,&P &P;

exp (I[&i,(p)
——,

' »g(- p, (~,)V (~„))——,'.]],
p. &p. (»)

The off-shell scattering phase shift q&(p) =ffH (x,)
is given by

1 "s
q, (p) =

& P, (r') dr' —[(P~,)' —I,']'"
rO

L+L cos
Vs

(31}

0&(p) is purely imaginary for p &p,„, real in the

is the momentum at the classical turning point.
"Classically allowed" means that a classical par-
ticle with angular momentum L and energy E will
reach the momentum p somewhere on its trajec-
tory, and "classically forbidden" means that the
momentum p is not possible. Nevertheless, this
may be the case for complex trajectories, i.e. ,
complex-valued solutions of the classical equa-
tions of motion. " In the classically allowed re-
gion II both integrals I' contribute, in the forbid-
den region I the stationary point x, is on the wrong
sheet for the integral I, and so only I' contri-
butes in this region. In region III we have pairs of
complex-conjugate saddle points x, for each in-
tegral I' and the "correct" one must be chosen
carefully. '4 This is indicated by an exponentially
damped contribution, which vanishes for h —0.
With

d'
( )

mV'(x, ) (28}

we obtain the final result for the half-shell matrix
elements, which is conveniently written

classically allowed region p,.„&p&pE, and com-
plex for p~ &p. On the energy shell it is identical
with the WKB scattering phase shift in Eq. (14):

n, (pz) = n, .

The half-shell matrix elements given in Eqs.
(29)-(31) obviously satisfy Eq. (12) for the exact
t, (p, p»E) and we identify

Q &( P & Pz}=™X&(P & Pz) . (33)

Before presenting a few results of numerical cal-
culations we note the following drawbacks of the
semiclassical approximation:

(i) At the bounds. ry between the classically for-
bidden region p &p „and the classically allowed
region p &p,.„, the semiclassical. formula diverges
because of p, ( &) =p&(r, ) =0. Such a. behavior is
well known for the usual WKB wave function.

(ii) At the second boundary between the allowed
region p &p~ and the forbidden region p &p~, the
numerator in Eq. (29) vanishes, but so does the
denominator, because of the vanishing V'(r, ) (the
stationary point z, goes to infinity in the on-shell
limit). If the potential falls off quicker than the
Coulomb potential at infinity the semiclassical
t, (p, pz, E) vanishes in the on-shell limit, where-
as in the Coulomb case it remains finite.

(iii) As a consequence of (ii) the on-shell limit
of the semiclassical half-shell T-matrix elements
differs from the semiclassical expression for the
on- shell matrix elements.

To provide some quantitative insight into the
quality of the semiclassical approximation we
present some numerical results for potentials of
the inverse-power type. " For V(r) =ar ' (a&0)
the exact half-shell matrix elements can be cal-
culated in closed form (see the Appendix) and also
the off-shell scattering phase shifts (30) can be
evaluated analytically. It turns out that
mPzf, (P,Pz; E)does only depend on P/Pz, the angular
quantum number I and the parameter A = (2ma/f&)'~',
which is a measure of the classicality of the prob-
lem. For the r ' potential the WKB phase shift

g, is exact" and therefore it is only necessary to
compare the quantities mpze '"&t,(p, pz, E), which
are real, according to Eq. (12).

Figures 1-4 show typical results for l =0, l =2,
and two values of the classicality parameter A =2
and A = 7. Away from the pole at p „and the zero
at p~ the semicla. ssical approximation is in good
agreement with the exact values, especially for
larger values of A. The agreement is surprisingly
good in view of the low values of the angular-mo-
mentum quantum numbers. The figures show the
following characteristics of the T-matrix ele-
ments: We have a classica, lly allowed region,
where the matrix elements are oscillatory and
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FIG. 1. Half- shell T-matrix elements
mpze '"l t&(p, p&, E) for the a/r potential a,s function of
p/p~; A=(2mu)' /A=2 and angular-momentum quantum
number 1=0. The exact result (full curve) is compared
with the semiclassical result (broken curve). The
semiclassical approximation diverges for p =p„„„and is
zero for p =pz. The position of p;„ is marked by an
arrow.

FIG. 2. Same as Fig. 1; 4=2 and l =2.

proper semiclassical solution (17 a, b) of the homo-
geneous equation, i.e. , for r& r, the WKB wave func-
tion P,

' (r), which is exponentially decreasing for
small r, and for r&r, the asymptotically outgoing
wave function g"':

large. This region is surrounded by classically
forbidden regions, where the matrix elements are
exponentially damped. The magnitude of the t, is
largest for p &p,.„as already observed by Bru-
mer and Shapiro. "

B. Off-shell wave function and off-shell matrix elements

A( )=
pz- p' —2m V(r)

(34)

This approximation is invalid in the neighborhood
of r„where the denominator of Eq. (34) vanishes.
The final solution of Eq. (5), which satisfies the
boundary condition (8) is obtained by adding the

In order to obtain a semiclassical approximation
to the off-shell T-matrix elements we first derive
a %KB-type approximation to the off-shell wave
function, i.e. , to the solution of the inhomogeneous
differential equation (5). Inserting the ansatz
A(r)j (pr/k) which is m—otivated by the exact so-
lution for V(r) = const. —into Eq. (5} and expanding
A(r} in powers of g we obtain in lowest order of h

a special solution of the inhomogenous differential
equation (5) with

for r&r, (35}.
This approximation is invalid in the neighborhood
of r, and r, . The final result for the semiclassical
off-shell T-matrix elements is obtained by in-
serting the semiclassical expression for the off-
shell wave function into integral (4) and evaluat-
ing the integral by means of the method of steepest
descent. The inhomogeneous term in Eq. (35) gives
a vanishing contribution in the semiclassical limit
for pW p' and the contribution of the other term
can be calculated in the same way as in the half-
shell case. The final off-shell approximation is

f,(P,P', E) = —~mpsX, (P&,Ps) imX, (P&,p~), (38)

with p& = max(p, p') and p&= min(p, p') .
The half-shell limit of the off-shell approxima-

tion is zero (for potentials falling off quicker than
r ' at infinity) and not identical with the half-shell
semiclassical approximation (29}, just as the on-
shell limit of the half-shell expression. Figure 5
illustrates the different regions in the (p', p) plane.
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Region (A) is classically allowed, i.e. , there is a
classical trajectory with energy E and angular
momentum t. , which joins the two momenta p and
p'. The t, (p, p', E) are large and oscillatory in p
and p'. The regions HF are half-forbidden, the

t,(p, p', E) are oscillatory in p or p'. The regions
CF are classically completely forbidden and the
matrix elements are very small. In the classi-
cally forbidden regions there is no real classical
trajectory on which the momenta p and p' occur,
but there is a complex-valued classical trajectory,
which joins the two momenta. '~ On the line p =p'
the real part of the first derivative is discontinu-
ous, the imaginary part is continuous. This be-
havior has its origin in the neglect of the inhomo-
geneous term of Eq. (35), which is only valid for
p'4 p.

The following properties of the semiclassical
approximation (36) should be pointed out:

(a} The off-shell behavior of the f, is com-
pletely determined by the half-shell expression
y, (p, ps) [but not by the half-shell matrix elements
t,(p, pz., E), i.e. , not by the imaginary part of
&i(p pa)) ~

(b) The semiclassical approximation (36) is ob-
viously symmetric in p and p'.

(c}The off-shell unitarity relation (13}is satis-
fied because of

Imf, (P,P', E) = —vmPs Imp, (P),Ps) 'Immit, (P„Ps}
= —~~p, ~,(p, pz)&i(p', ps) .

(37)

This is a very important feature of the semiclas-

I
P=P

HF

PE

HF

Pmin

CF HF QF

FIG. 5. Sketch of the classically allowed (A), classi-
cally half (HF), and completely (CF) foIbidden regions
in the (p,p') plane. t&(p, p'; E) is large and oscillatory
in region (A} and small and exponentially damped in re-
gions (CF). The semiclassical approximation diverges
if p orp ls eqUal to pnlin.

sical formula for the f,
Numerical sample calculations were performed

for inverse power potentials V(r) = e(R/y)", which
are extensively used in atomic scattering at high
energies. " For these potentials mph f,(p, p', E) as
a function of f and the reduced momenta p/ps,
p'/ps depends only on two dimensionless pa. ram-
eters: the reduced energy E~=E/ aend a "classi-
cality" parameter Kz ——ps'/If. The stationary
points x, can be calculated analytically. The in-
tegral in Eq. (31}for the off-shell scattering
phase shift q,(p) is evaluated by means of the
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usual Gauss-Mehler integration, "which works
also in the forbidden (complex-valued) case. As
a typical example Fig. 6 shows real and imaginary
parts of the matrix elements for the r ' potential
(p'=0.8ps, /=10} as a function of p/ps. Reduced
energy and "classicality" are E~=2 and E„=60.
For the r "potential the matrix elements are far
more oscillatory than for the r ' potential. The
different phase behavior for p &p' and p &p' arises
from the change in the real part at p =p' as dis-
cussed above.
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IV. CONCLUDING REMARKS

A semiclassical approximation to the off-shell
T-matrix elements for local potentials is derived.
The approximation satisfies the off-shell unitarity
relation and permits a fast calculation of the

f,(p, p', E) We. found good agreement with exact
results under semiclassical conditions. More-
over, the semiclassical theory gives an insight
into the structure of the matrix elements, the re-
gions, where the matrix elements are large, and
so on. The semiclassical approximation breaks
down at the boundary between classically allowed
and forbidden regions. It should be possible, how-
ever„ to overcome these drawbacks by means of a
uniform approximation, similar to the successful
uniform approximations in potential scattering. "

In the present paper the potential is assumed to
be purely repulsive. An extension to attractive
potentials and potentials with a minimum is
straightforward and will be the topic of future
studies.

-I 0

-15 I

0.5
I

I.O
P/p

FIG. 6. Off-shell T-matrix elements mp~t 7 (p,p'; E)
for the r ' potential as function of p/p& for p'= 0.8p~.
Angular-momentum quantum number l = 10, reduced en-
ergy Ez ——2, and classicality parameter K~= 60. The
full curve is the real part and the broken curve is the
imaginary part.

This is easily checked by inserting (Al) into the
(homogeneous) differential equation (5). Equation
(4} for the t, reads

fi(p pE E) — e"~ j,(pr/&)j, (per/R)r 'dr-
77 pp@ p

Q

+&2 e'"'~&+i&2, i+i&2(pr/@ per/r') ~

PJ g]
APPENDIX

(A4)
For the potential V(r}= ar ' the half-shell T-

matrix elements can be calculated in closed form.
In this case the wave function with the correct
normalization (8) is given by

The integral J is of Weber-Schafheitlin type and
can be evaluated in closed form"

1(k(V+ v))
r(u 1)r(-:( q+2))

&u, (r,p„E)= e'"~j,(p,r/t), (Al)
x,F,(-,'-(p. + v), —,'(p, —v); p, + 1; (k'lk)')

with

(A5}
6, -2r(l —X} (A2)

for k' & k. For k' & k we make use of the symmetry
relation Z, „(k', k) =Z„,(k, k'). ,F, is the hyper-
geometric function.X= ——,'+[(l+-,')'+2nia/k 'j'". (A8}
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