Effect of the atomic core on the fine-structure splitting for excited np states of the alkali-metal atoms

R. M. Sternheimer

Brookhaven National Laboratory, Upton, New York 11973»

J. E. Rodgers, T. Lee,[†] and T. P. Das State University of New York, Albany, New York 12222^{\ddagger} (Received 11 June 1976)

We have calculated the second-order interaction between the spin-orbit coupling perturbation $H_{\infty} \propto r^{-1} (dV/dr) \vec{1} \cdot \vec{s}$ acting on the core electrons and the exchange Coulomb interaction between the valence and core electrons. This calculation was previously carried out for two alkali nd states (Na $3d$ and Rb $4d$), and was shown to result in the observed inversion of the fine-structure interval Δv for these d states. This calculation is extended to excited np states, and it is shown that the radial integrals have opposite sign to those for nd, resulting in a small increase of the calculated Δv (by ~ 10 -20% in all cases). Specific results have been obtained for several excited np states of Na, K, Rb, and Cs, and give agreement to within 20-30% with the experimental fine-structure splittings Δv_{expt} .

I. INTRODUCTION

We have calculated the second-order interaction arising from the spin-orbit coupling perturbation

 $H_{\rm SO}=2\,\frac{\mu_0^2}{e^2}\frac{1}{r}\,\frac{dV_0}{dr}\vec{1}\cdot\vec{s}$

acting on the core electrons and the exchange part of the Coulomb interaction $2/r_{12}$ Ry between the valence electron and the core electrons. This calvalence electron and the core electrons. This ca
culation was previously carried out for two alkal
nd states (Na 3d and Rb 4d), 1,2 and was shown to nd states (Na $3d$ and Rb $4d)$, $^{1,\,2}$ and was shown to result in an inversion or near cancellation of the fine-structure interval Δv , such as is actually observed.³ Specifically,¹ for Na 3d, the observed.³ Δv_{expt} is -0.049 cm^{-1} ; the first-order ("normal") term Δv_1 is +0.052 cm⁻¹, and the calculated second-order term $\Delta v_2 = -0.133$ cm⁻¹, giving a total $\Delta \nu = -0.081$ cm⁻¹, in reasonable agreement with Δv_{expt} ⁴ Similar results were obtained^{2,5} for Rb 4d. Two calculated values were obtained,⁵ namely -9.1 and $+7.0$ cm⁻¹, using the Hartree-Fock (HF) and energy-adjusted 6 (EA) valence (4d) wave functions, respectively. These results bracket the experimental value, $3 - 0.44$ cm⁻¹. More accurate calculations for Rb $4d$ are in progress.⁷

Since for the alkali np states the observed Δv is positive $({}^2P_{3/2}$ state *above* the ${}^2P_{1/2}$ level), and its value is approximately equal to the first-order result⁸ $\Delta \nu_1$, it is of interest to calculate the secondorder terms Δv_2 for these excited np states.⁹ We note that the second-order interaction involves the $np \rightarrow p$ and $nd \rightarrow d$ excitations of the core np and nd electrons by the magnetic spin-orbit interaction $H_{\rm SO}$. (Hence there is no effect for Li, which has no internal np electrons.) It was found that the

radial integrals involved for Δv_2 have sign opposite to those for valence nd states, resulting in a modest *increase* of the calculated $\Delta \nu$, i.e., $\Delta \nu$, >0 , so that $\Delta v_1 + \Delta v_2 \sim 1.2 \Delta v_1$, and no cancellation occurs of the type found for nd states, in agreement with experiment.³

In Sec. II, the equations for Δv_2 will be derived for the general case of a valence electron in an arbitrary l state, denoted by l_n . Specific results for the angular coefficients will be given for valence np , nd , and nf electrons $(l_n=1, 2,$ and 3, respectively). The general equation for the radial integrals will also be derived.

In Sec. III, the results of Sec. II for $l_n=1$ will be applied to calculate Δv_2 for the alkali-metal-atom np states, using both the HF valence wave functions for the valence electrons and the corresponding EA wave functions. The latter functions are derived from a potential which reproduces the observed energy eigenvalues, i.e., the observed ionization potentials. The derivation of the EA wave functions, which have been used extensively in earlier work, 6 will be discussed in some detail.

Finally, in Sec. IV, the results for $\Delta v_1 + \Delta v_2$ obtained in the present work will be summarized and discussed.

II. EQUATIONS FOR $\Delta \nu_2$

As an example of the calculation of $\Delta\nu_{2}$, we will consider the second-order term Δv_2 for the 3p state of sodium, where the interaction is with the $2p$ shell only, i.e., with the excitations $2p + p$ produced by the second-order perturbation described below.

We are considering the second-order interaction between the exchange part of the electrostatic in-

14 1595

teraction of the electrons H_{Ω} and the spin-orbit Hamiltonian H_{SO} , both taken in first order. The corresponding second-order energy ΔE_2 is given $\mathbf{b} \mathbf{v}^1$, 2

$$
\Delta E_2 = -2 \sum_{n} \frac{\langle 3p, 2p \vert H_Q \vert np, 3p \rangle \langle np, 3p \vert H_{\rm SO} \vert 2p, 3p \rangle}{E_{3p, 2p} - E_{3p, np}},
$$
\n(1)

where the sum \sum_{n} signifies a sum over the excited np states plus an integral over the continuum kp states.

The perturbation Hamiltonians H_{Q} and H_{SO} are given by

$$
H_{\mathbf{Q}} = 2/r_{12} \text{ Ry},\tag{2}
$$

$$
H_{\rm SO} = \frac{2\mu_0^2}{e^2} \frac{1}{r} \frac{dV}{dr} \vec{1} \cdot \vec{5},
$$
 (3)

where μ_{0} is the Bohr magneton, V is the central atomic potential, r_{12} is the distance between electrons 1 and 2 [which are involved in Eq. (1)], and 1 and \overline{s} have their usual meaning.

The exchange interaction in the first factor of Eq. (1) can be written out in more detail as

$$
\langle 3p(1), 2p(2) | H_Q | np(1), 3p(2) \rangle,
$$

where the parentheses correspond to electrons 1 and 2.

In Eq. (1), the sum over n (and the integral over continuum states) can be carried out by considering the function

$$
W \equiv \sum_{n} \frac{\langle np, 3p | H_{\rm SO} | 2p, 3p \rangle \Psi(np, 3p)}{E_{3p, 2p} - E_{3p, np}}.
$$
 (4)

The function W can be written

$$
W = \text{(angular factor)} \times (1/r) \times w_1(2p - p), \tag{5}
$$

where $w_1(2p-p)$ is determined by the differential equation

$$
\left(-\frac{d^2}{dr^2} + \frac{2}{r^2} + V_0 - E_0\right)w_1(2p \to p) = [\langle f(r) \rangle_{2p} - f(r)]u_0(2p). \tag{6}
$$

In Eq. (6), $f(r)$ is defined as

$$
f(r) = \frac{1}{r} \frac{dV}{dr} \sim \frac{2Z}{r^3} \text{ Ry}.
$$
 (7)

 V_0 and E_0 are the unperturbed (spherical) potential and energy eigenvalue, respectively.

The combination $V_0 - E_0$ is determined from the unperturbed wave function (times r) $u_0(2p)$ by means of the equation¹⁰

$$
V_0 - E_0 = \frac{1}{u_0(2p)} \frac{d^2 u_0(2p)}{dr^2} - \frac{2}{r^2}.
$$
 (8)

Equation (6) is completely similar to the equation which has been introduced by one of us¹⁰ to describe quadrupole shielding and antishielding effects for the quadrupole hyperfine structure. In the corresponding equation, $1/r^3$ replaces $f(r)$.

We also note that in complete analogy to the antishielding case we must demand that $w_1(2p - p)$ satisfy the orthogonality condition

$$
\int_0^\infty w_1(2p + p)u_0(2p) \, dr = 0. \tag{9}
$$

From the expansion of $2/r_{12}$ in spherical harmonics, we obtain

$$
H_{Q} = \frac{2}{r_{12}} = 8\pi \sum_{k} \frac{1}{2k+1} \frac{r_{\zeta}^{k}}{r_{\zeta}^{k+1}} \sum_{m=-k}^{+\&} (-1)^{m} Y_{k}^{m}(1) Y_{k}^{-m}(2), \tag{10}
$$

where Y_k^m is the usual normalized spherical harmonic and $r₅$ and $r₅$ are the smaller and larger, respectively, of r_1 and r_2 .

In terms of $f(r)$, the term $H_{\rm SO}$ can be written

$$
H_{\rm SO} \propto f(r) l_z \, s_z = \frac{1}{2} f(r) m, \tag{11}
$$

where $s_z = \frac{1}{2}$, and *m* is the magnetic quantum number $(m = l_s)$ of the inner-shell $(2p)$ electron.

Upon inserting Eqs. (10) and (11) into Eq. (1) , we obtain an angular factor here denoted by $C_{\nu}(l; l_{\nu})$ $(l_v$ is the angular momentum quantum number of the valence electron; here $l_v = 1$):

$$
C_k(l; 1) = \frac{4\pi}{2k+1} \sum_{m=-l}^{l} m(\langle lm | Y_k^q | 11 \rangle)^2, \qquad (12)
$$

where we have considered the "stretched" state of the valence electron; i.e., the state $m = +1$, s_z $=+\frac{1}{2}$ of 3p for Na. In Eq. (12), the value of the magnetic quantum number q of Y^q_k is given by $m = q + 1$, i.e., $q = m - 1$.

In terms of $w_1(2p - p)$, ΔE_2 [Eq. (1)] involves the following double radial integral

tion to the fine structure Δv) is given by

$$
K_{k}(2p+p;3p) = \int_{0}^{\infty} u_{0}(2p)v_{0}(3p) d\tau \left(\frac{1}{r^{k+1}}\int_{0}^{r} w_{1}(2p+p)v_{0}(3p)r'^{k} dr' + r^{k} \int_{r}^{\infty} w_{1}(2p+p)v_{0}(3p)r'^{-k-1} dr'\right).
$$
 (13)

With $l = 1$ in the present case (exchange with the $2p$ electrons), it can be readily seen from Eq. (12) that only the terms $k=0$ and $k=2$ can contribute to $\Delta\nu_{_2}.$

The second-order energy splitting Δv_{2} (contribu-

$$
\Delta \nu_2 = -\frac{3}{2} \alpha^2 R [C_0(1; 1) K_0(2p \to p; 3p) + C_2(1; 1) K_2(2p \to p; 3p)].
$$
 (14)

The factor $-\frac{3}{2}\alpha^2 R = -8.7650$ cm⁻¹. For $C_0(1; 1)$ only the term $m = 1$ contributes, and it can be readily shown that $C_0(1; 1) = 1$. For $C_2(1; 1)$ both the $m = +1$ and $m = -1$ core states contribute.

In order to evaluate the integrals $\langle lm |Y_2^g|11\rangle$, we note that by virtue of the definition of the Condon-Shortley coefficients¹¹ $c^{k}(lm_{i}; l'm'_{i})$ we find

$$
[4\pi/(2k+1)](\langle lm | Y_{k}^{q} | l'm'\rangle)^{2} = [c^{k}(lm; l'm')]^{2}.
$$
 (15)

This equation follows simply if we note that Y_k^q $=(2\pi)^{-1/2}\Theta(k,q)e^{i q\phi}$, where $q=m_1-m'_1$ in the Condon and Shortley (CS) notation.¹¹ Combining the factor $(2\pi)^{1/2}$ with $[2/(2k+1)]^{1/2}$, Eq. (6) of CS, and squaring gives the desired factor $4\pi/(2k+1)$.

The values of $c^{k}(lm; l'm')$ are tabulated on pp. 178 and 179 of Ref. 11. In view of Eq. (15), Eq. (12) can be rewritten

$$
C_k(l; 1) = \sum_{m=-l}^{l} m[c^k(lm; 11)]^2.
$$
 (16)

Now we find¹¹ $[c^2(11; 11)]^2 = \frac{1}{25}$ and $[c^2(1, -1; 11)]^2$ $\frac{6}{25}$, giving

$$
C_2(1; 1) = \frac{1}{25}(+1) + \frac{6}{25}(-1) = -\frac{1}{5}.
$$
 (17)

As a generalization of Eq. (16), we can write for the case of a valence electron with angular momentum l_v , and considering again the "stretched" state for which the magnetic quantum number m_v equals l_{v}

$$
C_k(l; l_v) = \sum_{m=-l}^{l} m[c^k(lm; l_v l_v)]^2.
$$
 (18)

The radial integral $K_{\mathbf{z}}(nl-l; n_{\nu} l_{\nu})$ which appears in the case of arbitrary l_v is given by

$$
K_{k}(nl-l;n_{v}l_{v}) = \int_{0}^{\infty} dr u_{0}(nl)v_{0}(n_{v}l_{v}) \left(\frac{1}{r^{k+1}} \int_{0}^{r} w_{1}(nl-l)v_{0}(n_{v}l_{v})r'^{k}dr' + r^{k} \int_{r}^{\infty} w_{1}(nl-l)v_{0}(n_{v}l_{v})r'^{-k-1}dr'\right).
$$
 (19)

Here n_v is the principal quantum number of the valence electron; $v_0(n_v l_v)$ is the radial part of the valence wave function (times r), normalized to 1, in the same manner as the core wave function $u_0(nl)$, i.e.,

$$
\int_0^\infty [v_0(n_v l_v)]^2 \, dr = \int_0^\infty [u_0(nl)]^2 \, dr = 1. \tag{20}
$$

We also note that the core electron perturbation (times r) $w_1(nl-l)$ satisfies an equation which is the generalization of Eq. (6),

$$
\left(-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V_0 - E_0\right)w_1(nt - l)
$$

= $[\langle f(r) \rangle_{nl} - f(r)]u_0(nt)$, (21)

and the orthogonality condition [cf. Eq. (9)],

$$
\int_0^\infty w_1(nl - l)u_0(nl) \, dr = 0. \tag{22}
$$

The appropriate general equation which replaces Eq. (14) is

$$
\Delta \nu_2 = -\frac{2l_v + 1}{2} \alpha^2 R \sum_{k} C_k(l; l_v) K_k(nl - l; n_v l_v), \tag{23}
$$

where $\alpha^2 R = 5.8434$ cm⁻¹. For comparison, the first-order term Δv_1 of the fine-structure splitting is given by

$$
\Delta \nu_1 = \frac{1}{4} (2l_v + 1) \alpha^2 R I, \qquad (24)
$$

where the integral I is given by

$$
I = \int_0^\infty f(r) [v_0(n_v l_v)]^2 \, dr = \int_0^\infty \frac{1}{r} \frac{dV}{dr} [v_0(n_v l_v)]^2 \, dr, \quad (25)
$$

with V in Rydberg units and r in atomic units of the Bohr radius a_H .

The values of $C_b(l; l_v)$ have been calculated for p, d, and f valence electrons $(l_v = 1, 2, 3)$, interacting with the $np \rightarrow p$ and $nd \rightarrow d$ (l=1, l=2) excitations of the core produced by the spin-orbit coupling interaction $H_{\rm so}$.

The resulting values, obtained using the CS tables of $c^k(lm; l'm'_l)$, are presented in Table I. We have previously calculated the results for $l_v = 2,5$ where Eq. (18) had also been stated for the case l_{ν} $= 2$ (valence d electron), and the present derivation is patterned on the derivation given there. The radial integrals and resulting Δv , values for Rb 4d were also evaluated there and elsewhere. \degree The value $\frac{2}{5}$ for $C_{1}(1; 2)$ has also been independent evaluated in Ref. 1. We note that in Table I of the present paper the values of $C_{k_i}(l; l_v)$ for the various

TABLE I. Values of the angular coefficients $C_{k_i}(l_j, l_{v})$ for $l = 1, 2$ and $l_v = 1, 2, 3$. The appropriate value of k_i for each contributing multipolarity is listed in parentheses after the value of C_{k_i} .

l_v		$C_{k_1}(k_1)$	$C_{k_2}(k_2)$	$C_{k_3}(k_3)$
$\mathbf{1}$	1	1(0)	$-\frac{1}{5}$ (2)	
1	2	1(1)	$-\frac{3}{7}$ (3)	
$\boldsymbol{2}$	1	$\frac{2}{5}$ (1)	$-\frac{6}{35}$ (3)	
$\mathbf{2}$	2	2(0)	$\frac{2}{7}$ (2)	$-\frac{8}{21}$ (4)
3	1	$\frac{9}{35}$ (2)	$-\frac{1}{7}$ (4)	
3	2	$\frac{6}{7}$ (1)	$\frac{1}{7}$ (3)	$\frac{275}{847}$ (5)

contributing multipolarities k_i are listed in separate columns, with the value of k_i given in parentheses in each case after the value of $C_{k_i}(l; l_v)$.

Concerning the radial integrals $K_k(nl \rightarrow l; n_v1)$ for *np* states $(l_n = 1)$, the essential result is that for *np* states the integrals K_0 and K_2 are negative and relatively small (compared to I), so that with the negative sign in front of Eq. (14) we find $\Delta \nu_2$ > 0, i.e., Δv_2 has the same sign as Δv_1 [which is intrinsically positive; see Eq. (25), in which $dV/dr > 0$. This result is in sharp contrast to the situation for nd states, where the corresponding integrals $K₁$ and $K₃$ are positive and relatively large, so that $\Delta \nu$, <0, and is of the same order as Δv_1 , leading to the approximate cancellation of Δv_1 , or even an inversion of the fine structure $(\Delta \nu_1 + \Delta \nu_2 < 0)$, such as is actually observed in several cases.³ The evaluation of the integrals K_0 and K_2 for valence np states will be discussed in some detail in Sec. III. Here we merely note that the preceding discussion has tacitly assumed that the dominant coefficients $C_k(l; l_n)$ are positive, and this is indeed the case, as can be seen from Table I. In connection with 'the negative values of $C_2(1; 1) = -\frac{1}{5}$ and $C_3(2; 1)$ $=-\frac{3}{7}$, we should mention that these are considerably smaller numerically than $C_0(1; 1) = 1$ and $C_1(2; 1)$ =1, respectively, and moreover, the radial integrals $K_k(n! - l; n, l)$ have a tendency to decrease somewhat with increasing k . A similar comment applies to the situation for $l_v = 2$, $l = 1$ (external d electron), where $C_3(1; 2) = -\frac{6}{35}$ is appreciably smaller than $C_1(1; 2) = \frac{2}{5}$, although having opposit sign. In fact, the ratios $C_3(2; 1)/C_1(2; 1)$ and $C_3(1; 2)/C_1(1; 2)$ are both equal to $-\frac{3}{7}$.

III. CALCULATIONS FOR THE ALKALI ATOM np STATES

We have carried out the calculations of Δv , and Δv_2 for the first few excited *np* states of the alkalimetal atoms Na, K, Rb, and Cs, using two types of radial valence (np) wave functions. First we note that since lithium has a $1s^2$ electron core, with no p electrons, Δv_2 for this case will be zero, in as much as only $np \rightarrow p$ (and $nd \rightarrow d$) excitations of the core can contribute to the effect.

In the fixst part of the calculations, we have used the HF wave functions of the valence electron for Na $3p$, $4p$, $5p$, K $4p$, $5p$, $6p$, Rb $5p$, $6p$, and Cs $6p$, $7p$. The HF wave functions were obtained by using a modification of the Froese-Fischer computing program.¹² The resulting values of Δv_1 , $\Delta \nu_2$, and $(\Delta \nu_1 + \Delta \nu_2)/\Delta \nu_{\text{expt}}$ are presented in Table II. The values of $\Delta v_1 + \Delta v_2$, the ratios $(\Delta v_1 + \Delta v_2)$ / Δv_{1} , and the experimental values Δv_{expt} are listed in Table II. The values of Δv_{expt} were obtained from the tables of Moore.³

For K, Rb, and Cs, more than one shell of the core contributes to Δv_2 . For this reason, we have tabulated in Tables III-V the individual core contributions $\Delta v_2(nl-l)$ for K, Rb, and Cs, respectively. (For Na, , the only contribution arises from $2p \rightarrow p$). In all cases, except for the small terms arising from $4d-d$ of Cs and $3d-d$ of Rb, the integrals $K_b(nl-l; n, l_n)$ are negative, leading to a positive sign of $\Delta v_2(nl-l)$, on account of the negative sign in Eq. (23) for Δv_2 .

As can be seen from Table II, $\Delta v_2 / \Delta v_1$ lies in the range 0.12-0.18 in all cases. Thus the secondorder term produces a modest increase of the fine-structure splitting. This result is in marked contrast to the results previously obtained for two nd states, namely, Na $3d$ (Ref. 1) and Rb $4d$ (Refs. 2 and 5), in which Δv_2 is negative and counteracts strongly the effect of the (positive) first-order term $\Delta \nu_1$, i.e., $\Delta \nu_2 \sim -2\Delta \nu_1$ for Na 3d and $\Delta \nu_2$ \sim - Δv_1 for Rb 4d. These results provide an explanation of the negative fine-structure interval which has been observed for these two nd states.³

TABLE II. Values of Δv_1 , Δv_2 , and the total $\Delta v_1 + \Delta v_2$ (in units of cm⁻¹) for HF valence electron wave functions. The experimental values Δv_{expt} (Ref. 3) and the ratios $(\Delta v_1 + \Delta v_2)$ / $\Delta \nu_1$ and $(\Delta \nu_1 + \Delta \nu_2)/\Delta \nu_{expt}$ are also listed.

State	$\Delta\nu_1$	$\Delta \nu$,	$\Delta v_1 + \Delta v_2$	$\Delta \nu_1 + \Delta \nu_2$ $\Delta\nu_1$	$\Delta \nu_{\rm expt}$	$\Delta v_1 + \Delta v_2$ $\Delta \nu_{\rm expt}$
Na $3p$	13.445	2.022	15.467	1.150	17.196	0.899
4 _p	4.483	0.661	5.144	1.147	5.63	0.914
5p	2.000	0.293	2.293	1.147	2.52	0.910
K 4 _p	38.70	6.83	45.53	1.176	57.72	0.789
5Þ	13.19	2.25	15.44	1.171	18.76	0.823
6Þ	6.03	1.01	7.04	1.167	8.41	0.837
Rb 5p	146.41	24.78	171.19	1.169	237.60	0.720
6Þ	50.55	8.15	58.70	1.161	77.50	0.757
Cs $6p$	305.70	54.53	360.23	1.178	554.11	0.650
7p	107.70	12.84	120.54	1.119	181.01	0.666

TABLE III. Contributions $\Delta v_2(nI \rightarrow l)$ of the core states $nl = 2p$ and $3p$ to the total $\Delta \nu$, of K $4p$, $5p$, and

$6p$ for HF valence wave functions.						
State	ЗÞ	2p	Total			
K 4p	5.22	1.61	6.83			
5Þ	1,692	0.556	2.248			
6Þ	0.761	0.249	1.010			

Concerning the detailed agreement of the theoretical values $\Delta v_1 + \Delta v_2$ with the experimental values $\Delta \nu_{\text{expt}}$, we can conclude from Table II that the results Δv_1 obtained with the HF wave functions are far too small, with the discrepancy increasing with increasing Z . This situation arises from the fact that the HF functions are appreciably too external, since they do not include the correlation effects with core electrons of antiparallel spin. Correspondingly, the HF wave functions give a binding energy which is too small by an amount which increases as we go to the heavier alkalimetal atoms. This shortcoming of the HF valence wave functions has been previously discussed on a mave randcoms has seen previously diseased when in connection with the calculation of the electronic dipole and quadrupole polarizabilities α_d and α_u of the alkali-metal atoms¹³ and the calculation of the quadrupole antishielding factor R for these atoms.¹⁴ For this reason, we have frequently used in our past work EA wave functions which reproduce the observed ionization potentials of the outermost (valence) electron in various ns , np , and nd states.^{6,13,14} These EA wave functions will be used in the second part of the present calculations (see below).

It can also be seen from Table II that the additional terms Δv_2 , although they are positive, are insufficient to produce agreement with the experimental values Δv_{expt} . This is particularly true for the heavier alkali-metal atoms Rb and Cs. In fact, the last column of Table II shows that the disagreement with experiment increases regularly with increasing Z; thus $(\Delta v_1 + \Delta v_2)/\Delta v_{\text{expt}}$ decreases from ~ 0.90 for Na to ~ 0.66 for Cs. Of course, it should be mentioned that a part of this disagreement may be due to the neglect of relativistic effects. However, such effects would

TABLE IV. Contributions $\Delta v_2(nl \rightarrow l)$ of the various core states (nl) to the total Δv_2 of Rb 5p and 6p for HF valence wave functions.

State	4Þ	3Þ	2ν	3d	Total
Rb 5p	18.54	4.330	2.181	-0.276	24.775
66	5.995	1.490	0.753	-0.093	8.145

TABLE V. Contributions $\Delta v_2(n \, l \rightarrow l)$ of the various core states (nl) to the total Δv_2 of Cs 6p and 7p for HF

Total	State	56	$4p$ $3p$ $2p$	4d	3d	Total
6.83				Cs $6p$ 37.13 12.01 3.65 2.54 -0.811 +0.010 54.53		
2.248	7 <i>b</i>			8.09 2.85 1.28 0.90 $-0.280 + 0.004$ 12.84		

valence wave functions

hardly be expected to be large enough for Na np and K np .

The main result of Tables III-V for the terms $\Delta v_2(nl + l)$ is that the predominant term in every case is $\Delta v_2(n_0 p \rightarrow p)$, where n_0 is the principal quantum number of the outermost filled p shell of the core, i.e., $3p - p$ for K, $4p - p$ for Rb, and $5p$ \rightarrow p for Cs. It should also be noted that for the np $\rightarrow p$ terms, $\Delta v_{\rm s}(np-p)$ decreases regularly with decreasing n , for all of the excited states considered in Tables III-V. For the most external d state of the core, as already mentioned, $\Delta v_2 (nd)$ $-d$) is negative for both Rb $(3d-d)$ and $Cs(4d-d)$. However, these negative terms are small in absolute magnitude compared even to the small Δv ₂ $(p \rightarrow p)$ terms in all four cases (Rb 5*p*, and 6*p* and Cs $6p$, and $7p$). Finally, the $\Delta v_2(3d-d)$ terms are negligible for Cs $6p$ and $7p$.

The results obtained using EA wave functions are presented in Tables VI-IX. The results for Δv , in Table VI have been previously obtained by one of us and Peierls in Ref. 6 (see Table I of Ref. 6). The values of Δv_2 obtained in the present work are listed in the third column of Table VI. These values are positive (as for the HF functions), and rather small compared to Δv_1 . Thus the ratios $\Delta\nu$ ₂/ $\Delta\nu$ ₁ lie between 0.09 and 0.20 in all cases. In this case, in contrast to the results for HF functions, the calculated results, namely, the values of $\Delta v_1 + \Delta v_2$, are somewhat larger than Δv_{expt} , with the ratios $(\Delta v_1 + \Delta v_2)/\Delta v_{\text{expt}}$ ranging from 1.22 to 1.36.

The individual terms $\Delta v_2(nl-l)$ which contribute to Δv_2 are tabulated in Tables VII-IX. The results are very similar to those obtained with HF wave functions in Tables III-V. The predominant terms are again $\Delta \nu_2(n_0p-p)$, where n_0 is the principal quantum number of the outermost filled p shell of the core. The terms $\Delta v_2[(n_0-1)p-p]$ and $\Delta v_2[(n_0$ $(-2)p + p$ are progressively smaller, in similarity to Tables III-V. Also for the $nd \rightarrow d$ excitations, $\Delta v_2(3d-d)$ of Rb np and $\Delta v_2(4d-d)$ of Cs np are small and negative, due to the positive values of the corresponding radial integrals and the minus sign of Eq. (23). However, these $|\Delta v_2(nd - d)|$ terms are essentially negligible, being smaller than $\Delta \nu_2 (2p \rightarrow p)$ in all cases. Finally, the $\Delta \nu_2 (3d)$ $-d$) terms of Cs are exceedingly small and posi-

State	$\Delta \nu_1$	Δv ₂	$\Delta v_1 + \Delta v_2$	$\Delta \nu_1 + \Delta \nu_2$ Δv_1	$\Delta v_{\rm expt}$	$\Delta v_1 + \Delta v_2$ $\Delta\nu_{\rm expt}$
Na $3p$	18.731	3.322	22.053	1.177	17.196	1.282
4 _p	6.099	1.073	7.172	1.176	5.63	1.274
5p	2.729	0.487	3.216	1.178	2.52	1.276
K 4p	62.90	12.74	75.64	1.203	57.72	1.310
5p	20.14	3.94	24.08	1.196	18.76	1.284
6p	9.00	1.75	10.75	1.194	8.41	1.278
Rb 5p	265.36	24.72	290.08	1.093	237.60	1.221
6Þ	87.88	8.59	96.47	1.098	77.50	1.245
7p	40.18	4.03	44.21	1.100	35.09	1.260
Cs 6 p	652.86	103.12	755.98	1.158	554.11	1.364
7р	203.89	29.24	233.13	1.143	181.01	1.288
8p	93.35	13.19	106.54	1.141	82.64	1,289

TABLE VI. Values of Δv_1 , Δv_2 , and the total $\Delta v_1 + \Delta v_2$ (in units of cm⁻¹) for the EA valence electron wave functions of Ref. 14. The experimental values $\Delta \nu_{\rm expt}$ (Ref. 3) and the ratios $(\Delta \nu_1 + \Delta \nu_2)/\Delta \nu_1$ and $(\Delta \nu_1 + \Delta \nu_2)/\Delta \nu_{expt}$ are also listed.

tive (Table IX), in the same manner as the corresponding $\Delta v_2(3d-d)$ terms calculated using HF wave functions (Table IV).

In connection with Tables V-IX, we note that we have obtained results for the EA wave functions v_0 (np) for the first three excited np states of the four alkali-metal atoms Na, K, Rb, and Cs. These EA wave functions mere first obtained by one of us and Peierls in Ref. 14. The wave functions were obtained from the condition' that the calculated energy E_0 in the Schrödinger equation for the effective potential V_{eff} must reproduce the observed atomic eigenvalue, i.e., the ionization potential for the various np states. Thus the equation solved to obtain V_{eff} is given by

$$
\left(-\frac{d^2}{dr^2} + \frac{2}{r^2} + V_0 + a\left|V_{\text{exch}}\right| - E_0\right)v_0(np) = 0, \qquad (26)
$$

where E_0 is the *experimental* energy eigenvalue³ pertaining to np , and Eq. (26) is treated as an eigenvalue equation for the parameter a . We have

$$
V_{\text{eff}} = V_0 + a \left| V_{\text{exch}} \right|.
$$
 (27)

The exchange potential is used merely as a shape function for the correction term $\delta V = V_{\text{eff}} - V_0$. For V_{exch} , we took the Slater exchange¹⁵ (with the Gáspár-Kohn-Sham¹⁶ correction factor of $\frac{2}{3}$):

TABLE VII. Contributions $\Delta v_2(nl \rightarrow l)$ of the core states $nl = 2p$ and $3p$ to the total Δv_2 of K $4p$, $5p$, and 6p for EA valence wave functions.

State	ЗÞ	2p	Total
K 4p	10.62	2.12	12.74
5Þ	3.255	0.682	3.937
6Þ	1.442	0.306	1.748

$$
V_{\text{exch}} = -4[(3/8\pi)\rho]^{1/3} \text{ Ry},\qquad (28)
$$

where ρ is the HF density of the electrons of the core. In Eq. (26), V_0 is taken as a potential which reproduces the energy of the valence s state, (n_0) +1)s, so that the correction term $a | V_{\text{exch}}|$, and hence the parameter a , is usually quite small, i.e., $|a| \le 0.05$. For Na, we used the empirical potential V_0 obtained by Prokofjew¹⁷; for K, a potential derived by one of us^{18} was employed; for Rb, the potential of Callaway and Morgan¹⁹ was used; while for Cs, we utilized a potential derived by one of $us.^6$

From the results of Tables II and VI, in particular the values of $(\Delta\nu_{1} + \Delta\nu_{2})/\Delta\nu_{\tt expt}$, it can be concluded that (i) the calculations reproduce on the whole the vast changes of Δv_{expt} in going from Na $5p$ (2.52 cm⁻¹) to Cs $6p$ (554.11 cm⁻¹); (ii) however, if we are looking for detailed agreement, i.e., to better than 20-30%, neither the HF nor the EA calculations are able to give this degree of agreement. The HF wave functions underestimate the observed fine-structure splittings, in particular, for Rb and Cs. Thus if we denote the ratio $(\Delta \nu)$, + Δv_2)/ Δv_{expt} by \Re , we find $\Re_{HF}(Rb 5p) = 0.720$ and $\mathfrak{R}_{HF}(Cs 6p) = 0.650$. On the other hand, the EA wave functions overestimate Δv_{expt} by about the same relative amount. In particular, we find $\mathfrak{R}_{\text{EA}}(\text{Rb } 5p)$

TABLE VIII. Contributions $\Delta v_2(n l \rightarrow l)$ of the various core states (nl) to the total Δv_2 of Rb 5p, 6p, and 7p for EA valence wave functions.

State	4Þ	Зb	2Þ	Зd	Total
Rb 5p	15.24	6.138	3.770	-0.425	24.723
6Þ	5.392	2.075	1.254	-0.136	8.585
7Þ	2.561	0.959	0.575	-0.062	4.033

TABLE IX. Contributions $\Delta v_2(nl - l)$ of the various core states (nl) to the total Δv_2 of Cs 6p, 7p, and 8p for EA valence wave functions.

State	5 _b	$4b$ $3b$ $2b$	4d	3d	Total
				Cs $6p$ 75.76 15.06 7.73 6.00 -1.48 +0.05 103.12	
7 <i>b</i>				20.73 4.66 2.41 1.87 -0.45 +0.016	29.24
8 b				9.29 2.14 1.10 0.86 $-0.20 + 0.007$	13.20

= 1.221 and \mathcal{R}_{EA} (Cs 6*p*) = 1.364.

It thus appears that in order to obtain complete agreement with Δv_{expt} , we require for both HF and EA valence wave functions (i) relativistic corrections (especially for the case of Cs) and (ii) higher-order terms $\Delta v_3(n_1l_1-l_1, n_2l_2-l_2)$, involving the excitation of two core electrons $n_1 l_1$ and $n_2 l_2$, by the combination of the spin-orbit interaction $H_{\rm so}$ and the electron-electron interaction $H_0=2/r_{ij}$, acting both between two core electrons and either core electron and the valence electron.

IV. SUMMARY AND DISCUSSION

We have calculated the second-order terms Δv_2 for several excited np states of the alkali-metal atoms (Na, K, Rb, and Cs). It was found that these terms are positive and small compared to the first-order terms Δv , (~10-20%), thus resulting in a modest increase of the calculated finestructure splitting $\Delta v = \Delta v_1 + \Delta v_2$. The HF valence electron (np) wave functions give calculated values of $\Delta \nu$ which are smaller than the experimental values by an amount ranging from $\sim 10\%$ for Na np to 35% for Cs 6p and 7p. On the other hand, the EA valence wave functions¹⁴ give values of Δv which are too large (as compared to $\Delta\nu_{\rm expt}$) by ~20–30% in all cases. Nevertheless, the general trend of the experimental results is well reproduced by the calculations. This trend consists of an increase by a factor >200 between the smallest $\Delta v_{\rm expt} = 2.52$ cm⁻¹ for Na 5p and the largest $\Delta v_{\text{expt}} = 554.11 \text{ cm}^{-1}$ for Cs $6b$.

It has been concluded from these results that while general agreement with the trend of the Δv_{ext} values has been obtained, nevertheless, in order to obtain detailed agreement with the individual Δv_{expt} values, it is necessary to include third-order terms $\Delta v₃$ for both the HF and the EA wave functions. The HF valence wave functions

 $[v_0(nt)]_{\text{HF}}$ are considerably too external, because the electrostatic correlation effects with core electrons of antiparallel spin are not included in the HF calculations. This point has already been extensively discussed by one of us in connection with calculations of the dipole and quadrupole polarizabilities¹³ α_d and α_q and of the quadrupole antishielding factors¹⁴ R of the alkali-metal atoms.

On the other hand, earlier work on the firstorder fine-structure splittings Δv , (Ref. 8), as well as the present calculations, shows that the EA wave functions derived in Ref. 14 are somewhat too internal, and as a result the calculated fine-structure splittings $\Delta v_1 + \Delta v_2$ are somewhat larger than the experimental values. This situation may arise from a slight overestimate of the correlation effects which is implicit in the calculation of the EA wave functions by the method of Eqs. (26) – (28) .

After the preceding calculations had been completed, it came to our attention that a similar calculation of the fine-structure intervals of several Na np and nd levels has been recently carried out by Holmgren, Lindgren, Morrison, and Martensby Holmgren, Lindgren, Morrison, and Martens-
son,²⁰ using the many-body-theory formalism previously developed for hyperfine-structure calcula
tions in an earlier paper by Garpman *et al*.²¹ tions in an earlier paper by Garpman et $al.^{21}$.

In connection with the previous calculation of Ref. 1 for the inverted fine structure of Na $3d$, it should also be mentioned that the inverted fine structure for excited nd states of sodium has recently been confirmed in three separate investigacently been confirmed in three separate investig
tions by Fabre, Gross, and Haroche,²² by Fred tions by Fabre, Gross, and Haroche,²² by Fred-
ericksson and Svanberg,²³ and by Gallagher, Hill
and Edelstein.²⁴ In Ref. 24, accurate values of th and Edelstein. $^\mathrm{24}$ In Ref. 24, accurate values of the fine-structure intervals for the Na nd and nf levels have been obtained for n values ranging from n $=11$ to $n = 17$.

ACKNOWLEDGMENTS

We wish to thank Professor H. M. Foley for helpful discussions. We are also indebted to Dr. R. F. Peierls for the computer programs used in the present work, without which these calculations would not have been possible in the limited time available. We also wish to thank Dr. R. M. Hill for encouraging discussions, and for sending us a copy of the paper of Ref. 24 in advance of publication.

tion.

^{*}Work supported in part by the U.S. Energy Research and Development Administration.

t Present address: Institute of Solid-State Physics, University of Groningen, Groningen, Holland.

[~]Work supported in part by the National Science Founda-

 ${}^{1}\text{H}$. M. Foley and R. M. Sternheimer, Phys. Lett. 55A, 276 (1975).

 $2T.$ Lee, J. E. Rodgers, T. P. Das, and R. M. Sternheimer, Phys. Rev. A 14 , 51 (1976); and paper pre-

sented at the National Bureau of Standards Symposium, Gaithersburg, Maryland (September 1975), Abstracts, p. 56 (unpublished).

- ${}^{3}C.$ E. Moore, Atomic Energy Levels, Vols. I-III, Natl. Bur. Stand. Circ. No. 467 [U.S. GPO, Washington, D.C., 1949 (Vol. I), 1952 (Vol. II), 1958 (Vol. III)] . See also K. H. Liao, L. K. Lam, R. Gupta, and W. Happer, Phys. Rev. Lett. 32, 1340 (1974).
- ⁴Relevant calculations of Δv for Na 3d have also been carried out by D. R. Beck and H. Odabasi, Ann. Phys. (N. Y.) 67, 274 (1971). See also M. Blume and R. E. Watson, Proc. R. Soc. A 270, 127 (1962); 271, 565 (1963); M. Blume, R. E. Watson, and A, J. Freeman, Phys. Rev. 134, A320 (1964}.
- 5 T. Lee, J. E. Rodgers, T. P. Das, and R. M. Sternheimer (unpublished).
- 6 R. M. Sternheimer, Phys. Rev. 78 , 235 (1950).
- 7 J. E. Rodgers (private communication).
- ${}^{8}R$. M. Sternheimer and R. F. Peierls, Phys. Rev. A 4, 1722 (1971).
- 9 A preliminary account of the present work has been reported at the New York meeting of the American Physical Society, 2-5 February 1976; Bull. Am. Phys. Soc. 21, 84 (1976).
- ¹⁰R. M. Sternheimer, Phys. Rev. 84, 244 (1951); 86, 316 (1952); 146, 140 (1966).
- ${}^{11}E$. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U.P., London, 1935), pp. 175-179. The Condon-Shortley coefficients are defined on p. 175, Eq. (6) .
- '2C. Froese-Fischer, Comput. Phys. Commun. 4, 107 (1972) , and earlier references quoted in this paper. The computer program used in the present work has been modified by one of us (J. E. R.)
- $^{13}R.$ M. Sternheimer, (a) Phys. Rev. $127, 1220$ (1962); (b) 183, 112 (1969); Phys. Rev. A 1, 321 {1970).
- 14 R. M. Sternheimer and R. F. Peierls, Phys. Rev. A 3, 837 (1971). The resulting valence electron wave functions $v_0(np)$ are listed in a supplementary paper. NAPS Document No. 01264 (see footnote 18 of the paper). See also R. M. Sternheimer, Phys. Rev. ^A 9, 1783 (1974).
- 15 J. C. Slater, Phys. Rev. $81, 385$ (1951).
- 16 R. Gáspár, Acta Phys. Hung. 3, 263 (1954); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
- 17 W. Prokofjew, Z. Phys. $48, 255$ (1929).
- ¹⁸See Ref. 13(a),
- 19 J. Callaway and D. F. Morgan, Phys. Rev. 112 , 334 (1958).
- 20 L. Holmgren, I. Lindgren, J. Morrison, and A.-M. Mårtensson, Z. Phys. 276, 179 (1976).
- 21 S. Garpman, I. Lindgren, J. Lindgren, and J. Morrison, Phys. Hev. A 11, 758 (1975).
- 22 C. M. Fabre, M. Gross, and S. Haroche, Opt. Commun. 13, 393 (1975); S. Haroche, M. Gross, and M. P. Silverman, Phys. Rev. Lett. 33, 1063 (1974).
- 23 K. Fredericksson and S. Svanberg, Phys. Lett. 53A,
- 61 (1975).
- 24 T. F. Gallagher, R. M. Hill, and S. A. Edelstein, Phys. Rev. A 13, 1448 {1976).