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The recent electronic orbital tableau (“jawbone’) formulas of Harter and Patterson for matrix representatives
of elementary generators of U(n) in the canonical basis are shown to be simply related to our expressions for
the latter, which are based on a simplified Gelfand tableau formalism pertinent to N-electron problems, a
brief survey of which is given in a form particularly suitable for computer implementation.

I. INTRODUCTION

Many different approaches exist to basic prob-
lems of shell-model (configuration interaction)
calculations: a construction of (permutation, spin,
isospin, space, etc.) symmetry-adapted N-fer-
mion bases and a calculation of pertinent matrix
representatives of observables in these bases.
One of the most mathematically appealing and
computationally efficient approaches, due to
Moshinsky,! is based on the unitary-group repre-
sentation theory. While some fundamental ideas
of this approach were already pointed out by Jor-
dan,? it is remarkable that the necessary mathe-
matical machinery was only sufficiently developed
much later by Gelfand ef al.,* Moshinsky e? al.,*
Biedenharn et al.,’ Louck e/ al.® and others, ex-
tending thus the classical works of Weyl,” Cartan,
Casimir, Killing, and others (cf. for example
Ref. 8).

Recently, there has been a renewed interest in
this and similar approaches®?® in connection with
large-scale molecular configuration-interaction
(shell-model) calculations.?® It was found that for
systems of identical fermions with only one dicho-
tomic internal degree of freedom (e.g., electrons)
the relevant formalism may be drastically simpli-
fied and efficient algorithms formaulated.'*:1:22
While our approach**!°:24 exploits a simplified
Gelfand tableau formalism, Harter and Patterson
published recently??:2® and algorithm based on
Weyl tableaus, which they deem preferable for
practical applications.

It is the purpose of this paper to show the equiv-
alence and mutual relationship of both algorithms,
however differently they may look at first sight.
Indeed, we shall establish a very simple and direct
relationship between our simplified electronic
Gelfand tableaus and the corresponding Weyl
tableaus, which in turn yield Harter and Patter-
son’s tableau formulas®:2® from our unified alge-
braic!*'%2* (or, equivalently, pattern'®:**) formu-
las. Out of several formulations which we used

earlier to present our approach, we choose here
the most suitable one for computer implementa-
tion.

I1. BASIC FORMALISM AND NOTATION

In configuration-interaction calculations for N-
electron systems described by a spin-independent
model Hamiltonian,>” we are faced with the follow-
ing problems: (i) find a spin-symmetry-adapted
basis (preferably orthonormal) in a totally anti-
symmetric component of the Nth rank tensor pro-
duct space V®¥ of finite-dimensional one-particle
spacesV (dimU=n=> N), on which the model Hamil-
tonian is defined, and (ii) determine the matrix
representative of the Hamiltonian (and, if desired,
of other observables) in this basis.

The individual spin-invariant subspaces may be
conveniently labeled by the pertinent eigenvalues
of the total spin operators, 5% and §z and, in view
of the spin independence of forces considered, we
can limit ourselves to one particular eigenvalue
S,of §,, say S,=S.

As Moshinsky* has shown, a convenient choice
of such a spin-adapted basis, for a subspace char-
acterized by the total spin quantum number S, is
supplied by the Gelfand-Tsetlin canonical basis®
for the carrier space of the irreducible represen-
tation (irrep) I'{2"/2-512S} of U(n). The individual
basis vectors (i.e., the N-electron spin-adapted
configuration-state functions) are then uniquely
labeled by the Gelfand tableaus [m |,

My, te M,

m m

1,n-1 et n-l,n-1
LOTIUP
my,

whose integer entries m; (i <j; j=1,2, ... n;
m;; € Z), satisfy the so called “betweenness con-
ditions” (lexical tableaus)
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My iy ZM g2 My ()

and whose first row [m,],

[_7)_1"] = [Tnlnnz2n e ."Inn-l (nlln 2 m2n R mrm)

(3)

is uniquely determined by the given irrep consid-
ered. The basis is further assumed to be lexically
ordered. Thus, for the irreps I'{2¥/2-5125} of
U(n), pertinent to N-electron model problems,

we have

m;,=2 for i=1,2, ..., 3N=8,
m,, =1 for i=3N-S+1,...,5N+S, (4)
m;,=0 for i=3N+S+1,...,n;

and we refer to the pertinent tableaus (1) as elec-
tronic Gelfand tableaus.

An equivalent canonical basis vector labeling
may be achieved with Weyl tableaus,?® which are
Young tableaus in which repetitions in the same
row are allowed. The pertinent Young pattern
(frame), which also uniquely labels a given irrep
of U(n), is defined by the partition {2¥/2-5125} of
N, labeling our irreps of U(n). A Weyl tableau
associated with a given Gelfand tableau (1) is then
obtained by inserting into the 7/th row of the Young
frame m, times number i, (m; ;,, - m,;) times
number (i +1), (m; ;,,-m, ;,,) times number
(i+2), etc, until inserting (m,,—m, ,,) times
number #, for all rows ¢=1,2,...,3N+S.

The dimension of the irreps of U(n) are given by
the well-known Weyl’s or Robinson’s formulas.

To obtain the matrix representative of the Ham-
iltonian, or of other observables, in the given
basis one exploits the fact that any particle-num-
ber-conserving spin-independent operator may be
expressed as a sum of ;-degree forms in the gen-
erators E; of U(n).! These generators satisfy the
following commutation relations

(B Epy)-=6,4E = 8, ®)
as well as the following Hermitian property

Ej=Ey; (6)
for all ¢,j=1,...,n, defining fully the structure

constants of the corresponding Lie algebra of U(n).
Thus, to obtain the desired matrix representatives
of particle-number-conserving observables in the
Gelfand- Tsetlin canonical basis, we only need
know the representation of the pertinent Lie alge-
bra u(n) associated with U(n) in this basis.

The generators E; of U(rz) may be classified into
the lowering (i > j), weight (i =j), and raising
(i < j) generators according to whether they lower,
give and raise the weight of each N-particle state,
so that their representation matrices in a lexically

ordered canonical basis are strictly lower tri-
angular, diagonal, and strictly upper triangular,
respectively. Further, the real representation
matrices for the lowering and raising generators
E,;and E , (> j), respectively, are given by
mutually transposed matrices as follows from (6).
Finally, the raising (lowering) generator matrix
representatives are fully determined by the cor-
responding elementary or primitive®* generators
E, . (E; ), @=2,...,n), from which all the
remaining ones may be obtained by applying the
recurrence formula

Ee-x,uk:[Em,irEi.nk]-: k=1,...,n-2, (M

which follows immediately from (5).

Explicit formulas for the matrix representatives
of generators in the canonical bases were given
by Gelfand and Tsetlin® and Baird and Biedenharn.®
They are very simple for weight generators (oc-
cupation numbers)?®

<l_m,”E“][ﬁ'_"]>=5([@Ja[1n,])(ki—ki-l)’ (8)

where
kJ=E ™y, (9)

but rather complex for other generators (even the
elementary ones).?® It is exactly this step in the
whole formalism, which may be greatly simpli-
fied'*!%2¢ when we restrict our considerations to
the electronic Gelfand states pertinent in the N-
electron model problems.

IIl. N-ELECTRON FORMALISM

Restricting ourselves to an N-electron case, the
entries m, of an electronic Gelfand tableau (1)-(4)
may only equal 0, 1, or 2, i.e.

Osm, <2 (isj; j=1,2,...,n). (10)

Consequently a more economical notation is pos-
sible. For example, we can use an n X 3 matrix®
[apic,], (=1,2,...,n), called an ABC tableau,
whose ith row integer entries a;, b;, and c, give
the number of 2’s, 1’s, and 0’s in the 7th row of
the Gelfand tableau (1), respectively. Since, fur-
ther

a;+b,+c,;=1 (i=1,2,...,n), (11)

any n X 2 submatrix of an ABC tableau is sufficient:
say, the AC tableau [a,c;], (i=1,...,n), contain-
ing the first and the last column of the ABC
tableau. However, an ideal notation should not
only enable an easy and economical storage of the
necessary data, but also a simple calculus. We
shall see that such a notation can be based on AC
tableaus.
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The lexicality (betweenness) conditions (2) im-
mediately imply that the entries a, and ¢; (i
=1, ...,n) of an AC tableau must form a finite
nondecreasing sequence of integers, whose subse-
quent members differ at most by unity, i.e.,

..on=1).  (12)

Thus, defining the (first) difference tableau (AAC
tableau) [Aa,Ac;]=[ay,], (=1,...,n), with en-
tries

O<ux;,,—%;,<1 (x=a,c; i=1,.

Ax,=E,=x,-x;, (x=a, E=a or x=c,
£=y; i=1,2,...,n), (13)

where for convenience we have defined
a,=by=¢c,=0, (14)

we have that £,=0 or 1, so that each lexical elec-
tronic Gelfand pattern (1)-(4) may be uniquely
represented by two binary strings of length n, each
one consisting of one column entries of the first
difference tableau.

We note that, obviously,

i
xﬁz Ax, (x=a,c; i=1,...,n). (15)
j=1

In particular, the digital sums of these binary
strings [ =% in (15)] must be the same for all vec-
tors of the given irrep basis, namely

a=a,=3N-S,
c=c,=n—a-b=n-3N=S5, (16)
(b=b,=29).

This irrep is in turn uniquely specified by the num-
ber of electrons N, the number » of single particle
states (AO’s) used, and by the desired multiplicity
(2S+1). The dimension of this irrep I'{2°1%} of

Un) is*

Dlm(ru(n){zalb})=§_1%<nzl> <n:1>’ (17)

where (™) =m!/(m -n)!n! is the usual binomial
coefficient.

The lexicality conditions (both necessary and
sufficient) for AAC tableaus may be expressed as
follows

n
Z Ax,<x (x=a,c; i=1,...,n)
IeY

and (18)

n
Z(Aaj+ch)>a+c—i (i=1,...,n).
j=1i

Therefore, we can obtain the lexically ordered
basis for a given irrep I'{2°1"°%"°} of U(n) by taking
subsequently for (Aa;Ac;), i=n,n—1,...,1 the

values (01), (00), (11), and (10), in this order, and
discarding at each step the nonlexical patterns
violating the lexicality conditions (18).

We next show that also the matrix representa-
tives of weight and elementary raising (lowering)
generators are simply determined in terms of the
first difference tableau notation for basis vectors.
For weight generators we have?®

<[7_n,] ‘E“ l [7_n]> = 6([’1“]1 [7.'!])[1 + Aa{ - AC(J-
(19)

The nonvanishing matrix elements of elementary
raising (lowering) generators are easily deter-
mined by using the first (2=1) and the second
(2 =2) difference tableaus with entries

Aty = ARy - AR (x=a,c; k=1,2
i=k,k+1,...,n) (20)

where A° x,=x,. We have also designated earlier
[ef., Eq. (13)] A'x,;=Ax,=¢,. Using this notation
the entries in the [m]th column of the matrix
representative of an arbitrary elementary raising
(and, similarly, for lowering) generator are
given'*!%:2¢ hy a simple expression

([L”]a(c” lEi-l,i l [Z_nb

=6(a%,, € )[h;/ (b, — 2% 08%i/2 (x=q, c)

(21)
where
€,=1, ¢,=-1,
and
i-1
hi=i= 3" (&la;+alc)> A%, (22)

j=1

The entries a'x{® (j=1,...,n; x=a,c) of the row-
determining tableau [m]{" are the same as those of
[m] except for j=i—1 and j=i when

Aty {P=5(AM;,0)=F,=6(£;,0), (23)
(x=a,c; j=i-1,i),

the bar designating the binary complementation
(i.e., 1=0;0=1).

Note that the exponent %AzaiAzc'. in (21) is either
0 or +3, so that the pertinent matrix elements
equal either 1 or are given as a square root of a
ratio of two integers differing by 1, respectively.3!
The parameters i;, Eq. (22), give in fact the in-
termediate spin coupling quantum numbers of the
Yamanouchi-Kotani genealogical basis,*® which is
up to a phase equivalent with the Gelfand-Tsetlin
basis.!® From (21) we can also conclude the fol-
lowing.

(i) Any row (column) of an elementary generator
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matrix representative has at most two non-vanish-
ing entries.

(ii) Using formula (21) we can simultane ously
determine a given column for all elementary
raising (lowering) generators.

(iii) The elementary generators E,,, ; having
nonvanishing entries in the column labeled by a
given AAC tableau [ozjyj], (j=1,...,n), are given
by the row indices of the second difference tableau
entries for which A%a; = Aa; =1 and/or A%c;= Ay,
=-1.

(iv) The value of the pertinent matrix element is
simply determined by the parameter 4,, which in
turn is simply obtained from a digital sum of the
appropriate tails (Ax;,Ax,, ... Ax,), x=a,c, of
binary strings (columns of an AAC tableau) label-
ing the column-determining N-electron state
function considered [cf., Eq. (22)].

Finally, the matrix representatives of nonele-
mentary generators (and of products of genera-

tors), may be either obtained recursively [cf., Eq.

(7)] or directly.?* Let us mention that the recur-
sive algorithm may also be used for truncated
bases, (essential for limited configuration inter-
action calculations?®), when the configuration state
functions are appropriately selected.*

Since the binary strings (arrays) may be very
efficiently represented and handled on modern
digital computers, we hope that the above outlined
algorithms might be particularly suitable for
computer implementation of the unitary group
approach.

IV. RELATION TO WEYL TABLEAU FORMALISM

Harter and Patterson recently published® rules
for the determination of matrix elements of ele-
mentary generators based on the Weyl tableau
representation of N-electron spin-adapted states.
We now show how their rules easily follow from
our general formula (21), thus establishing the
equivalence of both approaches.

The key step is to find the relationship between
our first difference (AAC) tableau and the Weyl
tableau labeling schemes. In our earlier work we
have formulated'*'%2* algorithms yielding a per-
tinent Weyl tableau from our ABC or AB tableaus
[the latter ones being simply obtainable from AC
tableaus using (11)]. Starting from this result we
can in fact establish a very simple and direct re-
lationship between our first difference (AAC)
tableaus and the corresponding Weyl tableaus.

Consider a general Weyl tableau labeling some
vector of the carrier space of the irrep I'{2¢17%-c}
of U(n), as shown in Fig. 1. Then the index fami-
lies (ordered sets) I and J,

FIG. 1. General Weyl tableau for a vector of the
carrier space of the irrep I{291""*~} of U(n).

I={iy, iy oo yip )y
Jz{jl?j27""ja}’ (24)
(4, <dg<e-» <lpees J1<Jp<tct <ja)

labeling the columns and, thus, uniquely defining
a given Weyl tableau are determined by the first
difference (AAC) tableau entries as follows:

ieleAac;=0
i€l = Aac; =1 (25)

and

i€ Jeaa,=1
i€ = Aa;=0.

Thus, by writing the row indices of the unit
(vanishing) entries of the first (second) column of
a given AAC tableau into the second (first) column
of the pertinent Young frame, we immediately ob-
tain the corresponding Weyl tableau as the example
in Fig. 2 of a vector in the basis for the irrep
{2212} of U(6) illustrates.

It is now easy to obtain Harter and Patterson’s
rules (cf., Fig. 3 of Ref. 22) for the different cases
they distinguish. Consider, for example, the case
with doubly occupied orbital (i) and unoccupied
orbital (¢ —1) [i.e., the second case (c¢) and the
first case (d) of Harter and Patterson®?|, charac-
terized by the Weyl tableau shown schematically
in Fig. 3 [only labels (;) and (; — 1) are shown ex-
plicitly], where v and « give the number of nodes
(boxes) in the first and the second columns pre-
ceding the node labeled (7).

Clearly, this situation corresponds to the fol-
lowing structure of the ith and (i — 1)th rows of our
AAC tableau
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AAC tableau Gelfand tableau
Weight
Row index (i) (Occupation
numbers)
aa; ac;
6 0 0]—=[5] 1 2 2 1 1 0 o
le=|t of=[5] 2 2 2 1 0 0
4 0 1 4 0 2 1 0 0
3 0o of|—e[3] 1 2 1 o
[Z]=]' 1 2 1 2 0
1 0 oj—e[1] 1 1
1(2
3|5
Wey! tableau
5
6

FIG. 2. An illustration of the relationship between
AAC, Gelfand, and Weyl tableaus representing the
same vector in the basis for the irrep I'{2%1%} of U(6).

Row index (j) Aa; Ac; Occupation number
j=i 1 0 2 (26)
j=i-1 0 1 0

Since A%q;=1 and A’c;=~1 neither matrix element
given by (21) vanishes and we get

(mID|E ., | lm)y=[(r; = 1)/n, ]2 (27a)
and
Am]P|E ., | m]) = [y +1) /0,172, (27b)

where £, is given by (22). Recalling the relation-
ship between the AAC and Weyl tableaus given
above, we find immediately that # and » are given
by the number of unit and zero entries in the rows
j=1,2,...,(i=1) of the first and second column
of the corresponding AAC tableau, respectively,
so that

i-1
u= Z Ag,
j=1
and (28)

i-1
v=(-1)- Ac;.

Consequently

hy=v-u+l=d (29)

<

FIG. 3. Weyl tableau characterizing the case with
doubly occupied orbital (¢) and unoccupied orbital (f—1).

may be interpreted as a “city block” distance?
between labels (z) in the first and second columns
of the Weyl tableau shown in Fig. 3.

Furthermore, using (23) we see immediately
that the left-hand side patterns in (27a) and (27b)
are simply obtained by replacing (i) by (i - 1) in
the second and first columns of the Weyl tableau
shown in Fig. 3, respectively.

In exactly the same way, we can obtain the rules
for the cases when both (i) and (i — 1) are singly
occupied, corresponding to the first case (c) and
the second case (d) of Harter and Patterson.?? We
find that the “city block” distance d equals (;- 1)
and (%;+1) in the first and the second cases men-
tioned, respectively. Finally, by considering the
remaining cases when (i) is singly occupied and
(i = 1) is either unoccupied or doubly occupied,
i.e., cases (g) and (h) of Harter and Patterson,?
we find immediately that always A%a; A%c; =0, so
that the pertinent matrix elements equal 1.

Concluding this comparison let us note that we
can also easily reformulate Harter and Patter-
son’s?? “assembly formulas” in terms of our
AAC tableaus: we simply proceed from the top
of the AAC tableau, while the quantities u, and
U, are given by the number of remaining 0’ s and
1’s in the second and the first column, respec-
tively.
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