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Coupled-state calculations of proton —hydrogen-atom scattering with a Sturmian expansion*
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Cross sections for proton —hydrogen-atom scattering have been calculated for protons incident in the energy
range 15—200 keV. The impact-parameter Schrodinger equation was solved approximately with an expansion
in Sturmian functions; the expansion contained a total of six s-state and six p-state functions centered about
each proton. Results are presented and discussed for excitation to the n = 2 level, for charge transfer to the
ground state and the n = 2 level, and for ionization.

I. INTRODUCTION

One of the most fundamental scattering systems
encountered in the study of ion-atom collisions is
the proton-hydrogen-atom system. Provided that
the incident energy is above a few hundred electron
volts, the full three-body problem can be reduced
to the problem of an electron moving in a time-
dependent field, since the two protons are heavy
and can be treated as distinguishable classical par-
ticles which move with constant velocity. ' Despite
this enormous simplification, usually referred to
as the impact-parameter approximation, the re-
sulting equation for the electron wave function has
not been solved exactly, and cross sections for
nonresonant transitions have not yet been calcu-
lated to satisfactory accuracy in the energy range
below 200 keV. The purpose of this paper is to
report an attempt to obtain improved estimates of
the cross sections for excitation and charge trans-
fer to the n =2 level of hydrogen atoms by protons
incident in the energy range 15—200 keV.

To some extent the present approach follows that
of Gallaher and filets. ' The impact;-parameter
Schrodinger equation

ik —Ie(f)) =H(f)Ie(f))
dt

for the sta. te vector IC (i)) of the electron is solved
approximately with a trial solution I4'„(t )) which
is a linear combination of Sturmian basis vectors
with time-dependent coefficients that satisfy the
standard coupled-state equations, i.e., Eqs. (1.4)
below. (In the calculations reported here six s-
state and six p-state basis functions were centered
about each proton. ) A Sturmian expansion has the
particular merit that the Sturmian functions form
a discrete set which, in its entirety, is complete.
Therefore estimatesof transitionprobabilities cal-
culated with a Sturmian expansionbecome exact as
the basis set is enlarged. This is in contrast to the
case where an expansion in terms of bound atomic
orbitals is used; although estimates of transition

probabilities calculated with an atomic orbital ex-
pansion converge as the (discrete) basis set is en-
larged, the values to which they converge are in-
correct, a point sometimes overlooked in the lit-
erature. Another merit of the Sturmian expansion
is that the Sturmian functions satisfy a recurrence
relation which greatly facilitates the evaluation of
the required matrix elements. ' However, the use
of a Sturmian expansion has the following conse-
quence: The natural expression to take for the es-
timate of the probability that after the collision is
over the electron is bound to proton n in the state
k is

where IC» (t)) represents the state kn. It turns
out, however, that if the radial wave function rep-
resenting the state kn has nodes, this limit does
not exist; rather, I&4~„(i)I4„(i))I' tends to a
constant term Plus a term which oscillates without
limit as t -~. The nonexistence of the above limit
is due to the fact that the state kn cannot be rep-
resented exactly by a finite linear combination of
Sturmian functions. However, provided that the
basis set is sufficiently large, one can find a suit-
able approximate representation IC ~„„(t))of the
state kn such that the quantity

is a, well-defined variational estimate of the prob-
ability for the electron to undergo a transition to
the state kn. ' The vector IC~ „(t)) is chosen as
follows: Let H, (t) denote the Hamiltonian of the
hydrogen atom whose nucleus is n. (The Hamil-
tonian H„(t) is time dependent only because we use
a coordinate system whose origin is at the mid-
point of the two protons. ) Assume that If basis
functions are centered about each proton. If a K-
dimensional matrix representation of H (t) is
formed from K orthonormal linear combinations
of those Sturmian basis functions centered about
n, the eigenvalues of this matrix yield variational
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estimates of (and upper bounds on) the binding en-
ergies of the first few states of the hydrogen atom.
The vector ~4„„(f)&is chosen to be the eigen-
vector whose eigenvalue is a variational estimate
of the binding energy of the state ka; the limit of

~(4„„(f)~4„(f}&(', as f —~, is then well defined

and is a variational estimate of the transition prob-
alibity. This is the expression which was used to
estimate transition probabilities in the calculation
reported on here.

The trial state vector for the electron can be
expressed in the form

~4„(f)&=+ g (f;(f)~+', ,„(f)&, (1 8)
k=1

iTi—0'(f, T) -= G (f)O"(f, T),

0'( T, —T) =-I, ii=*,
(1.8)

where J denotes the identity matrix.
As a consequence of Eq. (1.6) the matrices 0'(t,
T) h-ave the property"

0'(T, T) =-[¹(T)]'DO "(0, -T)D+N (0)O'(0, T), -
(1 9)

where the tilde denotes the transpose of 0"(0, -T).
Noting that for T sufficiently large ¹(T)is the
identity matrix, it follows from Eqs. (1.7) and (1.9)
that

A'(T) = DO'(0, -T)D+X'(0)A'(0). (1.10)

N' —A'(f)= G'( )fA'( )f, (1.4)

where A'(t) is a column vector whose elements are
the coefficients 8',(t) and where

where n denotes either the target proton or the in-
cident proton, and where P is the operator which

reflects the coordinates of the electron through the
midpoint of the two protons. The eigenvalues of P
are ii=+1. The time dependent coefficients 8;(f)
are specified at time f = -~ and they satisfy the
standard coupled-state equations, namely,

Therefore to find A'(f) at the large positive time
f = T, Eqs. (1.8) need be integrated only from f

Tto f= 0, a-nd 6'(f) need be evaluated only at
negative times. No storage of G'(f} is necessary.

Since the Sturmian functions form a complete
set, they overlap the continuum eigenfunctions of
the hydrogen atom. As a result, the coefficients
of the basis vectors contain information about the
probability for ionization. The procedure for ex-
tracting this information is discussed in Sec. II of
this paper. In Sec. III the results are presented
and discussed. In the Appendix the numerical
methods of the calculation are briefly described.

II. IONIZATION PROBABILITY

G'(f) = DG"(-f)*D*, (l.6)

where D is a time-independent unitary diagonal
matrix defined in Ref. 5. Usually" G"(f) is stored
on a mesh of points at negative times. However,
as the basis set is enlarged the storage require-
ments soom become excessive. In the calculation
reported on here, the need to store G'(t) was avoi-
ded by the following method: Rather than integrate
Eqs. (1.4) for the vectors A'(f), one finds the ma-
trices O'(f) which govern the time-dependent of
these vectors. With A'(f) specified at some large
negative time -T, the formal solutions of Eqs.
(1.4) are

[M'(f)]„=(4',. „(f)off(f) ia —
~

4', „,(f)&.

Fquations (1.4) would normally be integrated from
some large negative time to some large positive
time. However, G'(t) need be evaluated only at
negative times, since it follows from the invariance
of the Hamiltonian H(t) under time reversal that"

I,.=»m )&4,„(t){4(f) &['. (2.1)

Equation (2.1) is exactly equivalent to

(2.2)

In analogy with Eq. (2.2}, an approximate expres-
sion for the transition probability is

To obtain a simple estimate of the ionization
probability, we estimate the probability for a
transition to each bound state, add these proba-
bilities, and subtract from unity. The result is
an estimate of the ionization probability which
does not require a knowledge of the asymptotic
form of the wave function for the ionized electron.

We cannot estimate the probability for a transi-
tion to a highly excited state from Eq. (1.2}, since
only the first few states of the hydrogen atom can
be represented by the trial vectors (4~„„(f)&, and

even fewer can be represented well. We there-
fore proceed as follows: The exact expression for
the probability of a transition to the state ke is

A'(f)=O'(f, -T)A'( T), (1 7)
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(2.3)

provided that the limit exists. We now show that
the limit does exist. Assume, for simplicity only,
that the time-dependent phase of each basis vector
I4~„«(t)) is chosen to be e 's& «'~", where E, „
is the variational estimate of the binding energy of
the electron in state &n. Then it is not difficul. t
to see that the coefficients 8,'(t) appearing in the
expansion of Eq. (1.3) have well-defined limits as
t-~. Denoting these limits by 6,', and noting that

I(4~„(t)I4,.« „(t))I is time independent and that

(4,„(t)IPI4,.„«(&)) is zero in the limit t ~, Eq.
(2.3) becomes, on replacing I4'«(t')) by the expan-
sion of Eq. (1.3),

order in the difference between 4'„and @~

It follows that PQ~ t is a variational estimate of
the transition probability whenever P« „ is, that
is, whenever the basis set is sufficiently large
that @,„„,and hence P, „, can be defined. '
Therefore it is not obvious which of the two ex-
pressions P, „and P~ „provides the more ac-
curate estimate of the transition probability.

Returning to the problem of determining the
ionization probability, we sum Eq. (2.5) over all
bound states to estimate the probability for the
electron to be bound finally. We then subtract this
probability from unity. If the two protons are de-
noted by A and B, so that n runs over A and 8, we
obtain for the estimate of the ionization probability

Ppof t 6g + I5~ 4go| 4~
J=l

all bound
states

where

~ —Q p„(b,
' +b.,. )(.b,'. + b,. )*

l oj=l

x I(4,„I4,.„„)(4,„II,.„„)I,
(2.4)

(2.7)

where, noting that owing to the identity of the pro-
tons A could just as well be replaced by B in the
followi ng:

bound 0

and where the choice of the sign in the right-hand
side of Eq. (2.4) is determined by n. We suppress
the argument t in terms which are independent
of t. If the states i n and p n have different sym-
metry, at least one of these states must have a
symmetry different from kn, and it follows that
in this case (4, I4,„„)(4,I4,„„)is zero. If the

states in and )n have the same symmetry but
i 4 j, then E, „4E, „and it follows that in this
case P, , is zero. The second term on the right-
hand side of Eq. (2.4) is therefore zero, and Eq.
(2.4) reduces to

Pa„« =
2

l(b *b~)(4a I4;,«) I (2.5)

We pause here to remark on the difference be-
tween P,„„and P„' „. We first note that P,' „is
the expression calculated by Gallaher and Wilets. '
Now in terms of b;, Eq. (1.2) becomes

Pa«, «-2lba +be I'. (2.6)

W'e have already noted that P~ „is a. eaviationgl
estimate of the transition probability, that is, an
estimate which is accurate to second order in the
error in IC«(t)). Evidently P~„«and P„'„„become
identical as the basis set is enlarged. The differ-
ence between P,„„and P,' „ is, in fact, second
order, since I(4~„I4, „)I is equal to b»,. to second

dQ qA (2.3)

where IqA) is a continuum eigenvector of the hy-
drogen atom whose nucleus is A. Using the uni-
tarity condition

(2.9)

Eq. (2.7) reduces to

(2.10)

This expression has a simple interpretation;
—,'I b;+ vb, I' is the probability for the electron to
finally be in a state which has an overlap l,. with

the continuum of the hydrogen atom.
We have not carried out an extensive convergence

study of P;,„„.We have, however, studied the
change in P; „„asthe number of basis functions is
changed in a trial w'ave function which includes
only s states. The results are shown in Table I for
the case when the impact energy is 25 keV and the
impact parameter is 1 a.u. In this table N is the
number of basis functions centered about each
proton. It appears from the table that P;,„„would
converge to a value of about 0.14 if the entire set
of s states were included; the convergence appears
to be quite rapid, but of course it is not monotonic.
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TABLE I ~ Estimate of the ionization probability as a
function of the number N of basis states in a trial wave
function containing s states only. The incident energy
and impact parameter are 25 keV and 1 a.u. , respective-
ly.

+ion, tr

0.161
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0.139
0.138
0.135
0.139
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FIG. 1. Cross section for excitation to then =2 level
of the target hydrogen atom. A: four-state results of
Cheshire et al . (Ref. 6); B: seven-state results of
Cheshire et al. (Ref. 6); C: present results : experi-
mental results of Park et al. Qef. 10).

III. RESULTS AND DISCUSSION

In the calculations reported on here 12 Sturmian
functions were centered about each proton. Thus
in accordance with the customary terminology we
refer to these calculations as 12-state calculations.
The functions included were the 1s to 6s and the
2P, , to +0,. (Reflection symmetry in the scatter-
ing plane was exploited, so that p, refers to a lin-
ear combination of two states, one with magnetic
quantum number equal to 1, the other —1.) The
target hydrogen atom was assumed to be initially
in the ground state. The 2P states of the hydrogen
atom were represented exactly, but the 2s state
was represented only approximately; the degener-
acy of the true 2s and 2P states was satisfied to
within 0.6%. The beam axis was chosen to be the
quantization axis.

In Fig. 1 we have plotted the cross section for
excitation tothen = 2 level versus the incident pro-

ton energy (measured in the lab frame. ) We have
plotted the present results and the results obtained
from four- and seven-state calculations by Ches-
hire et al. ' In the four-state calculations the 1s,
2s, and 2P, , states were coupled; in the seven-
state calculations 3s and Q, , pseudostates were
also included. %'e have also plotted in Fig. 1 the
recent experimental results of Park et al." The
agreement between the present results and the ex-
perimental results is fairly good. Note, however,
that the present results indicate a slight shoulder
between 25 and 50 keV which does not appear in the
experimental data. The large disagreement be-
tween the seven-state results of Ref. 6 and the ex-
perimental results in the energy range 40-70 keV
is perhaps surprising, especially in view of the
much better agreement between the four-state re-
sults of Ref. 6 and experiment. A possible explan-
ation of this discrepancy is the following: The ion-
ization cross section peaks in the enex gy range
40-70 keV and is large there. Therefore if pseudo-
states are included the flux into these pseudostates
can be expected to be large in this energy range.
However, the flux into the pseudostates cannot leak
away to infinity, that is, the electron cannot be-
come truly ionized. Therefore some of the flux
entering the pseudostates may well leak back into
the bound states as the collision progresses, yield-
ing spurious contributions to the cross sections
for bound-state transitions. This is not as likely
to occur in the present calculation, since the elec-
tron is more nearly able to escape because of the
inclusion of basis functions that extend over great-
er distances than those representing the 3s and

Sp, , pseudostates of Ref. 6.
According to the results shown in Fig. 1 the

cross section for excitation to the n =2 level has a
peak at an energy roughly equal to 60 keV. In
Table II we have presented the results for charge
transfer to the 1s state and for excitation and
charge transfer to the 2s, 2p„and 2p, states. Re-
ferring to this table we see that above 25 keV the
main contribution to the cross section for excita-
tion to the n =2 level comes from excitation to the
2p states, and the peak in this cross section is due
to peaks at 60 keV in the cross sections for ex-
citation to the 2p states. The peaks in the 2p ex-
citation cx'oss sections ax'e px'esumably the peaks
one expects from Massey's rule. " This rule states
that if AF is the difference in the initial and final
binding energies of the electron, the cross section
for the transition maximizes at a velocity roughly
equal to anE/g, where a is the range of interaction
(which is roughly of the order of twice the impact
parameter at which the transition occurs with max-
imum probability. ) The rule follows from the un-
certainty principle, which states that one must
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TABLE II. Estimates of the cross sections for excita-
tion and charge transfer to the is, 2s, 2po, and 2p,
states in units of 10 ' cm . Rows a refer to excitation
and rows b to charge transfer. The beam axis is the
quantization axis.

Energy
(keV) is

Final state
2s 2pp 2p,

15 a
b

20 a
b

25 a
b

35 a
b

40 a
b

45 a
b

55 a
b

60 a.

b

70 a
b

57.5

41.7

30.2

16.0

11.8

8.85

5.18

4.04

2 ~ 53

0.970
3.41

1.89
4.21

2.22
4.22

1.74
3.08

1.43
2.47

1.28
1.94

1.49
1.18

1.67
0.920

1.77
0.572

1.32
1.25

1.84
0.956

1.98
0.709

2.01
0.452

2.31
0.364

2.77
0.288

3.70
0.175

3.91
0.137

3.75
0.0831

i.59
1.92

i.64
1.25

2.04
0.836

3.49
0.422

4.16
0.311

4.62
0.233

4.95
0.132

4 ~ 93
0.0994

4.84
0.0575

125 a
b 0.331

0.813
0.0675

2.59 4.88
0.009 36 0.005 55

200 a
b

0.553 1.95 4.26
0.0492 0.009 16 0.001 10 0.000 53

wait a time t t= fij~ to observe a, change CE in

the energy of a system. The time ~t is the col-
lision time, which is roughly ajv, where v is the
incident velocity. The Massey rule predicts a peak
in the 2p excitation cross section at 60 keV if one
inserts the reasonable value a = 4.1 a.u. for the in-
teraction range. One expects the intera, ction range
for excitation to the 2s state to be less than that
for excitation to the 2p states, since there is no

long-range dipole interaction coupling the 2s state
to the ground state. Thus one expects a peak i.n the
2s excitation cross section at an energy less than
60 keV. Referring to Table II we see that there is
indeed a peak in the 2s excitation cross section at
25 keV, corresponding to an interaction range of
2.7 a.u. The peak in the 2s excitation cross section
seen at 70 keV in Table II is probably due to the
degenerate coupling to the 2P states, which is ex-
pected to be most significant for energies close to
where the Pp excitation cross section maximizes.
(The calculations of Ref. 6, which were performed
down to 1 keV, indicate an additional peak below 10
keV in each of the 2s and 2p excitation cross sec-
tions. Between 1 and 10 keV the cross section for
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FIG. 2. Cross section for charge transfer to the 2s
state. A: seven-state resuLts of Cheshire et al . (Ref.
6); B: present results; C: experimental results of
Bayfield (Ref. 14).

charge transfer to the 1s state is extremely large,
and the additional peaks in the excitation cross sec-
tions are possibly due to the electron first being
captured by the incident proton and then being cap-
tured back again by the target proton. That there is
sufficient time for this to happen is supported by
the interpretation" of the oscillations in the 3'
charge transfer measurements of Lockwood and
Everhardt. ")

Note from Table I that as the incident energy in-
creases above 70 keV, excitation to the 2p, state
dominates with increasing significance over excita-
tion to the 2p, and 2s states. This is consistent
with the first Born approximation, which predicts
that the cross section for excitation to the 2t, state
decreases as (1nE)/E with increasing energy E,
whereas the cross sections for excitation to the 2p,
and 2s states decrease as 1(E. The lnE factor re-
flects the fact (which follows from energy-momen-
tum considerations) that as the energy increases,
the momentum transferred to the electron in dis-
tant collisions becomes directed perpendicular to
the beam axis, so that the atom is preferentially
oriented in this direction. Distant collisions are
significant for 2P excitation because of the long-
range dipole coupling. Note that there is a slight
peak in the 2P, excitation cross section at about
125 keV. This peak probably reflects the increas-
ing importance of distant collisions (for 2P, exci-
tation) as the incident energy increases.

In Fig. 2 we have plotted the cross section for
charge transfer to the 2s state. Both the present
results and the seven-state results of Ref. 6 are
shown. Also shown are the experimental results
of Bayfield. " The experimental data, include cas-
cade contributions (which amount to 6% or so), so
that the experimental results ought to lie above the
theoretical results, but they do not. However, the
agreement between theory and experiment is fairly
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good. The cross section has a maximum between
20 and 25 keV. TheMassey rule predicts such a
maximum if the interaction range is taken to be
roughly a =2.6 a.u. However, the Massey rule
should be applied with discretion to charge trans-
fer, since other considerations can be more im-
Iportant; at high incident velocities the electron
must acquire the velocity of the incident proton and
the change in momentum of the electron becomes
more important than the change in its binding en-
ergy.

The cross section for charge transfer to the 1s
state is large at low energies, because the change
in the binding energy of the electron is zero. How-

ever, this cross section decreases rapidly as the
incident energy increases owing to the difficulty the
electron has in acquiring the necessary momentum.
The agreement between the present results and the
seven-state results of Ref. 6 is particularly good
at low incident energies, but the agreement wors-
ens slightly with increasing energy. It is generally
thought" that at asymptotically high energies the
second Born term provides the leading contribu-
tion to the cross section for charge transfer (in
the forward direction). At high energies the sec-
ond Born term corresponds to the classical pic-
ture" in which the electron is scattered twice
through 60'. The electron is first scattered with

high speed towards the target proton; it is then
scattered by the target proton and emerges from
the collision with the velocity of the incident pro-
ton. According to this picture, the electron is in-
termediately scattered into a continuum state to
which a large range of values of angular momentum

must contribute (since the electron is scattered
through a large angle into a small solid angle). Ev-
idently, then, neither the present calculation nor
the calculation of Ref. 6 can account for high-en-
ergy charge transfer, since a proper description
of the intermediate scattering of the electron nec-
essitates the inclusion of more than just the s and

p components of the target continuum. That the dif-
ference between the charge transfer results of the
present calculation and those of Ref. 6 becomes
more noticeable at high energies is presumably be-
cause the former calculation includes more of the
s andp subspace of the target continuum than does
the latter.

In Fig. 3 we have plotted the ionization cross
section computed according to the method outlined
in Sec. II. These results are, over the entire en-
ergy range considered, roughly a factor of 2

smaller in magnitude than the recent experimental
results of Park et al." However, the present re-
sults should not be taken too seriously, since they
surely have not converged with respect to the in-
clusion of p states, which provide the major con-
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FIG. 3. Cross section for ionization (present results).
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APPENDIX A: NUMERICAL METHODS

In this appendix we use atomic units. The Harn-
iltonian of the electron can be expressed as

H(t) = —,
' v'.,—1/r„—1/ra+ f(R)

= H„(t) —1/ra +f(R)
= Hs(t) —1/r„+f(R), (A1)

where r„=)r„~and ra=~ra~, and where r„, ra, and
r, respectively, are the position vectors of the
electron relative to the target proton A, to the inci-
dent proton B, and to themidpointof A and B. 'The

tribution to the cross section. We have included
the present results for ionization because of the
ease with which they were obtained once the cou-
pled-state equations had been integrated. Although
the method used can be expected to yield reliable
results only if a large number of basis states are
included, the method is, in principle, capable of
yielding essentially exact results and it does ac-
count for charge transfer to the continuum, a
mechanism not accounted for by the first Born and
other simple approximations. It is interesting to
note that the peak in the total ionization cross sec-
tion seen in the present results occurs at roughly
the same energy (about 55 keV) as found from ex-
periment, "whereas the peak found from the
first Born approximation" oc cur s at a lower en-
ergy (about 25 keV).
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position vector of B relative to A, is R=b+ vt,
where b is the impact parameter and v is the {con-
stant) velocity of 8 relative to A. The choice of

f(R) is arbitrary; if an exact numerical integration
of Egs. (1.4) or (1.8) were to be performed, the
resulting transition probabilities would be indepen-
dent of the function f(R)." However, in practice
this function effects the numerical accuracy of the
calculated transition probabilities. In the calcula-
tions reported here f(R) was chosen so as to re-
duce the oscillations in 0'(f, -T). This was ac-
complished with the form

x„=x„„[N„x„]-'

If X„„is a good approximation to X„ the ele-
ments of the matrix 4„are small and the sum in
the last step of Eg. (A4) can be approximated well
by the first few terms. In the calculations re-
ported here X„„was chosen to be

(A5)
f(R) = (1 —e )/ff, (A2)

where R= PR~. Two features of this form are note-
worthy. First f(R) is well behaved at 8 = 0, and
second, f(R) decreases as 1/R for large R.

The time-dependent phase factor of each basis
vector ~C» „(f))was chosen to be e 's» ~~'. For
this choice of phase factors the equations

i = Mt(t) -M(t), (A6)

the derivative of X(f) is given by

(A7)

where f„, is the time point previous to t„. Noting
that4

(A3)

are satisfied for all t. Therefore when the elec-
tron is localized about proton n the effective per-
turbation is determined by the matrix elements of
H(f) —H, (f). With f(R) defined by Eq. (A2), this
perturbation is bounded and it decreases as
I/R' as R-~; as a result, the phases of the
elements of 0'(f, -T) remain finite even in the
limits t-+~, and the equations can be integrated
with high numerical accuracy.

In order to evaluate G'(f) it is necessary to eval-
uate both direct matrix elements (involving the
overlap of functions centered about the same pro-
ton) and exchange matrix elements (involving the
overlap of functions centered about different pro-
tons. ) The direct matrix elements were evaluated
rapidly by using a recurrence relation for the
Sturmian functions. The same recurrence relation
was used to develop a method for evaluating the
exchange matrix elements rapidly. This method
has been described in detail in Ref. 3.

The matrix N'(f} was inverted by the following
iterative procedure, suggested in a somewhat dif-
ferent form to the author by Lipsky": Dropping the
superscript w temporarily let X„=X(t„)denote the
exact inverse of N„=N(t„) at time t= f„.—Let X„„
denote a trial estimate of X„. From the identity

The trial estimate was improved by retaining the
first three terms in the sum of Eq. (A4). The itera-
tion was begun at a large negative time (see be-
low}, where X(f) was approximated very accurate-
ly by the identity matrix.

The exchange matrix elements were integrated
along the projectile path by numerical quadrature,
as described in Ref. 3; the integration was begun
at vt=-120 a.u. The integration of Eqs. (1.8) for
0'(f, -7) was performed with a fifth-order Runge-
Kutta-type method developed by Lawson, as de-
scribed by Lapidus and Seinfeld2'; the integration
was begun at vt = -~T = -60 a.u. Although Runge-
Kutta-type methods are generally thought to be
inefficient, it should be noted that Lawson's meth-
od has a particularly large region of stability in
the complex plane. This means that a large step
size can be used to integrate the complex equa-
tions for 0'(f, -T) without the solution becoming
unstable. In contrast, most other methods have
a narrow region of stability in the complex plane,
and it is often essential to use a small step size
when integrating complex equations. For this rea-
son Lawson's method may mell be superior to most
methods for integrating Egs. (1.8). The integration
was started with a mesh in which I; changed by in-
crements of 0.25 a.u. The mesh size was halved
whenever the condition

0'(I, T)tN '(t) 0'(t, -7) =I- (A8)

we have, denoting the identity matrix by I and de-
fiIling 4„=—I —E„X„

was violated beyond a certain level of tolerance.
The vector A'(T} was found from Eq. (1.10).

Each element of A'( T) corresponding to-exchange
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was set equal to zero and each element corre-
sponding to excitation was approximated by the
leading term in an asymptotic expansion, with
the boundary condition that only the ground state
was populated at f= —~. However, A'( T) w-as

normalized to unity. The accuracy of the numer-
ical integration was such that A'(T)tA'(T) deviated
from unity by less than 10 '; in most cases the
deviation from unity was substantially less than
10-'.

After A'(T) had been found, A'(~) was found by
first integrating Eqs. (1.4) for A'(t), starting at
t = T. The exchange matrix element;s appearing

in G'(f) were set equal to zero for f & T T. he in-
tegration was stopped at a certain point t= T„, and
the difference A'(~) —A'(T„) was estimated from
the leading term in an asymptotic expansion. A
suitable value for T„was found by an extrapolation
procedure similar to the one used by Cheshire
et al. '

The computing time required to perform the
present 12-state calculations was roughly the
same as that required by Cheshire et aE.' to per-
form their seven-state calculations, that is, on
the average about 20 min for one impact param-
eter and energy on an IBM 360/65.
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