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This calculation demonstrates that the combined configuration-interaction-Hylleraas (CI-Hy) variational
method of Sims and Hagstrom can be applied to the 'S ground state of the neon atom. Coordinates r; have
been included in the wave function so as to correlate explicitly the motion of all pairs of electrons in the
atom. An energy of —128.8298 hartree has been obtained from an 83-term wave function (73.5% of the
correlation energy). An analysis of the pair correlation energies shows that it is more difficult to represent the
electronic correlation in p-p and s-p pairs than s-s pairs using Hylleraas functions. More experience with CI-
Hy calculations on atoms containing as many as ten electrons is required before the method can compete with
and give higher accuracy than the conventional CI calculations.

I. INTRODUCTION

Recently, in a series of calculations, Sims and
Hagstrom (SH) and coworkers have shown that a
combined configuration-interaction-Hylleraas
(CI-Hy) method is capable of giving very accurate
values for the energies'? and properties® of three-
and four-electron atoms and ions. Furthermore,
their results are superior to those obtained by
other, more conventional methods such as con-
figuration interaction. To our knowledge, at the
present time, no variational calculations have been
performed using Hylleraas-type wave functions on
any system with more than four electrons; the
main reason for this is that the many-electron
integrals that arise are very cumbersome to eval-
uate. However, in the CI-Hy method the wave func-
tion is expanded in terms of configurations which
are antisymmetric products of s, p, or d orbitals
with powers of just one 7;; coordinate, and the
integrals for such calculations on any atom reduce
to manageable forms which have been successfully
dealt with in the very accurate SH calculation on
beryllium.»* The purpose of this work was to
examine the general practicability of the CI-Hy
method and to see if it was feasible to use the
method in a calculation on the energy of the 'S
ground state of the neon atom.

II. CONFIGURATION-INTERACTION-HYLLERAAS METHOD

The CI-Hy method has been discussed in detail
for a calculation on the 'S ground state of the
beryllium atom.' For reasons of clarity we sum-
marize the method here for a calculation on the
1S ground state of the neon atom. The wave func-
tion is of the form
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= Y Cxt Xy Xy Xy X (1)
K

where
10
br=0(L>0, (xlrif H ?Ks(?s)> . (2)

The power v of the interelectronic distance 7,
takes the values 0,1,2. O(L? is an angular mo-
mentum operator and O, is an antisymmetrizing
operator. ¥, is the ten-electron spin function?!

X1= (1/25/2)(0[152 - 61&2)
X (aBy = Bsag)® * * (agByo = Botyo) - (3)

The 9(T) functions are single Slater-type orbitals
(STO’s) of the form

8(F) ={e)™ 2/ [(2n)1 ]V Zprmtentry (6, 0) . (4)

We follow the STO notation of Weiss.® The non-
orthogonal basis set chosen in this work was
1s,2s,...,ns for the K shell [the notation mean-
ing that each of these orbitals has the form (4),
with I=0, and has the same exponent, which for
neon was ~9.7] and 1s”,2s”,...,ns"; 2p”,3p",...,
np” for the L shell (the notation again implying
that all of these orbitals have the same exponent,
for neon ~2.925).

Each configuration ¢, is defined by the unique

0
Fy=7% H O (T (5)
S=

part of Eq. (2). An example of such a configura-
tion in the Weiss notation is 7,,1s?2s”22p"®, which
corresponds to

¢ =0(LY)0,[x,7s15(1)15(2)2573)25"(4)2p7(5)
X 2p"(6)2p2(T)2p2(8)2p7(9)2p"(10)] .

2p7,2pk,2p” have +1,0, -1 m quantum numbers,
respectively. In accordance with the variation
principle the minimum energy is found by finding
the lowest root of the secular equations,
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(H-ES)C=0, (6)
HKL=<¢KIH|¢L>, (7
Skr= <¢K|¢L>' (8)

H is the Hamiltonian of the system and ¢, is de-
fined in (1) and (2).

Upon integrating over spin functions [and noting
that ©(L?) =1 for all configurations used in this
work] it can be shown that

H,,=(1/10!)(ARSRF |H|SRF}), (9)
AR= Q [I:I (1 - "Z; P2t+s-2, 2u+s>:| ’ (10)
stz—sll—zg (1+Pyyy,5) - (11)

P, ; permutes the space coordinates of electrons
i and j. Fj is defined in (5).

The restriction of only one 7;; coordinate per
configuration leads to the result that H,, and Sy,
can be reduced to a linear combination of integrals
of the following form:

G= chorr ﬁfl(?t)d?t ’ (12)
i=1
can be classified as

where f{T) is an STO and F .
one of only five different types,

t St t t LU
Tias Ma¥isr Vie¥is75s Mia¥is¥ier 7127237345

(13)

where s, t, and # are integers and take the values
-1ss,t,us4.

The restriction of including at most one #;; fac-
tor in one configuration was first proposed by
James and Coolidge® in their calculations on the
lithium atom. This limitation is considered to be
reasonable, since important standard correlating
factors, which are products of “unlinked” #,; var-
iables, can, in the CI-Hy approach, be represented
by a single 7;; factor and excited orbitals of the
STO basis (for example, in the beryllium calcula-
tion' #,,1s%2p"”% can represent the correlating fac-
tor »,,72,). Linked correlating factors, such as
71,%13, have been shown to be energetically un-
important in a calculation on lithium,” but it is
possible that such factors might have more im-
portance for calculations on atoms such as neon
which have more than two electrons in one shell.
However, the inclusion of an 7,47, factor in a
calculation on neon would lead to integrals that
would be exceptionally difficult to evaluate [for
example, F . in (12) could then have the form
7157233445 56)-

A good stable scheme for evaluating the integrals
defined in (12) and (13) which makes use of analyt-

ical techniques has been given in detail by SH,*
and we found their expressions straightforward,
if somewhat cumbersome to program.® Their
formulas reduce the integrals to sums of products
of Condon-Shortley coefficients,’

47 )1/2[ ) *
Ligr ’. - ym'=m m
C (l y M 9l,177)‘<2L+1 f L (67¢)Yt' (9;‘;5)

X Y™6, ) sindd6 dg
(14)

and simple cofactors and auxiliary integrals of the
general form

X:f xfe'“"dxf Ve ™ dy
0 X

- -
Xf z"e'”zdzf ste™%ds.

vy z

(15)

The auxiliary integrals can be evaluated using a
series of recursion relationships.

III. CALCULATIONS ON Be AND Ne
A. Beryllium

In order to thoroughly test the computer program
written to calculate the integrals we reproduced
(to nine significant figures) the energy of the first
25 functions (listed in Table III of Ref. 1) of the SH
calculation on beryllium. This wave function in-
cluded configurations of the form #,,1s*2s”? and
hence every type of integral that arises from the
use of s and s” STO’s was tested. Then the energy
of the first four terms (from Table I of Ref. 11)
which includes 7,,1s%2p”? was reproduced (to all
seven figures) to ensure that the program was cor-
rectly written for p” STO’s.

We have some comments to add to the SH re-
sults.! First, we believe that for a limited set of
CI-Hy configurations exponent optimization can
have a more significant contribution to the energy
than they suggested. For example, using the wave
function (described by them in Table I of Ref. 1)
which has the 11 configurations

1s%3s”2s”, 1s%4s”2s”, 1s%5s"2s”,
1s%6s”2s”, 2s1s2s”?, 3sl1s2s”?,
4s1s2s”%, 1s%2s"%, 1s5%25"%r,,
1s%2s"%92,, 1s%2s"%r,,,

we obtained an energy of —14.647 765 hartree using
the exponents £ =3.72, £, =1.08 compared to
their value of —14.644 518 hartree (&,=3.6847,

£ =0.9562). However, as the number of configu-
rations is increased it is clear that the effect on
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the energy of exponent optimization will diminish.
Secondly, it is of interest to note that the single
configuration

=3,72(r1+rg) =1,08(r3+ry)

$=0,Je N Yy

Xé(alﬁz ~B]a2)(01354—53014)] (16)

has a superior energy (-14.584 55 hartree) to the
Hartree-Fock!'® energy (-14.573 02 hartree). This
is because the Hartree-Fock method neglects the
2s-2p near-degeneracy, while the »,, factor intro-
duces some p character (as well as electron cor-
relation) in the L shell.

Once the integral program had been thoroughly
tested, it was a relatively inexpensive operation
to obtain a very-high-quality compact wave func-
tion for the ground state of beryllium. For exam-
ple, we required about 30 min on the IBM 370/165
to obtain an energy of —14.66587 hartree from a
40-term CI-Hy-type wave function (~99.1% of the
correlation energy). This wave function is not
published, because similar wave functions have
been recently presented by SH.'!

B. Neon: exponent optimization

For a calculation on the 'S ground state of the
neon atom, it is clear from the above discussion
that if a limited set of configurations are used it

will be important to obtain good exponents for the
1s,...,ns and the 1s”,...,ns";2p”,...,np” basis

sets discussed in Sec. II. However, exponent
optimization using a set of configurations which
include linear #;; factors would be computationally
very expensive, and consequently a small number
of configurations which included single and double
replacements from 1s®2s”22p”°® and terms which
multiplied this ground configuration by Vf]. factors
were used. The optimum exponents obtained in
this way were 9.760 for the ns basis set and 2.935
for the ns” and np” sets.

C. Neon: radial correlation

The beryllium calculations'!' show that config-
urations such as 2s%2s”? have a very significant
contribution to the correlation energy even when
¥;; variables are included in the wave function.
Similar configurations, which account for radial
configuration, will be particularly significant in
the case of neon, because almost half of the pair
correlation energy between electrons in p orbitals
can be obtained,'? in conventional CI calculations,
by using configurations defined by excitations of
the form p2 ~pib; (we define such configurations
using the notation of Bunge'®'¢, noting that this
excitation is equivalent to 2p* —ipjp in conventional

CI notation).

One advantage of the beryllium calculation was
that the ground configuration 1s22s”? had an energy
(-14.5567 hartree) which was reasonably close to
the Hartree- Fock value'® (-14.5730 hartree), and
a relatively small number of non-Hy-type config-
urations were required to obtain a value of
-14.5883 hartree, compared to the limiting value
of —14.5911 hartree,' which was calculated in-
cluding only s orbitals in the basis set. A similar
calculation was attempted for neon using configu-
rations which were single and double excitations
of the ground configuration 1s22s”22p”¢, but 80
of these configurations yielded only half of the
“radial correlation limit.”'? In contrast to the
beryllium case, the ground configuration has an
energy of -127.785 hartree, which does not com-
pare well with the Hartree- Fock!® value of
—128.547 hartree, and it has been shown that'® an
extremely-high-quality basis set is required in a
CI calculation on neon in order to obtain a signi-
ficant amount of the correlation energy (we define
the correlation energy as the difference between
the Hartree- Fock energy and the exact eigenvalue
of the nonrelativistic Schrodinger equation, noting
that the “exact” value for neon has been estimated!3
to be —128.932 hartree).

For these reasons we decided to account for
most of the radial correlation by including a small
selection of configurations in the wave function
which were formed using the approximate natural
orbitals of Bunge and Peixoto.’® These were de-
fined by excitations, from a near-Hartree-Fock
ground configuration, of the form si-—s,.sj, '
P3—~b;p;, and s,p,~s;p;, and 31 of these configu-
rations (numbers 1-31 in Table I) accounted for
~34.39% of the correlation energy and, we esti-
mate, ~86% of the radial correlation energy.'?

It must be stressed that no configurations were
included in the ultimate wave function which were
antisymmetrized products of »;; variables with
these natural orbitals, and consequently the most
cumbersome integrals that involved the natural
orbitals and which arose in the full calculation
presented in Sec. IIID were of the form

<£II Sa ()77 I;Il ‘bbi(‘f‘i)> ) (17)

where the ®arefer to natural orbitals and the &b
refer to single STO’s. These “lop-sided” integrals
can be evaluated relatively inexpensively. How-
ever, if the b were also natural orbitals the com-
puter time required to evaluate all these integrals
would be considerable; this problem is discussed
in more detail in Sec. IV.
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TABLE I. An 83-term CI-Hy wave function for neon, with energies for various selected

truncations.
Term Term Energy E(n) of n-term Term Energy E(n)
No. n definition ? function (hartree) No. n Term (hartree)
1 o1 —128.5465 51 Y5
2-5 sf—sisj, oo 52 7o —-128.7944
-128.5569 53 743 —128.7948
6 So2—s;8; -128.5602 54 i, -128.7959
T-18  pyl—pibpj, ++- 55 3, —-128.7959
—-128.6491 56 i
19-24 Sopy—SiPjse e+ 57 7
-128.6776 58 7%40 -128.7993
25-27  S;py—SiPj,ee- 59 vl
-128.6781 60 rg?
28 $9%— 5,5, 61 s -128.8014
29-31  pyt—popy, ++ 62 Ve
—-128.6790 63 ¥y
64 T35 -128.8140
32 P39 65 7i°
33 v} 66 i
34 g 67 719t -128.8168
35 7} 68 i, -128.8182
36 ¥s
37 7, 69 Y5V s
38 7y —-128.6797 70 Yy¥sy
71 Y5
39 1o -128.7007 72 To¥19
40 N —-128.7063 73 Vs
41 Y13 74 Yo¥qg —-128.8244
42 Vse 75 V¥ 5g
43 7910 —128.7254 76 97910
44 V59 77 YTy ~-128.8261
45 Ty 78 V¥
46 Y19 -128.7775 79 Vs
47 5 80 Vo3 —128.8282
48 V35 81 Y77
49 739 —-128.7890 82 Y9¥ig
50 g 83 r5¥s -128.8298

? The terms are collected into two main groups, and the notation used to define the configura-
tions differs between the groups. Terms 1-31: Approximate natural orbitals classified by the
excitations of particular orbitals from near-Hartree-Fock orbitals using the CI notation of
Bunge.!®!? ¢, is the near-Hartree-Fock ground configuration (see Sec. IIIC). Terms 32-83:
Classified by the R factor in ¢ =0O,(R35x;), R=7}; L, 715, ¢, =15%25""22p"'6 (see Sec. IIID).

D. Neon: Hylleraas functions

The next step in the calculation was to add, to
the 31-term wave function, configurations which
were antisymmetrized products of single STO’s
with one 7}; variable as defined in Eq. (2). For
reasons of brevity in defining these configurations
we decided to introduce a modification of the nota-
tion described in Sec. II. Every term in our wave
function (other than numbers 1-31, Table I) can
be written

¢ =0,,(R1s(1)1s(2)2s"(3)2s" (4)2p7 (5) 2p” (6)
x2p(7)2p7 (8)2p”(9)2p”(10)x,) (18)

10
R=v, T rs. 19)
s=1
Thus the R factor alone can define each configura-
tion (for example, R =74, corresponds to the con-
figuration 1s22s”23p7 2p7 2p{?2p"?r 5 in the Weiss
notation).

Fifteen of the configurations defined in (18) and
(19) with R=7,; and 15 with R =73, were used so
as to explicitly correlate all pairs of electrons in
the atom. Furthermore, some “single” excita-
tions of the ground configuration 1s22s”22p”¢ were
included in the configuration set (e.g., R=7%),
since these terms have a behavior for large »
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similar to the corresponding 7;; factors, and
previous calculations have shown that they have

an important effect on the energy contributions
from the 7;; variables.'"»'® The wave function

thus formed contained 68 configurations and yielded
an energy of —128.8182 hartree (~70.4% of the cor-
relation energy). The configurations are tabulated
in Table I (numbers 32—68 correspond to those
discussed in this section; the energy of the wave
function formed from these configurations alone
was -128.4778 hartree).

After this a set of configurations which included
configurations of the form R=7,7r,;; (5<i<10) were
added to the set (e.g., 74rs,) to attempt to represent
the 2p-2p, 2s-2p, and 1s-2p correlation more accu-
rately. The addition of nine such configurations
gave only an extra 3.1% of the correlation energy,
and the final result was —128.8298 hartree (~73.5%
of the correlation energy). The terms in the final
83-configuration wave function are displayed in
Table I, along with the energies E(n) of the wave
functions formed from various selected truncations
(configurations 1-n).

IV. DISCUSSION

The results of the neon calculation do not reflect
the success of the beryllium calculation. In that
calculation! a limited set of configurations which
correlate all pairs of electrons with 7;; and 7%,
coordinates (terms 1-27, 63, and 69, Table II of
Ref. 1), and which in this sense forms a set of
configurations equivalent to that used in our full
neon calculation, gave about 87% of the correla-
tion energy of beryllium, compared to the value
of 73.5% reported here for neon. To improve the
neon wave function it will obviously be necessary
to include further classes of CI-Hy-type configu-
rations (such as those containing correlating fac-
tors R =7%r;,) in the set. However, an extensive
search for the terms that will give important en-
ergy contributions is needed, and the computing
time we would have required to do this would have
been excessive. For this reason it is important
for us to briefly outline our computational ap-
proach, with particular reference to the calcula-
tion of the many-electron integrals.

Consider a four-electron integral of the form

( I ec,Gorrrst I 24,6 ) (20)

where ®c and ®d refer to single STO’s. If these
integrals are stored in the conventional way used
for two-electron integrals [labeling them by all
eight STO’s in (20)] then flni(n, + 1)*] integrals
would be required (z, is the total number of STO’s

in the basis set), and about 6.7 X 10° bytes would
be needed to store all the integrals in single pre-
cision for the eight-orbital basis set (1s, 2s”,
2p7,2pY, 2p”, 3pr. 3p, 3p”) used in this work.
Consequently it would be impossible to store all
the integrals in core, which is important for the
fast generation of the matrix elements.

However, the magnetic quantum numbers can be
effectively factorized out of the integral formulas*
which can be expressed as sums of products of the
Condon-Shortley coefficients defined in (14) (which
can be introduced when the actual matrix elements
are generated) with radial-type “reduced” inte-
grals that depend on 1/, &', and 7’ only. n’, &,
and I’ define functions of the form

pni=lp=t ITY{’,()(G’(P) , (21)

which are themselves obtained (in 'inear combina-
tions) from the multiplication together of two of
the STO’s in the basis set. The number of these
reduced integrals that need to be evaluated and
which correspond to those defined in (20) depends
on 13, where n, is the total number of functions,
defined in (21), which can be formed. For the
basis set used in this work n,=12, so that about
8.0 X 10* bytes were needed to store all these par-
ticular integrals in single precision on the IBM
370/165 (the single-precision limitation gave at
least seven-figure accuracy in the final energies).
However, the computing time needed is particular-
ly critical and the evaluation of the total number
of integrals required for the generation of the
matrix elements took about 140 min. An addition
of a 4p” function to the basis set (which raises n,
to 18) would not only prevent the storage of all the
reduced integrals in core (maximum 4.0 X 10° bytes
on the IBM 370/165 at Cambridge University)but
would result in an excessive 12 h of computer
time being required to calculate all the integrals.
It is thus clear that further investigations in the
CI-Hy method are necessary, with particular
reference to the development of programs and
methods to efficiently calculate the three- and
four-electron integrals before an extensive con-
figuration search and a subsequent improvement
in the neon energy reported here can be made."”
The configurations defined in Eq. (2) consisted
of an »%; factor multiplied by a “minimal basis
set” configuration 1s22s”22p”% (or a single excita-
tion of this term) in which the radial part of the
p” functions have a poor functional form. It is
probable that the replacement of this minimal
basis set by Hartree- Fock orbitals would give
better results, although the relatively small ef-
fect on the energy of including »;7;; factors in our
calculation (the 7; part of which should contribute
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TABLE II. Pair correlation energies (in hartrees) for
neon calculated by the CI-Hy method and the Bethe-Gold-
stone technique.

Pairs ? This work Bethe-Goldstone®
1s-1s —-0.032 34 —-0.03993
1s-2s —0.001 56 —0.00514
1s-2p -0.01365 -0.01989
2s-2s —0.008 68 -0.01173
2s-2p —-0.06173 -0.090 55
2p-2p ~0.16153 ~0.243 07
Total © —0.27949 —-0.41031

2 See Sec. IV for discussion.
b Reference 15.
¢ Note that E(¥ {5) =—128.555 96 hartree.

to an effective improvement in the functional form
of the p” function) implies that it is doubtful that
such a replacement would produce an exceptionally
large improvement in the energy. Furthermore,
the discussion above shows that we would require
an enormous amount of computing time to evaluate
the necessary integrals (for example, we would
need about 120 h for such a calculation using the
near-Hartree-Fock orbitals of Bunge,'® noting that
n, as defined above would then be equal to 34).

In Table II a breakdown of the approximate “pair
correlation energies” is given, divided into the
six different types (1s-1s, 1s-2s, 2s-2s, 2s-2p,
2p-2p, and 1s-2p). These closely correspond to
the “symmetry-adapted pair correlation energies”
discussed in detail by Schaefer.'® They were ob-
tained by starting from a set (¢,,) of 12 configura-
tions which included the near-Hartree-Fock con-
figuration plus the single-excitation configurations
(the effect on the energy of which is small when
r;; factors are not included in the wave function).
Then the remaining configurations were divided
into various classes corresponding to a particular
pair correlation type (for example, a configura-
tion containing an 7, factor contributed to 2s-2p
correlation), and the resulting secular equations
formed from ¢,, and all configurations of a cer-
tain class were solved. The energy of ¢, was
subtracted to give the pair correlation energy of
the class in question, The pair correlation en-
ergies are approximately additive (adding the
values for all the different pairs to the energy
of ¥,, gives —128.8354 hartree, compared to the
83-configuration variational result of —128.8298
hartree). This result is somewhat surprising,
considering that in a similar calculation on beryl-
lium Perkins'® determined that the 1s-1s and
2s-2s pair correlation energies were nonadditive
by as much as 10%. The results of a Bethe-Gold-

stone'® calculation (which, it must be noted, gives
a slight overestimate of the correlation energy)
are compared to our values in Table II. It is clear
from these results that the CI-Hy method is rel-
atively deficient in obtaining the large 2p-2p,
2s-2p, and 1s-2p pair correlation energies. The
1s-1s and 2s-2s values are reasonable, although
the very small 1s-2s energy compares poorly.

To a certain extent the main conclusion that we
infer from these pair correlation results, that the
correlation in p-p and s-p pairs is comparatively
poorly represented by Hylleraas functions, is
partly reflected in the beryllium calculation’!!
in which several more CI-Hy-type terms were
needed to represent the L shell (which has some
p character) and the intershell correlation than
were needed for the K shell. The predictions of
Gilbert," that the “Coulomb hole” has a compli-
cated structure when described by 7,; coordinates
for a pair of electrons 7,7 having an angular de-
pendence (thus resulting in only slowly conver-
gent Hylleraas-type expansions for electrons of
this spatial type), are tentatively confirmed by
these calculations.

It is important to compare this calculation with
two very refined CI calculations that have been
performed. Using a one-electron basis of approxi-
mate pair natural spin orbitals Bunge and Peixoto'®
obtained an energy of —128.8868 hartree (~88% of
the correlation energy) from a CI expansion con-
taining 231 terms formed from a determinantal
space of dimension 5343. Recently Sasaki and
Yoshimine®® carried out an exhaustive CI calcula-
tion and obtained an energy of —128.9168 hartree
(~96% of the correlation energy). Our results and
discussion suggest that in order to obtain energies
which are comparable with these CI values further
investigations on the CI-Hy method are required,
with particular reference to producing improved
computer programs and methods to efficiently
evaluate the difficult three- and four-electron in-
tegrals, so that calculations using a much larger
configuration set than the one presented in this
work can be performed. Furthermore, such re-
search will be necessary before the important
extension of including terms in the configuration
set which are antisymmetrized products of
Hartree- Fock-type orbitals with »;; factors can
be carried out.

ACKNOWLEDGMENT

One of us (D. C. C.) thanks the Science Research
Council for financial support.




14 CI-HYLLERAAS VARIATIONAL CALCULATION ON THE... 1613

1. S. Sims and S. A. Hagstrom, Phys. Rev. A 4, 908
(1971).

2J. S. Sims, S. A. Hagstrom, D. Munch, and C. F. Bunge,
Phys. Rev. A 13, 560 (1976).

3J. S. Sims and R. C. Whitten, Phys. Rev. A 8, 2220
(1973). J. S. Sims and J. R. Rumble, Phys. Rev. A 8,
2231 (1973). J. S. Sims, S. A. Hagstrom, and J. R.
Rumble, Phys. Rev. A 13, 242 (1976).

47. S. Sims and S. A. Hagstrom, J. Chem. Phys. 55,
4699 (1971).

A. W. Weiss, Phys. Rev. 122, 1826 (1961).

6H. M. James and A. S. Coolidge, Phys. Rev. 49, 688
(1936).

'S. Larrson, Phys. Rev. 169, 49 (1968).

8Tn rederiving the formulas presented in Ref. 4 we noted
that there is a printing error on p. 4703. The 17th X
function inJ; should include Ny +1+N,+ s, not N +1
“Nyts.

%E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge U.P., Cambridge, England, 1963).

0C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev.
Mod. Phys. 32, 186 (1960).

115, 8. Sims and S. A. Hagstrom, Int. J. Quantum Chem.
9, 149 (1975).

123, W. Viers, F. E. Harris, and H. F. Schaefer, Phys.

Rev. A 1, 24 (1970).

3C. F. Bunge and E. M. A. Peixoto, Phys. Rev. A 1,
1277 (1970).

4C. F. Bunge, Phys. Rev. 168, 92 (1968).

5T, L. Barr and E. R. Davidson, Phys. Rev. A 1, 644
(1970).

165, F. Perkins, Phys. Rev. A 8, 700 (1973).

"0ne such extension that would lead to a large saving in
computer time would be the initial storage of all the
X -type auxiliary integrals, defined in Eq. (15), which
are repeated many times in the integral formulas
(Ref. 4). About 6.0x 10° bytes would be required to do
this, but the use of virtual memory facilities or the
development of efficient methods for manipulation of
these auxiliary integrals on magnetic tape might well
make such an approach possible.

8H. F. Schaefer, The Electronic Structure of Atoms and
Molecules (Addison-Wesley, Reading, Mass., 1972).

19T, C. Gilbert, Rev. Mod. Phys. 35, 491 (1963).

OF, Sasaki and M. Yoshimine, Phys. Rev. A 9, 17(1974).

2The arguments given in Ref. 1. suggest that x, is a
suitable spin function for this calculation. However,
it is possible that introduction of other spin functions
could have some importance. This is under investiga-
tion.



