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We have calculated the second-order interaction between the spin-orbit coupling perturbation

H~ ~ r '(d V/dr)1 s acting on the core electrons and the exchange Coulomb interaction between the valence
and core electrons. This calculation was previously carried out for two alkali nd states (Na 3d and Rb 4d),
and was shown to result in the observed inversion of the fine-structure interval b,v for these d states. This
calculation is extended to excited np states, and it is shown that the radial integrals have opposite sign to
those for nd, resulting in a small increase of the calculated Av (by —10-20% in all cases). Specific results

have been obtained for several excited np states of Na, K, Rb, and Cs, and give agreement to within 20-30%
with the experimental fine-structure splittings b, v, pt.

I. INTRODUCTION

We have calculated the second-order interaction
arising from the spin-orbit coupling perturbation

po 1 dVO
H =2—— l sso=

acting on the core electrons and the exchange part
of the Coulomb interaction 2/r» Ry between the
valence electron and the core electrons. This cal-
culation was previously carried out for two alkali
nd states (Na 3d and Rb 4d),"and was shown to
result in an inversion or near cancellation of the
fine-structure interval ~v, such as is actually ob-
served. ' Specifically, ' for Na 3d, the observed
4v,„„is —0.049 cm ', the first-order ("normal" )

term ~v, is +0.052 cm ', and the calculated sec-
ond-order term ~v, = —0.133 cm ', giving a total
&v= —0.081 cm ', in reasonable agreement with

vpt Similar resu its wereobtained" forRb
4d. Two calculated values were obtained, ' namely,
—9.1 and + 'i.0 cm ', using the Hartree-Fock (HF)
and energy-adjusted' (EA) valence (4d) wave func-
tions, respectively. These results bracket the ex-
perimental value, ' —0.44 cm '. More accurate
calculations for Rb 4d are in progress. '

Since for the alkali nP states the observed ~v is
positive ('P, &, state above the 'P, &, level), a.nd its
value is approximately equal to the first-order re-
sult' +vi it is of interest to calculate the second-
order terms &v, for these excited nP states. ' We
note that the second-order interaction involves the
np-p and nd —d excitations of the core nP and nd
electrons by the magnetic spin-orbit interaction
H,o. (Hence there is no effect for Li, which has
no internal nP electrons. ) It was found that the

radial integrals involved for ~v, have sign oppo-
site to those for valence nd states, resulting in a
modest increase of the calculated &v, i.e. , 4v,
&0, so that ~v, + ~v, -1.2~v„and no cancellation
occurs of the type found for nd states, in agree-
ment with experiment. '

In Sec. II, the equations for ~v, will be derived
for the general case of a valence electron in an
arbitrary l state, denoted by l, . Specific results
for the angular coefficients will be given for va-
lence np, nd, and nf electrons (I„=1, 2, and 3, re-
spectively). The general equation for the radial
integrals will also be derived.

In Sec. III, the results of Sec. II for l„=1will be
applied to calculate &v, for the alkali-metal-atom
nP states, using both the HF valence wave func-
tions for the valence electrons and the correspond-
ing EA wave functions. The latter functions are
derived from a potential which reproduces the ob-
served energy eigenvalues, i.e. , the observed ion-
ization potentials. The derivation of the EA wave
functions, which have been used extensively in
earlier work, ' will be discussed in some detail.

Finally, in Sec. IV, the results for &v, +&v, ob-
tained in the present work will be summarized and
discussed.

II. EQUATIONS FOR Dv2

As an example of the calculation of ~v„we will
consider the second-order term &v, for the 3P
state of sodium, where the interaction is with the

2P shell only, i.e. , with the excitations 2P -P pro-
duced by the second-order perturbation described
below.

We are considering the second-order interaction
between the exchange part of the electrostatic in-
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1596 STERNHEIMER, RODGERS, LEE, AND DAS 14

teraction of the electrons H@ and the spin-orbit
Hamiltonian Hso, both taken in first order. The
corresponding second-order energy &E, is given
by"

~ (3P, 2P I H & I nP, 3P) (nP, 3P I Hso I 2P, 3P)

E3p, 2p 3p, np

2p, ,' 1 dV-
H = ' ——l sso —

e (3)

where p.0 is the Bohr ma, gneton, V is the central
atomic potential, r» is the distance between elec-
trons 1 and 2 [which are involved in Eq. (1)], and

1 and s have their usual meaning.
The exchange interaction in the first factor of

Eq. (1) can be written out in more detail as

(3p(l), 2p(2)
~
Ho np(1), 3p(2)),

where theparentheses correspond to electrons 1

RIll 2.
In Eq. (1), the sum over n (and the integral over

continuum states) can be carried out by consider-
ing the function

~ (np, 3p I Hso I 2p, 3p)q'(np, 3p)

n Esp 2p E3p, np

The function W can be written

(4)

W= (angular factor) x (1/r) x zv, (2p —p), (5)

where zv, (2p-p) is determined by the differential
equa, tion

d' 2
~+~+ V0 —E0 w, 2p-p = fr,p

— r +0 p ~

(6)

In Eq. (6), f(r) is defined as

1 dV 2Z
f(r) =- ————Ry.r dr r'

where the sum Q„signifies a sum over the excited
nP states plus an integra. l over the continuum kP
states.

The perturbation Hamiltonians H~ and H~o are
given by

Ho ——2/z'» Ry,

V, and E, a.re the unperturbed (spherical) potential
and energy eigenvalue, respectively.

The combination V0 Ep is determined from the
unperturbed wave function (times r) u, (2p) by
means of the equation"

zv, (2p —p)uo(2p) dz 0. = (9)

From the expansion of 2/y„ in spherical harmon-
ics, we obtain

+0

Ho —————Szz Q ~„Q (-1) Y„(1)Y~ (2),
m=

where Y„ is the usual normalized spherical har-
monic and r& and r& a,re the smaller and larger,
respectively, of r, and r, .

In terms of f(z), the term Hso can be written

Hso ~ f(z')l, s, = z f(v)m,

where s, = &, and n~ is the magnetic quantum num-
ber (m = I,) of the inner-shell (2p) electron.

Upon inserting Eqs. (10) and (11) into Eq. (1), we
obtain an angular factor here denoted by C~(l; l„)
(l„ is the angula, r momentum quantum number of the
valence electron; here l„= 1):

C~(l; 1)= g m((lzn
[ Y~

(
11))',k+1 s

(12)

where we have considered the "stretched" state of
the valence electron; i.e., the state w =+1, s,
=+2 of 3P for Na. In Eq. (12), the value of the mag-
netic quantum number q of Y~ is given by ~n = q+1,
i.e. , q=m —1.

In terms of w, (2p -p), &E, [Eq. (1)] involves the
following double radial integral

1 d'u, (2p) 2

u, (2p) dk' r'

Equation (6) is completely similar to the equa-
tion which has been introduced by one of us" to de-
scribe quadrupole shielding and antishielding ef-
fects for the quadrupole hyperfine structure. In the
corresponding equation, I/r' replaces f(r)

We also note that in complete analogy to the anti-
shielding case we must demand that zv, (2p -p) sat-
isfy the orthogonality condition

1
K~(2p —p; 3p) = u, (2p)v, (3p) dz ~., w, (2p -p)w„(3p)z" dz" + r

0
w, (2p —p)~), (3p)r' ' 'dr' (13)

With I = 1 in the present case (exchange with the
2p electrons), it can be readily seen from Eq. (12)
that only the terms k=0 and k=2 can contribute to
Av2.

The second-order energy splitting &v, (contribu-

tion to the fine structure &v) is given by

Av = —zozR[CO(1; 1)KO(2P —P; 3P)

+ C,(1;1)K,(2p- p; 3p)]. (14)



14 EFFECT OF THE ATOMIC CORE ON THE FINE-STRUCTURE. . 1597

The factor —zo('R = —8.7650 cm '. For C,(1;1) only
the term m = 1 contributes, and it can be readily
shown that C,(1; 1) = 1. For C,(1; 1) both the
m =+ 1 and m = —1 core states contribute.

In order to evaluate the integrals (lm
~
Y,'~11), we

note that by virtue of the definition of the Condon-
Shortley coefficients" c (lm„ l'm,') we find

[4w/(2k+ 1)]((lm
~

Y)',
~

l'm'))' = [c (lm; l™)]'. (lb)

This equation follows simply if we note that P,'
= (2v) '~' e(k, q)e "~, where q = m, —m', in the Con-
don and Shortley (CS) notation. " Combining the
factor (2v)) ' with [2/(2k+ 1)]' ', Eq. (6) of CS, and

squaring gives the desired factor 4v/(2k+ 1).
The values of c~(lm; l'm') are tabulated on pp.

178 and 179 of Ref. 11. In view of Eq. (15), Eq.
(12) can be rewritten

C),(l; 1)= g m[c (lm; 11)]'.
fff= l

(16)

Now we find" [c'(ll; 11)]'=,—', and [c'(1, I; 11)]'
6 glvlng

C,(1; 1)=,—', (+ 1)+,—', (- 1)= —5. (17)

C, (l; l„)= g m[c'(lm; l„l„)]'.
m=- l

(18)

The radial integral K~(nl-I; n„l„) which appears
in the case of arbitrary l is given by

As a generalization of Eq. (16), we can write for
the case of a valence electron with angular momen-
tum l„and considering again the "stretched" state
for which the magnetic quantum number m„equals
l„,

(19)

Here n„ is the principal quantum number of the
valence electron; v, (n„l„) is the radial part of the
valence wave function (times r), normalized to 1,
in the same manner as the core wave function
u, (nl), i.e.,

[v, (n„ l„}]'dr = [u (nl}]'dr= 1. (20}

We also note that the core electron perturbation
(times r) u), (nl-l) satisfies an equation which is
the generalization of Eq. (6),

,+, +V -E wnl l
d' l(l+ 1)

J u), (nl —l)u, (nl) dr = 0.
0

(22)

The appropriate general equation which replaces
Eq. (14) is

=[(f(r))„,-f(r)]uo(nl), (21)

and the orthogonality condition [cf. Eq. (9)],

with V in Rydberg units and r in atomic units of the
Bohr radius a„.

The values of C,(l; l„) have been calculated for
p, d, and f valence electrons (l„= 1, 2, 3}, inter-
acting with the np-p and nd-d (l= 1, l= 2) excita-
tions of the core produced by the spin-orbit cou-
pling interaction Hso.

The resulting values, obtained using the CS ta-
bles of c~(lm; l'm', ), are presented in Table I. We
have previously calculated the results for l„=2, '
where Eq. (18) had also been stated for the ease l„
= 2 (valence d electron), and the present deriva-
tion is patterned on the derivation given there. The
radial integrals and resulting 4v, values for Rb 4d
were also evaluated there and elsewhere. ' The
value —,

' for C,(1; 2) has also been independently
evaluated in Ref. 1. We note that in Table I of the
present paper the values of C~ (l; l„) for the various

TABLE I. Values of the angular coefficients Cy;(l; l„)
for l =1,2 and 7„=1,2, 3. The appropriate value of k;
for each contributing multipolarity is listed in parenthes-
es after the value of Cz. .

&v, = — " o.'R ~C,(l; l„)K,(nl —l;n„l„},2lv+ 1
(23)

where cy'R= 5.8434 cm '. For comparison, the
first-order term &v, of the fine-structure splitting
is given by

C, ,(k,)

1 (0)

Ca&(k2)

—~ (2)

(3)

Cq (k3)

&v) = g(21„+ 1)c('RI,

where the integral I is given by

(24)
(1)

2 (0) —m (4)

I = f(r)[v, (n„ l„)]'dr = ——[v, (n„ l„)]'dr, (25)
"1dV

0 0

(4)

~ (3) —
m~ (5)
275
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contributing multipolarities 0,. are listed in sepa-
rate columns, with the value of k& given in paren-
theses in each case after the value of C, .(/; /„).

Concerning the radial integrals K,(n/-/; n„l) for
np states (/„= 1), the essential result is that for np
states the integrals Ko and K, are negative and rel-
atively small (compared to I), so that with the neg-
ative sign in front of Eq. (14) we find hv, &0, i.e.,
nv2 has the same sign as nv, [which is intrinsical-
ly positive; see Eq. (25), in which dV/dr&0] Th. is
xesult is in sharp contrast to the situation for nd
states, where the corresponding integrals K, and

A; are positive and relatively laxge, so that ~v,
&0, and is of the same order as hv„ leading to the
approximate cancellation of Av„or even an in-
version of the fine structure gv, + Av, (0), such as
is actually observed in several eases. ' The eval-
uation of the integrals Ko and K, for valence np
states will be discussed in some detail in Sec. III.
Here we merely note that the preceding discussion
has tacitly assumed that the dominant coefficients
C„(/; /„) are positive, and this is indeed the case,
as can be seen from Table I. In connection with
the negative values of C2(1; 1) = ——,

' and C3(2; 1)
= ——,', we should mention that these are considerably
smaller numerically than Co(1; 1) = 1 and C, (2; 1)
=1, respectively, and moreover, the radial inte-
grals K,(n/ —/; n„/„) have a tendency to decrease
somewhat with increasing k. A similar comment
applies to the situation for /„= 2, /= 1 (external d
electron), where C,(1;2)=-—,', is appreciably
smaller than C, (1;2) = —',, although having opposite
sign. In fact, the ratios C, (2; 1}/C,(2; 1) and

C, (1;2)/C, (1;2) are both equal to --', .

III. CALCULATIONS FOR THE ALKALI ATOM np STATES

%e have carried out the calculations of 4v, and

4v, for the first few excited re states of the alkali-

metal atoms Na, K, Rb, and Cs, using two types
of radial valence (np) wave functions. First we
note that since lithium has a 1s' electron core,
with no p electrons, Av, for this ease will be zero,
in as much as only np -p (and nd-d) excitations
of the core can contribute to the effect.

In the fixst part of the calculations, we have used
the HF wave functions of the valence electron for
Na 3p, 4p, 5P, K 4P, 5P, 6P, Rb 5P, 6P, and Cs
6P, VP. The HF wave functions were obtained by
using a xnodification of the Froese-Fischer com-
puting program. The resulting values of b, vga

4v„and (nv, + 4v, }/Av, „„arepresented in Table
II. The values of 4v, + hv„ the ratios (n.v, + hv, )/
hv„and the experimental values 4v,„„are listed
in Table II. The values of 4v,„„were obtained
from the tables of Moore. '

For K, Rb, and Cs, more than one shell of the
core contributes to 4v, . For this reason, we have
tabulated in Tables III-V the individual core con-
tributions hv, (n/-/) for K, Rb, and Cs, respec-
tively. (For Na, , the only contribution arises from
2p-P). In all cases, except for the small terms
arising from 4d-d of Cs and 3d-d of Rb, the in-
tegrals K,(n/-/; n„/„) are negative, leading to a
positive sign of hv, (n/- /), on account of the nega-
tive sign in Eq. (23) for nv, .

As can be seen from Table II, hv, /A v, lies in the
range 0.12-0.18 in all cases. Thus the second-
order term produces a modest increase of the
fine-structure splitting. This result is in marked
contrast to the results previously obtained for two
nd states, namely, Na 3d (Ref. 1) and Rb 4d (Refs.
2 and 5), in which hv, is negative and counteracts
strongly the effect of the (positive) first-order
term hv„ i.e., Av, ——2hv, for Na 3d and d v,-—&v, for Bb 4d. These results provide an expla-
nation of the negative fine-structure interval which
has been observed for these two nd states. '

TABLE II. Values of »&, ~/2, and the total 4/', +4/» (in units of cm ) for HF valence
electron wave functions. The experimental values»„pt (Ref. 3) and the ratios (»&+Av2)/», and (4/ &+4/ &)/4/, „„tare also listed.

State

Na 3P
4P
5p

13.445
4.483
2.000

38.70
13.19
6.03

2.022
0.661
0.293

6.83
2.25
1.01

»&+»2

15.467
5.144
2.293

45.53
15.44
7.04

1.150
1,147
1.147

1.176
1.171
1.167

17.196
5.63
2.52

57.72
18.76
8.41

Dvg+Dv~
»expt

0.899
0.914
0.910

0.789
0.823
0.837

ab 5p
6p

305.70
107.70

24.78
8.15

54.53
12.84

171.19
58.70

360.23
120.54

1.169
1.161

1.178
1.119

237,60
77.50

554.11
181.01

0.720
0.757

0.650
0.666
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TABLE HI. Contributions 4t 2(nE —l) of the core
states nl =2p and 3p to the total 4&2 of K 4p, 5p, and

6p for HF valence wave functions.

TABLE V. Contributions Av2(n l —I) of the various
core states (nl) to the total D&2 of Cs 6p and 7p for HF
valence wave functions

Total State 5p 4p 3p 2p 3d Total

5.22
1.692
0.761

1.61
0.556
0.249

6.83
2.248
1.010

Cs 6p 37.13 12.01 3.65 2.54 -0.811 +0.010 54.53
7P 8.09 2.85 1.28 0,90 -0.280 +0,004 12.84

Concerning the detailed agreement of the theo-
retical values hv, + Av, with the experimental val-
ues Av,„„,we can conclude from Table II that the
r'esults 6vi obtained with the H F wave functions
are far too small, with the discrepancy increasing
with increasing Z. This situation arises from the
fact that the HF functions are appreciably too ex-
ternal, since they do not include the correlation
effects with core electrons of antiparallel spin.
Cox respondingly, the HF wave functions give a
binding energy which is too small by an amount
which increases as we go to the heavier alkali-
metal atoms. This shortcoming of the HF valence
wave functions has been previously discussed on a
number of occasions by one of us, ' in particular
in connection with the calculation of the electronic
dipole and quadrupole polarizabilities n~ and n,
of the alkali-metal atoms" and the calculation of
the quadrupole antishielding factor R for these
atoms. ' For this reason, we have frequently used
in our past work EA wave functions which repro-
duce the observed ionization potentials of the out-
ermost (valence) electron in various ns, np, and
nd states. '"'~ These EA wave functions will be
used in the second part of the present calculations
(see below).

It can also be seen from Table II that the addi-
tional terms hv„although they are positive, are
insufficient to produce agreement with the experi-
mental values hv, „„.This is particularly true for
the heavier alkali-metal atoms Rb and Cs. In fact,
the last column of Table II shows that the dis-
agreement with experiment increases regularly
with increasing Z; thus (6v, + 6v, )/4 v,„„de-
creases from -0.90 for Na to -0.66 for Cs. Of
course, it should be mentioned that a part of this
disagreement may be due to the neglect of rela-
tivistic effects. However, such effects would

TABLE IV. Contributions»2(nl —l) of the various
core states (nE) to the total A~2 of Rb 5p and 6p for HF
valence wave functions.

4p 3p 2p 3d Total

18.54 4.330 2.181 -0.276 24.775
5.SS5 1.490 0.753 -0.093 8.145

hardly be expected to be large enough for Na np
and K BP.

The main result of Tables III-V for the terms
hv, (nl —l) is that the predominant term in every
case is Av, ( nop- p), where no is the Principal
quantum number of the outermost filled P shell of
the core, i.e., 3P -p for K, 4P -P for Rb, and 5p
-p for Cs. It, should also be noted that for the np
-p terms, hv, (np-p) decreases regularly with
decreasing n, for all of the excited states con-
sidered in Tables III-V. For the most external d
state of the core, a,s already mentioned, b, v, (nd
-d) is negative for both Rb (3d-d) and Cs(4d-d).
However, these negative terms are small in ab-
solute magnitude compared even to the small
b, v, (2p -p) terms in all four cases (Rb Sp, and 6p
and Cs 6p, and 7p). Finally, the hv, (3d- d) terms
are negligible for Cs 6P and 7P.

The results obtained using EA wave functions are
presented in Tables VI-IX. The results for 4v, in
Table VI have been previously obtained by one of
us and Peierls in Ref. 6 (see Table I of Ref. 6).
The values of Lv, obtained in the present work are
listed in the third column of Table VI. These val-
ues are positive (as for the HF functions), and
rather small compared to 4v, . Thus the ratios
hv, /hv, lie between 0.09 and 0.20 in all cases. In
this case, in contrast to th6 results for HF func-
tions, the calculated results, namely, the values
of ~v, + 4v„are somewhat larger than &v,„„,with
the ratios (Av, + hv, )/hv, „„ranging from 1.22 to
1.36.

The individual terms hv, (nl-I) which contribute
to hv, are tabulated in Tables VII-IX. The results
are very similar to those obtained with HF wave
functions in Tables III-V. The predominant terms
are again b, v, (n, p-p), where n, is the principal
quantum number of the outermost filled P shell of
the core. The terms &v, [(n, —1)p-p] and &v, [(n,
—2)p-p] are progressively smaller, in similarity
to Tables III-V. Also for the nd-d excitations,
n.v2(3d-d) of Rb np and hv2(4d-d) of Cs np are
small and negative, due to the positive values of
the corresponding radial integrals and the minus
sign of Eq. (23). However, these ~av, (nd-d)

~

terms are essentially negligible, being smaller
than nv, (2p-p) in all cases. Finally, the Av, (3d
-d) terms of Cs are exceedingly small and posi-
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TABLE VI. Values of bv&, Av2, and the total ~v&+Av2 (in units of cm ') for the EA valence
electron @rave functions of Ref. 14. The experimental values Av, xyt (Ref. 3) and the ratios
(bv&+Dv2)/Av& and (4v&+Av2)/bvexpt are also listed.

Cs 6P
VP

8p

18.781
6.099
2.729

62.90
20.14
9.00

265.86
87.88
40.18

652.86
203.89
93.35

3.822
1.073
0.48V

12.74
3.94
1.75

24.72
8.59
4.03

103.12
29.24
13.19

22.053
7.172
8.216

75.64
24.08
10.75

290.08
96.47
44.21

755.98
233.13
106.54

1.177
1.176
1.178

1.203
1.196
1.194

1.093
1.098
1.100

1.158
1.143
1.141

&vexyt

17.196
5.63
2.52

57.72
18.76
8.41

237.60
77.50
35.09

554.11
181.01
82.64

Dv&+Ev~
+vexpt

1.282
1.274
1.276

1.310
1.284
1.278

1.221
1.245
1.260

1.364
1.288
1.289

tive (Table IX), in the same manner as the cor-
responding dv, (M-d) terms calculated using HF
wave functions (Table IV).

In connection with Tables V-IX, we note that we
have obtained results for the EA wave functions

u, (np) for the first three excited np states of the
four alkali-metal atoms Na, K, Rb, and Cs. These
EA wave functions mere first obtained by one of us
and Peierls in Ref. 14. The wave functions were
obtained from the condition' that the calculated
energy F., in the Schrodinger equa, tion for the ef-
fective potential V,«must reproduce the observed
atomic eigenvalue, i.e., the ionization potentials
for the various np states. Thus the equation solved
to obtain V,« is given by

where Eo is the experimental energy eigenvalue'
pertaining to np, and Eq. (26) is treated as an ei-
genvalue equation for the parameter a. We have

V.„=V, +n /V. ,„f.
The exchange potential is used merely as a shape
function for the correction term 6V=—V,« —Vo.
For V,„,„, we took the Slater exchange" (with the
Gaspar-Kohn-Sham" correction factor of —',):

where p is the HF density of the electrons of the
core. In Eq. (26), V, is taken as a potential which
reproduces the energy of the valence s state, (n,
+ 1)s, so that the correction term a

~
V,„,„~, and

hence the parameter a, is usually quite small,
i.e., ~

a
~

~ 0.05. For Na, we used the empirical
potential V, obtained by Prokofjew"; for K, a po-
tential derived by one of us" wa, s employed; for
Rb, the potential of Callaway and Morgan's wa. s
used; while for Cs, we utilized a potential derived
by one of us. '

From the results of Tables II and VI, in particu-
lar the values of (4v, +4v, )/4v, „, it can be con-
cluded that (i) the calculations reproduce on the
whole the vast changes of 4v,„„in going from Na

5p (2.52 cm ') to Cs 6P (554.11 cm '); (ii) however,
if we are looking for detailed a.greement, i.e., to
better than 20-30/g, neither the HF nor the EA
calculations are able to give this degree of agree-
ment. The HF wave functions underestimate the
observed fine-structure splittings, in particular,
for 8b and Cs. Thus if we denote the ratio (&v,
+ 4v, )/hv, „„by (R, we find (R„v(8b 5p) = 0.720 and

6taF(Cs 6P) =0.650. On the other hand, the EA wave
functions overestimate &v,„„byabout the same
relative amount. In particular, we find Gt«(8b 5P)

TABLE VII. Contributions Av2(nl —l) of the core
states nl =2p and 3p to the total &v, of K4p, 5p, and

6p for EA valence wave functions.

TABLE VIII. Contributions Dv2(n l —l) of the various
core states (nl) to the total Dv2 of Rb 5p, 6p, and Vp

for EA valence wave functions.

K4p
5p
6p

10.62
3.255
1.442

2.12
0.682
0.306

Total

12.74
3.937
1.748

Rb 5p
6p
VP

4P 3P 2P 3d Total

15.24 6.138 8.770 -0.425 24.723
5.392 2.075 1.254 -0.136 8,585
2.561 0.959 0.575 -0.062 4.033
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TABLE IX. Contributions ~&&(nl —l) of the various
core states (n l) to the total 4&2 of Cs 6p, 7p, and 8p
for EA valence wave functions.

State 5p 4p 3p 2p 4d 3d Total

Cs 6p 75 76 15 06 7 73 6 00 -1 48 +0 05 103.12
7P 20.73 4.66 2.41 1.87 -0.45 + 0.016 29.24
8P 9.29 2.14 1.10 0.86 -0.20 +0.007 13.20

= 1.221 a.nd dts„(Cs 6p) = 1.364.
It thus appears that in order to obtain complete

agreement with 4v,„„,we require for both HF and
EA valence wave functions (i) relativistic correc-
tions (especially for the case of Cs) and (ii) high-
er-order terms Av, (n,f, -l, n, l, -l,), involving
the excitation of two core electrons n, l, and n, l„
by the combination of the spin-orbit interaction Hso
and the electron-electron interaction Ho=2(x. ..
acting both between two core electrons and either
core electron and the valence electron.

IV. SUMMARY AND DISCUSSION

We have calculated the second-order terms ~v,
for several excited np states of the alkali-metal
atoms (Na, K, Rb, and Cs). It was found that
these terms are positive and small compared to
the first-order terms d v, (-10-20%), thus result-
ing in a modest increase of the calculated fine-
structure splitting ~v = &v, + 4v, . The HF valence
electron (np) wave functions give calculated values
of ~v which are smaller than the experimental val-
ues by an amount ranging from -10/p for Na nP to
35% for Cs 6P and IP. On the other hand, the EA
valence wave functions'4 give values of ~v which
are too large (as compared to Av, „„)by -20—30/p

in all cases. Nevertheless, the general trend of
the experimental results is well reproduced by the
calculations. This trend consists of an increase by
a factor &200 between the smallest ~v,„„=2.52
cm ' for Na 5P and the largest Av, „„=554.11 cm '

for Cs 6p.
It has been concluded from these results that

while general agreement with the trend of the
4v,„,, values has been obtained, nevertheless, in
order to obtain detailed agreement with the in-
dividual &v,„„values, it is necessary to include
third-order terms ~v, for both the HF and the EA
wave functions. The HF valence wave functions

[v,(nl)]„r are considerably too external, because
the electrostatic correlation effects with core
electrons of antiparallel spin are not included in
the HF calculations. This point has already been
extensively discussed by one of us in connection
with calculations of the dipole and quadrupole po-
larizabilities" n~ and n, and of the quadrupole an-
tishielding factors" R of the alkali-metal atoms.

On the other hand, earlier work on the first-
order fine-structure splittings b v, (Ref. 8), as
well as the present calculations, shows that the
EA wave functions derived in Ref. 14 are some-
what too internal, and as a result the calculated
fine-structure splittings ~&g+ +v, are somewhat
larger than the experimental values. This situa-
tion may arise from a slight overestimate of the
correlation effects which is implicit in the cal-
culation of the EA wave functions by the method of
Eqs. (26)-(28).

After the preceding calculations had been com-
pleted, it came to our attention that a similar cal-
culation of the fine-structure intervals of several
Na nP and nd levels has been recently carried out
by Holmgren, Lindgren, Morrison, and Martens-
son, "using the many-body-theory formalism pre-
viously developed for hyperfine-structure calcula-
tions in an earlier paper by Garpman et al."

In connection with the previous calculation of
Ref. 1 for the inverted fine structure of Na 3d, it
should also be mentioned that the inverted fine
structure for excited nd states of sodium has re-
cently been confirmed in three separate investiga-
tions by Fabre, Gross, and Haroche, "by Fred-
ericksson and Svanberg, "and by Gallagher, Hill,
and Edelstein. " In Ref. 24, accurate values of the
fine-structure intervals for the Na nd and nf levels
have been obtained for n values ranging from n
=11 to n =17.
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