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We discuss the systematics of energy levels of high-angular-momentum Rydberg states of alkali-metal atoms,

and show that they are well described by a quantum-defect model. Polarization of the core electrons by the

valence electron is shown to be the dominant contribution to the quantum defect. As an example, recently

observed splittings between the l = 3, 4, and 5 levels in various Rydberg states of sodium are analyzed to yield

values for the core polarizabilities. EfFective values of the dipole and quadrupole polarizability of 1.0015(15)
and 0.48(15) a,u. , respectively, are obtained. Implications for the precise determination of the structure of

highly excited Rydberg states in alkali atoms are discussed.

I. INTRODUCTION

The optical spectrum of the alkali metals is
described by the celebrated Hydberg formula W„
= —1/2(n —5,)', where the quantum defect 5, is
approximately constant for fixed angular momen-
turn l. The quantum-defect picture follows quite
directly from the model of a valence electron in-
teracting with a nucleus of charge Z and a fixed
core of Z —1 inner-shell electrons. The quantum
defect drops rapidly for l & l„„,where l„„is the
maximum angular momentum of a core electron.

The nature of the quantum-defect picture has
taken new importance with recent advances in
Bydberg states of atoms. In particular, it is
now possible to measure accurately term separa-
tions of high-angular-momentum states. For
hydrogen these separations vanish except for fine-
structure effects, and so for nonhydrogenic sys-
tems even a small quantum defect plays a major
role in the level structure. The questions arise
as to whether a quantum-defect model is appropri-
ate for high-angular-momentum states of alkali
metals, and whether the quantum defects can be
related to simple properties of the core distribu-
tion. We shall demonstrate that the answer to both
questions is yes. The quantum-defect model is
useful for high- as well as low-angular-momentum
states; for large l, the quantum defect is simply
related to the electrostatic polarizability of the
core electrons (i.e. , of the alkali ion).

In this paper we develop a simple quantum-defect
theory for high-angular-momentum Hydberg levels
of the alkali metals, emphasizing the central
nature of core polarization and its relation to the
level structure. We observe that measurements
of the splittings between angular-momentum com-
ponents within a term can provide precise values
for the core polarizabilities. As an application,
we present values for the dipole and quadrupole
polarizabilities of Na obtained from microwave

measurements of the splittings of l =3, 4, and 5

Hydberg states reported by Gallagher, Hill, and

Edelstein. "'
We should point out that the usefulness of the

polarization model in analyzing the hydrogenic
(f & 2) Rydberg states of He has been described
by Deutsch, ' and that high-resolution data on such
states have been acquired in an elegant series of
experiments employing radio-f requency spectros-
copy to derive the term structure of He by Wing
and his colleagues. 4

II. QUANTUM-DEFECT DESCRIPTION

One aim of a quantum-defect description is to
express the energy as

E=--,'[(n- u, )'] ',
where 5, is a constant or a very slowly varying
function of n (Atom. ic units are used unless other
wise indicated. ) For Rydberg states with 5,«1,
n»1, we can write

E = —1/2n' —(5,/n')[ 1+0(5/n) ] (2)

Thus, if a perturbation energy has the form —A/
n', where A. is a constant or a slowly carrying
function of n, we ean immediately identify A with

the quantum defect ~ More generally, if the per-
turbation consists of several terms, each of the
form —A, /n', then the total energy shift is —Z A, /
n', and this gives rise to a quantum defect 5
=Z 5;, where 5, =A;.

For an alkali in a state with l & l„„,a "non-
penetrating" state, we can write

E(n, f) = Eo+ E~,q+ E „+E„„,
where E, = —1/2n' (we neglect reduced-mass ef-
fects for the present), E, is the polarization en-

ergy, E„,is the energy shift due to core penetra-
tion, and F.„,represents the spin-orbit energy and
the relativistic energy shift. The last three terms
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in Eq. (3) are assumed to be sufficiently small to
be treated by a perturbation expansion.

As discussed in Sec. III, the n dependence of E„,
is dominated by the factor ( r ') = n 'l '. The
core-penetration energy also varies as n ', for
in high-angular-momentum states the energy is
nearly proportional to the density of the valence
electron at the core which varies as n '. For non-
penetrating states E„,acquires the hydrogenic
value n '[a'/(j+-, )], where n is the fine-structure
constant, and j is the angular momentum. Thus,
all three perturbation terms in Eq. (3) scale as
n ' and we can write

E(n, l) —E,(n, l) = —n '6,

(4)

In high-angular-momentum states, E, «E„,
or E

g
and lt can be considered as a small cor-

rection to the total quantum defect. For large l,
E„, is hydrogenic and may be easily computed.

5p $ can be eva luated from the pot entia l'

V„,= ——,
' o,'(1/r') —,'nq(1/r—')+ V'„, , (5)

where ad, O.
Q are the effective dipolar and quad-

rupolar polarizabilities, respectively, and t/'~

represents higher-order terms which can be ne-
glected. The effective polarizabilities differ
slightly from the polarizabilities for the alkali
ion due to nonadiabatic effects associated with
the valence electron's motion. We shall consider
these corrections in Sec. III, and retain the form
of Eq. (5), even though the constants must be re-
garded as to some extent phenomenological.

If we write E,=E"„,+EQ„we have, using the
hydrogenic value for (r 4), (r '), '

1 3/2 I'
(6)

o, , 1 35/8 I'
Epos —z +Q 3,9 1+fQ —

~ )n l n

d Q~pol ~po 1 + pof

where f, and fo represent small, higher order cor-
rections, of order P/n' The full expan. sions of
(r ') and (r '), given in the Appendix, are used
for actual calculations of the energies. The form
of Eqs. (6) and ('I} is convenient for discussing sys-
tematics. The polarization contribution to the
quantum defect can be written

terms f(l'/n') By combining Eqs. (4) and (8) we
obtain

l' f2

(9)

If the polarizabilities are known and the penetra-
tion and relativistic contributions have been cal-
culated or measured, this expression can be used
to predict the energy levels. Alternatively, one
can employ Eq. (9} to extra. ct the polarizabilities
from the measured energy splittings, which is the
procedure followed in Sec. III.

E„,(n, l) = 14(n, l) I'V'r'dr,
0

(10)

TABLE I. Derived nf-ng 2nd ng-nh splittings in Na
corrected for fine structure. '

g-h
(MHz)

III. APPLICATION TO SODIUM

Gallagher, Edelstein, and Hill" have measured
f pand g-h l-evel separations within terms of
sodium for n = 13-17. Their experimental method
involved two-step laser excitation to the nd level,
followed by microwave excitation of the nf, ng, and

nh levels. They have analyzed their data to yield
values for the fine structure for the f, g, and h

levels, and have shown that, to within their ex-
perimental uncertainty, the fine-structure inter-
vals are given by the hydrogenic formula. In this
section we shall use their data to extract values
for the dipole and quadrupole polarizability of the
core electrons of Na.

In Table I we list the nf ng and ng nh-splittings-
calculated from the observed nd-~zf transition fre-
quencies, ' and from the nd-ng and nd-nIz transition
frequencies. ' In each case we have corrected the
observed splittings for the relativistic effects, a
straightforward task given that the fine structure
is hydrogenic. We take these derived splittings to
be the raw data.

To extract the polarizabilities from the data in
Table I, each splitting must be further corrected
for the penetration energy of the states. We have
calculated the penetration energy for each state by
perturbation theory

2l= —,
' n~l ' I+f~ —,

+ —35&' l ' 1+fQ
yg Q Q (8)

We see that the l dependence of 5„, is dominantly
l ' and that the n dependence arises from the

13
14
15
16
17

3500.9(1.8)
2803.7 (1.5)
2291(2.4)
1890.1(1.3)
1574.9(1.2)

~From Hefs. 1 and 2.

812.1(5.2)
654.3(5.2)
533.4(4.2)
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where V' is the perturbation potential due to the
core electrons, and P(n, /) is the hydrogenic wave
function for the (n, /) state of the valence electron.
This procedure is valid provided that the energy
determined in Eq. (10) remains much smaller than
the term separation at n. That is, we require

iz„,(n, /) i«n-' (11)

(14a)

(14b)

A single pair of observations for two different sets
of l and l' are sufficient to determine n~ and nz
from Eq. (13); a series of observations for dif-
ferent values of n overdetermines the polarizabil-
ities. Values of A„and A~ are given in Table III.

TABLE II. Magnitude of 8 (n, l).

nf-n g splitting
(MHz)

13
14
15
16
17

3500.9(1.8)
2803.7(1.5)
2291.5(2.4)
1890.1(1,3)
1574.9{1.2)

30.3
24.1
19.4
15.8
13.1

1.01&&10 5

1.00 && 10
0.99X10 '
0.98 X 1P-'
0.98X10 '

Calculated from Eq. (10) using V' determined from
charge density of Na' as given by Hartree {Ref.6).

This condition is easily satisfied in sodium for
states with /. —3.

E„,(n, /) is sensitive to the long-range behavior
of the core electron's charge distribution, a quan-

tity difficult to calculate reliably. We obtained
values for V' using the tabulated normalized wave
functions for Na' as calculated by Hartree, ' and

from the charge density for Na' computed with the
Herman-Skillman self- consistent-f ield program
based upon the Hartree-Pock-Slater method. ' The
two methods give values of E„,(n, /) which agree
within 25%. As the results of Table II suggest,
this disagreement is tolerable because the penetra-
tion energy is relatively small, about 1% of the

f gseparati-on and negligible for the g-h separa-
tion. Nevertheless, it is the major source of un-

certainty in the final value for the quadrupole po-
larizability.

To extract the core polarizabilities we rewrite
Eq. (3) to give

nE,„,~(/, /') = o.~A, (/, /')+ nq Ao(/, /')

+E...(/) - E...(/') ,

TABLE III. Magnitudes of coefficients for Eq. (13).

6 8 ~){l,l') A~(l, l') Ag(l, l')
{MHz) (MHz) (MHz)

nf-ng transitions

+pen
(MHz)

3500.9(1.8)
2803.7 (1.5)
2291.5(2.4)
1890.1{1.3)
1574.9(1.2)

3396.06
2725.72
2220.57
1832.78
1529.84

146.91
118.54
96.96
80.30
67.22

30.3(10.0)
24.1(8.0)
19.4(6.5)
15.8 (5.2)
13.1(4.4)

sg-8A tI ansltlons

812.1(5.2)
654.3(5.2)
533.4(4.2)

807.44
649.10
529.43

10.11
8.20
6.73

& 1.0
& 1.0
& 1.0

IV. n&SCUSSIOX

A. Nonadiabatic effects

The polarization potential defined by Eq. (1) is
based on a static model: in reality, the motion of
the valence electron introduces dynamical effects
which modify the polarization constants and, to
some extent, the form of the potential. Eissa
and Opik' have investigated nonadiabatic effects
in Na and have shown that the polarization poten-
tial can be written

1 g ~ I q y 1
I'uoi= —-.nuyo 4

—2(ooyo+c'uyf) 6+' ' '

where the y's are slowly varying functions of n and
/. Comps. ring this result with Eg. (5) yields

o', =o',"/y.', o,=[o', —o,'(yl/y. ')ly.'. (»)
For the 4f state of Na, Eissa and Opik obtained

y," =j..004, ye=0.964, y," =-1.41 .

Unfortunately, there is no simple way to extrap-
olate these results to higher values of n. [ Eissa
and Gpik considered several other alkali systems,
however, and these reveal that yo~ changes only
slowly with n For exam. ple, in potassium, y,"(4F)
=1.012; while yf(9F) =1.022. j For lack of an ac-

The eight sets of equations for +„' and 0'. were
solved simultaneously; the results are consistent
with the uncertainty of each set, and yield the fol-
lowing values:

o„'=1.0015(15) a.u. , oc =0.48(15) a.u. (15)

The uncertainty in n~ is due to the experimental
uncertainties; the uncertainty in e+ is due chiefly
to the uncertainty in the penetration correction.
For convenience, the results are given in terms
of quantum defects in Table IV.
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TABLE IV. Derived quantum defects.

2=3 l=4
Q d Q

j 6 ( 0p 6y ( 6po(
n (X 10" ) (X 10 ) (& 10 ) (& 10 ) (X 10 ) 6&e~

l=5
d Q~p.i ~god

(X 10 ) (X 10" )

13 1.55
14 1.55
15 1.55
16 1 ~ 56
17 1.56

2.54
2.56
2.58
2.60
2.61

1.01
1.00
0.99
0.98
0.98

4.16
4.17
4.20
4.22
4.23

1.87
1.90
1.92
1.94
1.96

&10 6

&10 '
&10
&10
&10 '

1.46
1.47
1.49
1.50
1.50

2.53 &10 '
2.59 &10 '
2.63 &10 7

2 ~ 67 &10
2.71 &10

curate value of Y, for the states of interest, n

=13-17, we shall use the value y, =1.004, yielding

o'.
d =0.998 . (18)

B. Applications

Although uncertainties in the nonadiabatic cor-
rections are an important theoretical problem,
the measured effective polarizabilities can be
used to predict level structure with some con-
fidence. As the data in Table IV reveal, the
entire quadrupole interaction decreases so rapid-

The uncertainty, due entirely to the nonadiabatic
correction, is estimated to be a few percent. Our
result is in reasonable agreement with the value
calculated by Lahiri and Mukherji, ' nd =0.9459,
and the value derived by Opik" from spectro-
scopic data, Q.d

=0.978.
The situation with respect to the quadrupole

polarizability is less satisfactory, for here non-
adiabtic effects are large, and the calculated cor-
rection less reliable. From Eg. (17), using our
experimental value Q.@

=0.48, we obtain n ——1.91.
This is in reasonable agreement with the va. lue

a = 1.53 calculated by Lahiri and Mukherji, ' but
the nonadiabatic correction must be investigated
in greater detail before much confidence can be
assigned to the results.

An alternative approach to the nonadiabatic ef-
fects is to make sufficiently precise measurements
on enough levels to reveal the functional form
represented by Eq. (16). We have analyzed the
data of Gallagher et al."' on a term-by-term basis
to determine whether there are any systematic
variation of the effective polarizabilities with n.
The results for o. d' show that the difference be-
tween n = 13 and n = 15 is no greater than 2 & 10 '.
Much higher experimental precision should be ob-
tainable for the levels of the alkalis; such data
would be invaluable in investigating the non-
adiabatic effects. In any case, a more-complete
theoretical study of nonadiabatic effects of the
polarization and the penetration interactions is
badly needed.

E ~ 2 n (1~/n')(I/ ')I(I —I'/n') ' ' (21)

For the n =10, I =4 (g state} of Na, for instance,
this yields E s33 V/cm.

In order to vary the applied field adiabatically,
the rate of change of the field must be small com-
pared to the separation of adjacent levels. The
closest levels at zero field in Fig. 1(c) are the.
l =9 and l =8 states: their separation is 0.002
cm ', or 4 X 10' rad/sec. If the field is reduced
from 5 kV/cm to close to zero in greater than
25 nsec, these states will follow adiabatically.
Lower-lying states can be "switched'* much more
rapidly.

ly with l that even a large uncertainty in n@ has
little effect on level structure. Also, as l in-
creases, possible nonadiabatic corrections to
~d become less significant.

The polarization potential plays an important
role in the systematics of level structure at low
electric fields. At zero field, V, breaks the l
degeneracy of the nonrelativistic hydrogenic sys-
tem; Stark splitting becomes second order and l
is a good quantum number. These effects are
illustrated by the level diagram for the n =10,
m=0 manifold shown in Fig. 1.

At a, field of 5 kV/cm [Fig. 1(a)], the Stark
levels are separated by an interval of 7 cm ',
and can be readily resolved with a tunable
laser. " If the field is then decreased, each level
adiabatically connects to a state of well-defined
I [Figs. 1(b) and 1(c}].Thus, any value of I can
be populated. (This method does not provide ac-
cess to high-m states, for m remains a good quan-
tum number at all field values. )

The maximum electric field which can be applied
without mixing values of l can be estimated by com-
paring the polarization energy and electric matrix
element for two adjacent terms:

DV „(I,I+ 1) = '-' o~(l/n')(I/I')

(n, l+1~zE~n, l) = —', n'(1 —l /n')'~'E . (20)

For the polarization energy to dominate the Stark
interaction, we require
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n this calculation, would s lit e
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sp i each level but not appreciabl ch
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pprecia y change the overall pattern.

Fine structurture, which is neglected in Fi . 1
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will pla an imy
' portant role in low elect f ld
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at large l. If E, & E,„„),not l, is a good quan-
tum number. For nonpenetrating states, E„,
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- (n'/n')(1/l). Since Z,.
n' /' "), the relativistic energy dom t

large l.
omina es at

e . The characteristic value f thor e coupling
to change is given by f =15.4 ( )'~' Thus, fine
structure will appreciably s lit the
o xg. (c), though it would not change th
pattern.

nge e overall

It is interesting to note that the quantum defect
of the d state thee, the lowest "nonpenetrating" state of
sodium, 0.0145 i, is due predominantly to th

zation interaction —only about 10'ZR — R ou /o is Rctually
ue o penetration. For the P state th

defect due ess
e e quantum

0.85. Thus
c, ue essentially entirely to penet t'ne ra ion, is

hus, the categorization of states as " en-
or & ~ d.nd nonpe et Rt ng foi l l~o~

4is quite realistic. The quadrupole t 'bcon ri ution to
e . s ate, polarization energy is, however 30/

ribution, which suggests that the
perturbation approximation h hw ic underlies the

r ing o break down.polarization model is startin to b
Nevertheless, even for this state the model can
be of some use in predicting the n dependence of
the quantum defect.
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APPENDIX

ThI'he energy separation between two l levels of th1'he ener se s o e same term for which 5, and 5 cas o
' „,an 5„, cannot be neglected is

n;n, n ( r '), —(r '),,)+-,'-nqn'((r "/, —(r '),.) (5' +—5' '+ &,', — (A 1)
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3n' —l(l+ 1)
2n'(l --,')l(/+-', )(l+ l)(l+ g)

35n' —5n2 (6/(/ + 1)—5) + 3(/ —1)l(l + 1)(l + 2)
Bn'(/ —-,')(/ —1)(l ——,')(l)(l+ 2)(l+1)(l+2)(l+2)(l+ —', )

' (A3)
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