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We consider the multiply scattered electric field from a system of noninteracting Brownian scatterers. We
show that the lowest-order contribution to the depolarized correlation spectrum of the scattered light is due to
double scattering. We find an expression in the far-field approximation for the electric-field correlation
function double scattered from a system of pointlike particles. We show that while the correlation function is
slightly nonexponential, the ¢t = O slope of the correlation function is independent of scattering angle and equal
to the single scattered correlation time corresponding to a scattering angle of 180°. We then generalize our
result to include larger, Rayleigh-Debye particles of radius ! S A where A is the wavelength of the incident
light. The results for larger particles are qualitatively similar to those for pointlike particles in that there is a
lack of a large scattering-angle dependence in the correlation time of the double-scattered light, and the
magnitude of the correlation time is slightly greater than the correlation time for single-scattered light at
180°. We then perform intensity autocorrelation experiments on two systems of polystyrene microspheres of
radii | = 0.055 and 0.117 um. We measure the depolarized scattered light correlation time and compare it to
our theoretical results for double scattering. The agreement of theory and data is seen to be good. We discuss

potential applications of this work to other phenomena.

I. INTRODUCTION

In recent years the technique of autocorrelation
spectroscopy has expanded the use of laser light
scattering into a wide variety of fields. Autocor-
relation spectroscopy allows us to measure the
temporal characteristics of system fluctuations
that produce Rayleigh linewidths as small as a
few hertz at optical frequencies. This has led
to the wide use of correlation techniques to probe
diffusion in liquids and biological systems and in
the study of critical phenomena in liquids.*

In deriving the theoretical expression for the
scattered light field correlation function which
is the central quantity in correlation spectro-
scopy, one assumes that the scattered light is
the result of only one scattering of the incident
light from the fluctuations or the diffusing par-
ticles in the system. This single-scattering as-
sumption is usually good for systems of small
scattering cross section. However, for systems
of large scattering cross section, such as a con-
centrated suspension of particles in a fluid or
a fluid system near its critical point, this as-
sumption may no longer be valid. This is be-
cause the probability that the light will scatter
more than once on its way to the detector increases
as the cross section for scattering goes up. Thus
in order to understand the intensity and correlation
function of the scattered light from dense sys-
tems, one must take into account the effects of
multiple scattering.

Several groups have recently examined the
effects of double scattering on the intensity of

light scattered from fluids near the critical point.
Oxtoby and Gelbart?'® show theoretically that
double scattering is the major contribution to the
depolarized scattered light near the critical point
when T — T;<1°C. Reith and Swinney* give ex-
perimental evidence to support this result. Oxtoby
and Gelbart® and Bray and Chang® point out that
one might infer an erroneously large value of the
critical exponent 7 from intensity measurements
near the critical point if the effects of multiple
scattering are ignored. All this work has served
to dramatize the fact that the effects of multiple
scattering must be correctly accounted for if
autocorrelation spectroscopy is to be a useful
interpretive probe of fluid behavior very close

to a critical point.

In other work Colby, Narducci, Bluemel, and
Baer® performed systematic intensity and in-
tensity correlation measurements on systems
of highly concentrated polystyrene microspheres
as a function of concentration and scattering angle.
They found that the intensity of the scattered light
became less and less a function of the scattering
angle as the concentration increased; i.e., the
Mie patterns characteristic of the scattering from
individual microspheres tended to disappear.
They also found that the correlation time of the
scattered light decreased with increasing con-
centration. While they were unable to explain
their data theoretically, they concluded that mul-
tiple scattering was responsible for these effects.

In this paper we propose a simple theory to
treat the correlation function of double-scattered
light. In particular, we concern ourselves with
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double-scattered light from a system of Brownian
particles. This problem has been considered be-
fore by Kelly.” However, his work does not agree
with our results, because he failed to evaluate
explicitly the Green’s function resulting from the
solution of the integral equation for the electric
field [e.g., his Eq. (31)]. This Green’s function
contains the phase information of the light as it
scatters from the first to the second scatterer.

In our approach the Green’s function is written
explicitly from the start of our work in its ex-
ponential form as. the leading coefficient of the
electric dipole field propagator. By writing it
explicitly, we are able to keep track of the phase
of the light as it scatters from the first to the
second scatterer, as well as the scattering from
the second scatterer to the detector.

We will show that the lowest-order contribution
to the depolarized scattered light is due to double-
scattered light. We have measured the correlation
function of the depolarized scattered light for two
different-sized systems of Brownian particles.

We begin in Sec. II with the electric field propa-
gation tensor to find the field scattered to any
order. We then consider the correlation function
of the scattered field and show that the double-
scattered field correlation function is the lowest-
order contributor to the depolarized correlation
function. In Sec. III we derive the first-order
(single-scattered) correlation function using our
formalism. This has been done before, but we
will find its development instructive when de-
riving the second-order correlation function. In
Sec. IV we present our derivation of the double-
scattered field correlation function. We make use
of the far-field approximation and indicate how
this may limit our theory. We present our results
for a spherically symmetric scattering volume.
We give expressions both for the case of particles
with a radius much smaller than the wavelength
of the incident light and for particles whose radius
is of the same order of the wavelength of the in-
cident light. In the latter case we make use of
the Rayleigh-Debye theory for light scattering
from dielectric spheres. We also discuss the
intensity of the depolarized light and find agree-
ment with prior work. In Sec. V we describe the
data-taking procedures we used to determine the
correlation function of the depolarized light. In

E(;l’ t):ﬁo(;la t)+ Z ﬁn(;l, t)’
n=1

14 DEPOLARIZED CORRELATION FUNCTION OF LIGHT... 1521

particular, we discuss how we obtained an ef-
fectively spherical scattering geometry and the
importance of proper polarization adjustment.

We compare theory to experiment and find ex-
cellent agreement. Finally, in Sec. VI we discuss
our results and consider their extension to other
systems.

II. SCATTERED FIELD

To begin we__consider the electric dipole field
propagator,” T (r,,), where

- ikl T =T, [( i 1 \-
M- Ty (e i - o )

<1+ a3 )%;]
kr kz’riz 127124

12

(1)
with
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Here k=27/x, X being the wavelength of the ra-
diation produced by the oscillating dipole, and

1 is the unit tensor. The dipole field propagator
is a result of electromagnetic theory and gives
the field at point ?1 due to an oscillating dipole
at ?2. Since an incident electromagnetic wave
will induce dipoles in a medium, the dipole propa-
gation tensor will describe the scattered field
produced by these dipoles. If the electric polar-
ization of a medium is taken to be the tensor
@(t, t), then the induced dipole due to an incident
electric field is @*E. The electric field at a
point Y‘l and time ¢ is then

B, 0=k [ T8, 0BG, 1) dr,
)

o(r

(2)

The integral is taken over the entire scattering
volume except for a small volume element o(T,)
centered at ?1.

We solve Eq. (2) by iteration on the field:

(3)
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E, represents an electric field that has been scat-
tered » times, as shown by Eq. (4), and k" g
the nth scattered wave vector.

In this paper we are concerned with the scattered
field correlation function. Using Eq. (3) we find
this correlation function to be of the form

)-E(F,, 0)= Z< x(F,, 1) E, (T, 0))

© S (ErG,0)-E

i#]

(E*(;ly

E;(r,,0)),

(5)

where we have assumed the field average is sta-
tionary in time. The lowest-order term in

Eq. (5) is the single-scattered correlation function
(E";(t)-fl (0)). The polarization of E, () is paral-
lel to the incident polarization and is the lowest-
order contributor to the “polarized” scattered
component. We will use the usual nomenclature,
where “polarized” refers to that light scattered
with polarization parallel to the incident-wave
polarization; “depolarized” refers to light scat-
tered with polarization perpendicular to the in-
cident-wave polarization. The next-higher-order
term in Eq. (5) is (ﬁ’{' Ez). While Ez itself may
have depolarized components, the scalar product
with the polarized :E.l demands that this term con-
tribute only to the polarized spectrum.® Similar
arguments can be made for any term of the form
(E* E,). This leaves (E @) E .(0)) as the low-
est-order depolarized term. In th1s paper we shall
evaluate this term for the case of a medium with
pointlike scatterers, and for the more realistic
case of particles which are not necessarily point-
like (i.e., the radius need not be <)), undergoing
Brownian motion.

III. SINGLE SCATTERING

The properties of the first-order or single-
scattered field, have been derived before® and
the results are well known, We will solve Eqgs.
(3) and (4) to order =1 and then determine the
single-scattered field correlation function. This
will help illuminate the procedure to be used when
we consider the double-scattered problem.

Truncating Eq. (4) at »=1 we have

E,(r,,t) =k'2f‘)darZT(;lz)-&(;z,t)-Eo(rz,t).

o(r
(6)

We write the incident electric field as a wave of
wave vector k and frequency w, with polarization
€,

B, (r,, t)=E8etk Tomivt (1

where &, is the wave amplitude.

We will take the polarizability of the medium
to be isotropic. The polarization tensor may then
be written as the diad

G, t)=a(,t)da. @)

This isotropy implies that the induced moment
will be parallel to the incident-field polarization;
thus @+€=1. From Egs. (6)-(8) the single-scat-
tered field is

E,(,¢)

=8 k'2e” " fd31’2a(r2,t)"I‘(rlz)-ée"k"2. 9)

Since the observation point Y’l is outside the scat-
tering volume, we need no longer specify the in-
tegral in Eq. (9) to exclude the volume o(r,).

To proceed further we examine the field propa-
gator T(rm) In most scattering experiments the
detector is many wavelengths distant from the
scattering volume and this distance is much larger
than the dimensions of the scattering volume.

That is, #,>1/k and 7,>7,. These inequalities
imply

|, -, =7, -1, 7, (10)
which to first order gives

T, =T, =7, 11)

|t =T, k> 1. (12)

Equations (10)-(12) describe the far-field approxi-
mation*® for a radiating dipole.

In applying the far-field approximation to the
field-propagation tensor, we use Eq. (11) in the
magnitude terms of the tensor, but we must use
Eq. (10) in the phase term in order to evaluate
the full effect of the scattered phase. In this ap-
proximation, for k' =k’ #,, Eq. (1) becomes

T(,,) = (@ na/r) e o1 - 7,7,). (13)
Using Eq. (13) in Eq. (9) we find the single-
scattered field to be
'y
€ Lottt [7, x @x7,)]
1

E,(r, t)=8k"

-

x [ar,af,, 1) et TF0 s, 14)

We have used the identity a X (SXE) =a-cb-a-be.
Equation (14) is the result for the single-scat-
tered field with the familiar 1/A2 dependence; its
strength dies off as 1/7, and it has the proper
dependence on polarization given by the vector

products.
Now we consider the case of a system of par-



ticles with radius  much less than the wave-
length of the incident electric field. Such a par-
ticle will scatter light isotropically in the plane
perpendicular to the incident polarization. With
such a system of scatterers the magnitude of the
polarizability is

a(r t)= UZ [r-T,¢), (15)

where o is the electric field scattering cross
section for one particle, and d(r) is the Dirac
6 function.

Substituting Eq. (15) into Eq. (14), we have

ipt
e:k T

E,(r,,t)=8,k"

N - - -
-t S (EX T Z: (k=K Tt)
Xe™t Tlx(exrl)oi e AL
=1

(16)
so that the field correlation function is

-

(Et@r,,t) E,[,,0))

— 021,14 ~ 2,2
=&2k"a%r ]

N - -, - N s, -
X<Z e-i(k-k’)-ri(t)z oi(k-k )'rj(o)> . @1
i=1 J=1

To evaluate Eq. (17), we assume there is no
correlation between different particles. While
there are systems in which correlations between
different particles become important,'! we will
consider only systems which are dilute enough
or for which the interactions are screened well
enough so that these mutual correlations will not
be important. In this case the ensemble average
on the left-hand side of Eq. (17) is zero unless
i =j. Ifi =j all the terms in the sum are equal.
Thus we may write

(E*@,,t) E,@,,0)

=N&2k"ig2r=2( ¢t &k-%"). [?2(0)-?2(t)l> . (18)
This is the standard result for the correlation
function of the single-scattered electric field.

For the case of particles undergoing Brownian
motion with a diffusion constant D, Eq. (18) gives

e

E1(t)-F,(0)) =N8k'102r-2¢-P1F-F1% (1)

This result has been verified experimentally.®
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IV. DOUBLE SCATTERING

A. Formalism

In this section we derive an expression for the
correlation function of the double-scattered elec-
tric field. Our procedure will follow that used
for the single-scattered field, as given above.

We start by evaluating Eq. (4) to second order,

fz(;l,t)=k'2f-

o(r1

A%, T(r ) G, t) - k"2

< [ . 4 TG 86 B ),
o(ry)

(20)
where k” is the intermediate-scattering wave
vector describing the scattering from the first
to the second scatterer, and k’ is the wave vector
describing the scattering from the second scatterer
to the detector. In the first integral we need not
worry about the exclusion of the volume o(r,),
because we take the observation point T, to be
outside the scattering volume. Furthermore, the
excluded volume of the second integral O(Fz) need
not concern us if we consider double scattering
from two different positions in space only. In the
far-field approximation T(fm) in Eq. (20) takes
the form given in Eq. (13) for the same reasons.

Now we must justify applying the far-field ap-
proximation to the tensor ’f‘(fza) which describes
the scattering of the incident field from the first
scatterer to the second scatterer. We make two
assumptions: (i) |T,~T,| #'>1, which implies
that the interparticle separation is, on the aver-
age, greater than the wavelength of the field and
(ii) 7,>7,. Assumption (i) depends upon the ex-
perimental situation, but is not difficult to satisfy
in a real experiment. Assumption (ii) can be
satisfied if we choose our origin arbitrarily close
to the first scatterer at position ¥,. Thus 7, can
be made as small as we wish, Since we are de-
riving the time correlation function of the scat-
tered field we require assumption (ii) to be sat-
isfied for times of the order of the correlation
time. For the case of a particle of radius 0.1 ym
undergoing Brownian motion in water at 20 °C,

7, may change by 0.03 um in a correlation time.
Using assumption (i), however, we see that as-
sumption (ii) will still hold in general. Thus we
may reasonably apply the far-field approximation
given by assumptions (i) and (ii) to the tensor
T(f,,). Hence T(t,,) will have the same form as
T(lz) given in Eq. (13).

With an incident electric field given by Eq. (7)
and an isotropic polarizability given by Eq. (8),
the double-scattered field of Eq. (20) takes the
form
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£

ik’ - -
—_ e —iwtnre > -ik’-
E,(F,,£)=8, S ety fd%’za(rz,t)e i T,
1

-~

. deys[f - 7,7,] r€e

Here k is the incident wave vector.

BT, - n
n
o RI= ]

=ik T g (F,, E)etk " T, 1)

We consider the term e**""2 in Fq. (21). Physically, we take K” to be the wave vector describing the
scattering from the first to the second scatterer; thus k” is parallel to r,—T,. By assumption (ii) above,
7,»7,; thus T, - T, and k” are nearly parallel to T,, and thus k”7,=k”+T,. With this adjustment Eq. (21)

becomes

E,(r,t)=6,

eik'r
Tl

e k2R 7 X (€' X 7,)) fd3727;1a(fz,t)e“k”'k')"zfd"rsa(fa,t)e“k'k")"s, (22)

where €’ is the polarization of the intermediate wave and is given by

€' =7, X (€X7,).

(23)

As might have been expected from the approximations we have made, Eq. (22) has the form of two com-
pletely independent scattering events in succession. Using physically intuitive arguments, we could have
proposed Eq. (22) as the starting point of our theory. However, by proceeding as we have from the ele-
mentary electromagnetic theory, we are more aware of the approximations implicit in Eq. (22).

As we did in the case of single scattering, we examine the particular case of a system of pointlike par-

ticles. Using Eq. (15) in Eq. (22) we have

—E’z({‘ht)=go

’
IV
71

N
et k2R 7 X € X7,
i=1

- - - N > >, -
i(k"=k")e rzi(:)z et (k=k")ergp(t) (24)

e
7y () =1

The time correlation function of the double-scattered field is

(Ex(r,,t) E,@F,,0))
8

2
- L EA GRS

N

1 ; n LA e -
(3 s el & K- [, 0 -5 )

We now make the assumption that there is no
correlation between any two particles, This allows
us to do two things to the expression in Eq. (25):
First, the ensemble average of the product of the
phase terms of the first and second scatterers
becomes the product of the ensemble average of
each term individually., Second, as in the single-
scattering case the average is zero for each term
unless ¢ =j or I =m for the first or second scat-
terer, respectively, and the sums reduce to N
times the argument of the sum. Thus for a non-
correlative system Eq. (25) becomes

(E36,,0)E,G,,00)
=(82/72)k"k" 0| 7, X (€' X7,)|2N?
X (1A 7,)2) ei(i"-i:')- [‘;(o)_;(”]>

x( ¢t &=k [T (-T )]y (26)

In Eq. (26) we have taken 7, to be independent

N
exp{i € —K")+ [T,y (0) = Fon(t )]}) . (25)

Iym=

—

of the phases. We have also dropped the subscripts
used to identify the first and second scatterers,
since these were necessary only to keep the terms
straight while making the averages above. Equa-
tion (26) is the general result we shall apply to

the case of Brownian motion. For such a system
each average in Eq. (26) yields the usual form

for Brownian motion given in Eq. (19). For par-
ticles of diffusion constant D, we have

<§§G‘ut)'fz({'u0)>
= (82/r2)k" k"0 | 7, X (€' X7)|2N?
x (1A ,,2>2)e—0|f"—i']2t e-D!i-i"lzt . (27

The comments made after Eq. (22) apply here.
Equation (27) has the form of two distinct and in-
dependent scattering events; each event modulates
the incident wave and the resultant wave’s cor-
relation function is a product of the two individual
correlation functions.
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B. Integration over the intermediate scattering vector

Here we use the results in Eq. (27) to derive
the correlation function that one would observe
in a real experiment on a system of particles.
To do this we must realize that while the detector
may sit at a particular scattering angle relative
to the incident beam, thus defining the final-scat-
tered wave vector ﬁ', the intermediate-scattered
wave vector K’ may assume any direction in
space. Thus to evaluate the correlation func-
tion seen in a real experiment we must integrate
Eq. (27) over all possible directions of k”. In
doing this we assume spherical symmetry about
the first scatterer. While this is not the most
general situation, the experimental conditions
can be adjusted so that this symmetry will be
satisfied.

To begin we take the final-scattered wave vec-

J

tor to be in the scattering plane. The term “scat-
tering plane” has the usual definition; it is the
plane perpendicular to the incident polarization,
the x-y plane in Fig. 1. The intermediate-scat-
tering wave vector k” which is parallel to ;2 is
allowed to assume any direction.

From Fig. 1 we can write the following vectors
in Cartesian coordinates:

’ =;’1 =i‘cos<1>1 +2 sing,, (28)

InEgs. (28), f, 2, and 3 are the unit vectors in
the x, ¥, and z directions, respectively.

It is now a simple matter to rewrite Eq. (27)
in terms of 6,, ¢,, and ¢,, assuming elastic
scattering (k =k’ =k"):

(E3(t)-E,0)) = (82/72)ka *N2(1 K 7,)?) {(sin*6,), +[ cos?6, sin?(¢, — ¢,) sin?6,] ,}

xexp( — Dk2t {4 +2 sing,[ cos¢, - cos(¢, - d)l)]} ), (29)

where we have designated the polarized and de-
polarized components by || and L, respectively.

To find the average field correlation function,
we integrate Eq. (29) over the volume of the sphere
described by 7,, 6,, and ¢, and then normalize
it with the same integral at { =0, We were not
able to perform the integral of Eq. (29) analytical-
ly. However, we can evaluate the slope of the
average correlation function at £ =0. Since in
essence we are summing exponentials, in general
we expect a nonexponential spectrum. Neverthe-
less the ¢ =0 slope will give us a good idea of the
behavior of the average double-scattered cor-
relation function.'

The slope at ¢ =0 is given by

i 4 (EE)E,0)),
K== L0 B0, (30)

where K, is the first cumulant in the usual no-
tation.'® ( ),, indicates the average over T,.
Using Eqs. (29) and (30) and performing the proper
integrals we find

(K)o L=4DR2, (31)

Equation (31) gives us the remarkable result that
for either polarization, the initial slope of the
double-scattered field correlation is not a func-
tion of the scattering angle (remember that k is
the incident wave vector). Furthermore, the val-
ue of the initial slope is the same as that obtained
for single scattering at a scattering angle of 180°.
Intuitively we may picture the double-scattering

r
process as two independent scattering events,
each of which may involve scattering at an angle
anywhere from 0° to 180°, Since the scattering
is isotropic from pointlike particles, all angles
are weighted equally, and so we might expect the
average scattering angle for each event to be 90°.
Two scatterings at 90° yield an effective 180°

SECOND
KSCATTERER

62

FIRST
SCATTERER \

FIG. 1. Geometry for double scattering. Light is
incident from the left-hand side along the x axis with
polarization parallel to the z axis. Light is _s.cattered
from the first to the second scatterer along r, and then
from the second scatterer to the detector along r; (under
the far-field approximation). The experimental scatter-
ing angle is 6Oscat =180°— ¢.
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scattering process.

To get a more exact form of the total field cor-
relation function at all times, we numerically
integrated Eq. (29) over r, and divided by the proper
normalization factor, which was determined from
a numerical integration of Eq. (29) with £ =0. The
double numerical integration was performed with
a simple program to compute the integral using
trapezoid, midpoint, and Simpson methods. It
was found for simple integrals of trigonometric
functions which could be solved analytically that
the midpoint method converged fastest to the cor-
rect value. Thus the midpoint method was used
to evaluate the integrals. In Fig. 2 we present
plots of the double-scattered field correlation
function for the depolarized component. At fscat
=60° a cumulant analysis'® gives a value of K,/
K2=0.07 for the second cumulant. The results
for the polarized component are similar, but we
will not present them here. In our light-scatter-
ing experiment this component is effectively un-
observable, since it always appears mixed in
with the much more intense polarized single -
scattered component. In Fig. 2 we have also

S

w

- 0l

* 90°

t=0 SLOPE
0.0l | | | ]
o] | 2 3 4
t/T,

FIG. 2. Depolarized field correlation function due to
double scattering from particles of radius I <A. Note
that all graphs have the same ¢ =0 slope.

plotted the straight line corresponding to the in-
itial slope value given by Eq. (31). We see that
this is a reasonable approximation to the cor-
relation function for small times. While the non-
exponentiality of the correlation function increases
with decreasing scattering angle up to fscar = 60°
and then holds fairly constant, there is still a
significant lack of scattering-angle dependence
when compared to the single-scattered correlation
function, where the slope increases as sin®(36 sat).

C. Anisotropic scatterers

So far our results apply to the case of pointlike
scatterers whose radius [/ is much less than the
wavelength of the incident light (I<<2). As the
size of the scatterer increases, the scattering
from a given particle will become anisotropic,
with more scattering in the forward direction.

In the regime where /<2, we expect the results
given above will explain the double-scattered field
correlation function qualitatively in that there
will still be a lack of a major scattering-angle
dependence and the correlation time (l/Kl) will

in general be shorter than that for single scatter -
ing. However, we must also expect that quan-
titatively the spectrum will be different.

To investigate the double-scattered spectrum
of particles of radius /<), we shall apply the
Rayleigh-Debye theory!? to our formalism. The
Rayleigh-Debye theory describes the scattering
of electromagnetic radiation from dielectric
spheres when the phase change of the radiation
across the spheres is small. This condition is
met when

2krl(m -1) <1, (32)

where k is the wave vector of the radiation and
m is the relative index of refraction of the sphere;
m is defined as the index of refraction of the
sphere divided by the index of refraction of the
medium. To be exact, we should use the full Mie
scattering theory of electromagnetic wave scatter-
ing from dielectric spheres, but the formalism
is too ponderous.

The scattering amplitude in the scattering plane
for the Rayleigh-Debye theory is given by'?

S(B) = (i/2mk*(m - 1)PP(B), (33)
where

P(B) = (3/u®)[sinu —u cosu], (34)
and where

u=2klsinip, (35)

and B is the scattering angle.
To incorporate this into our theory, we use
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P(B) in Eq. (34) as an attenuation factor to be in-
cluded in Eq. (24). Since there will be two scatter-
ing events, there will be two individual sccttering
angles, B, and 8,. They are the angles between

Kk and k” and between K’’ and E’, respectively,

and are given by

cosp, =k k"
cosB,=k" k' (36)

From Eqgs. (28) and the trigonometric identity
for half angles we find

sinzp, =[z(1 +sing, coss,)]* 2, @n
sinzB, ={3[1 —sing, cos(¢, — ¢,)]} /2. (38)

We are now ready to write the equation for the
double-scattered field correlation function for
Rayleigh- Debye scatterers undergoing Brownian
motion. It will have the same form as Eq. (27)
except that now we must include the factor given
in Eq. (34) for each of the two scattering events.
We have

<-E.§(t) -Ez(o» = (NZAZSS/yf)kMk,MOA ’7';1 x (é' % ,;1) '2
X (1/(7,) 2)e DI =¥ 1%¢ g-DIE- e 1%
(39)

where the only difference between Egs. (39) and
(27) is the attenuation factor A%, where

A=P(B,)P(B,). (40)

We evaluated the initial slope, first cumulant,
of the correlation function in Eq. (39) using Eq.
(30), assuming elastic scattering. The resulting
integrals are very complex and thus were per-
formed numerically, as described above. The
results of these calculations for various values
of 2kl are given in Fig. 3, where we have plotted
correlation time in units of 1/4Dk? versus scat-

2.0+~ 2kl

T, *4Dk2

] 1 1
30 60 90 120 150 180
SCATTERING ANGLE

FIG. 3. General results for the depolarized spectrum
due to double scattering from a system of Brownian
particles.

tering angle. We point out that the correlation
times at 180° for all values of 2kl are equal to
the single-scattered correlation time at 180°.
This property of double scattering was first
pointed out by Ferrell.!®

D. Intensity

We can use our formalism to find the scattered
intensity of the double-scattered light. The in-
tensity is equal to the expression for the cor-
relation function at £=0. For pointlike scatterers
Eq. (19) gives us the single-scattered intensity
as

1,(r)) = (82/7)k*o*N. (41)

Similarly, Eq. (27) at £=0 gives the double-scat-
tered intensity for elastic scattering as

I,(r)) = B/ PINC* |7, x (& x 7)) [X)%. (42)

The ratio of these quantities, with the density
given by p=N/V, is

L,/1,=pVEkio?, (43)

where we have left out the polarization terms

and 1/(7,)®. This latter term should vary slowly
with the scattering volume. Equation (43) is of
the form given by others.>»* We see that the
double -scattered component can be enhanced by
increasing the density of the system, a fact we
shall make use of later in Sec. V. We point out
that for particles of radius /<< A the cross section
term goes as o~ 5.

If we consider each polarization of the double-
scattered light, we may find their relative in-
tensities. Using Eq. (29) at £=0 and integrating
over 6, and ¢, for each component we find

sz/lzu = %- (44)

Thus the depolarized component of the double-
scattered light is only one-eighth as intense as
the polarized part. Thus if one measures the
ratio of the polarized to depolarized intensities
in a scattering experiment, one must remember
that some of the polarized component has been
doubly scattered.

For the case of larger particles, /<1, we may
consider Eq. (39) at =0 and perform the in-
tegrations over 6, and ¢,. We find that the double-
scattered intensity is still peaked in the forward
direction, but not so strongly as in the single-
scattered case. Thus we can qualitatively say
that the Mie pattern characteristic of micro-
spheres is washed out in the depolarized com-
ponent as found by Colby et al.®
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V. EXPERIMENTAL

We have performed experiments to measure
the depolarized correlation function of two sys-
tems of Brownian particles. Both systems were
made up of polystyrene latex spheres, obtained
from Dow Chemical Company, suspended in water.
These spheres are very monodisperse in size.
Thus there should be no nonexponentiality of the
polarized correlation function'? or scattering-
angle -dependent diffusion constant!* due to poly -
dispersity. The smaller-sized sphere had a
radius of 0.055 um and is barely into the regime
where one must consider the effects of anisotropic
scattering as discussed above. The larger spheres
had a radius of 0.117 um. At this radius one must
consider the depolarized correlation function in
terms of the anisotropic Rayleigh-Debye scatter-
ing theory.

Since the depolarized to polarized scattered
intensity ratio increases with concentration, as
shown in Eq. (43), we worked with suspensions
of high concentration. However, at large con-
centrations the polystyrene spheres, which are
inherently charged, begin to interact. This vio-
lates our condition of noninteracting particles.

To determine if a system of microspheres was
interacting, we measured the correlation time

of the polarized scattered light as a function of
concentration. It is known'! that the correlation
time of the single-scattered polarized component
of light scattered from a system of interacting
Brownian particles decreases with increasing
concentration. If a system was found to be in-
teracting, we diluted it until no further concen-
tration dependence was seen and the correlation
time was the same as that measured in the very
dilute limit. In this way we choose a concentration
of 9x10"°% by volume for the 1=0.055 um system,
and a concentration of 1.8 X 10"° by volume for
the 1=0.117 um system.

As both Bray and Chang® and Reith and Swin-
ney* have shown, the measured intensity of the
depolarized light is a function of the experimental
scattering geometry. In deriving our results we
have assumed a spherically symmetric distribu-
tion of second scatterers about a first scatterer.
Equivalently, we could have considered a spheric-
ally symmetric distribution of first scatterers
about the second scatterer. This latter situation
can be satisfied experimentally if our detector
looks at a small region near the center of the
illuminated scattering volume. In this way we
see second scatterers with a large, isotropic
volume of first scatterers around them. We also
considered the case where this spherical scat-
tering symmetry breaks down.

In our experimental situation, as in most situa-
tions, the polarized component of the scattered
light is many times larger than the depolarized
component. Because of this, special care must
be taken to eliminate all the polarized light when
measurements on the depolarized light are being
carried out. If there is strain in the sample cell
some of the polarized component may be mixed
in with the depolarized component, causing er-
roneous results. We examined our sample cell
by placing it between crossed polarizers and
found it to be free of strain. However, finger-
prints and dust were evident on the wall of the
cell. Thus one must take great care that the out-
side as well as the inside of the cell is clean and
dust free in order to avoid mixing the depolarized
and polarized components.

In our experimental setup, we directed the un-
focused beam of an argon-ion laser operating
at a wavelength of x=5145 A into our glass scat -
tering cell. The beam diameter was ~5 mm and
the scattering cell was a glass tube of 21 mm
inside diameter. The unfocused beam provided
a large scattering region in order to suit the con-
ditions required by the assumption of spherical
symmetry, as discussed above. Focusing of the
beam by the glass cell caused no problems. Be-
fore entering the cell, the beam passed through
a Glan-Thompson polarizing prism with an ex-
tinction ratio of 5x 10"%, giving the incident beam
a vertical polarization. Light scattered in the
horizontal plane passed immediately through a
small aperture 1.3 mm in diameter and then
through two more Glan-Thompson polarizers,
each of which had an extinction ratio of 5x 1075,
These polarizers were adjustable so as to pass
either the polarized or depolarized component of
the scattered light. Two polarizers were used to
ensure complete filtering of the unwanted com-
ponent. The light was then collected by a lens
of 37 mm focal length which focused the image
of the 1.3-mm aperture onto a 300-pum-diam
pinhole. The magnification of the aperture image
by the lens was approximately 0.25. With this
configuration we could pick out a small region in
the center of the illuminated region. The 300-um
pinhole was 1 m from the cathode of an FW130
photomultiplier tube, thus projecting approxi-
mately one coherence area of scattered light on
the cathode. Pulses from the photomultiplier
tube were analyzed by our intensity autocorrelator
to determine the correlation function of the scat-
tered light. The correlation function was analyzed
with an on-line Nova 800 computer to determine
the correlation time using a fitting routine that
weights the £=0 part of the spectrum heavily.'

Our calculations have been concerned with the
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electric field correlation function of the scattered
light. We measured the intensity correlation func-
tion of the scattered light in our experiments.
These two correlation functions are related in a
simple manner, by the Siegert relation, if the
scattered electric field is Gaussian.'” Since we
are considering scattering from many different
pairs of events, this Gaussian assumption should
be satisfied for double scattering. Kelly” dis-
cusses this point and finds that the scattered field
will be Gaussian for a large number of scatterers.
Furthermore, Colby et al.® found experimentally
that the light scattered from their dense systems
was Gaussian. For these reasons we take our
double -scattered field to be Gaussian.

Care had to be taken to adjust the polarizers
to the correct polarization angle during depolar-
ized spectrum measurements, or else erroneous
results were obtained. Both the polarization of
the incident beam and the detected light had to
be adjusted to better than +0.3°. Our procedure
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FIG. 4. Experimentally measured correlation time
vs theory for both the polarized (single-scattered) and
depolarized (double-scattered) light for the 1 =0.055 um
system. The dashed line represents the theoretical pre-
diction for light double scattered from particles of
radius I <A, Eq. (31). The lower solid line is the theore-
tical prediction for light scattered from particles of
radius / =0.055 pm using the Rayleigh-Debye modified
theory, Eq. (39).

was to measure the count rate as a function of
both the incident and the detection polarization
angles to find the minimum in the count rate. This
minimum in the count rate indicated that as much
of the intense polarized component had been filter-
ed out as possible. The minimum could be defined
to better than +0.3°. At a scattering angle of 30°,
spectra run 1° away from the minimum were found
to have correlation times 5% larger than spectra
run at the minimum. This is because some of
the polarized component which has a much larger
correlation time than the depolarized component
at a scattering angle of 30° was mixing in with
the depolarized component. Indeed, it is con-
ceivable that we were not always successful in
removing all the polarized component with the
polarizers, and some of our measured correla-
tion times may be slightly large. However, we
believe we were able to limit this error to < 3%.
In Figs. 4 and 5 we plot the results of our ex-
periments along with our theoretical predictions
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FIG. 5. Experimentally measured correlation time
vs theory for the depolarized scattered light for the I
=0.117 pm system. The dashed line represents the pre-
diction of the Rayleigh-Debye modified theory in Eq.
(39) for particles of radius 7 =0.117 um. The solid line
is the prediction of Eq. (39) for particles of radius /
=0.123 pm. The solid line is closest to what one would
expect if the exact Mie theory were used.
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as given by Eq. (39). The correlation times are
normalized to 20 °C from our experimental con-
dition of T=23.5+0.3 °C, assuming a viscosity
temperature dependence. Figure 4 shows our
results for the 1=0.55 um system. The upper
curve shows the experimental results and the

theoretical prediction for the polarized component.

We see the characteristic sin(36 «<a ) dependence.
The datum point for §=30° (7,=1.59 msec) runs
off the graph on this scale and was not plotted.
In marked contrast is the correlation-time be-
havior for the depolarized component plotted in
the lower part of Fig. 4. Obviously the large
scattering-angle dependence seen in the polarized
component is gone in the depolarized component.
The dashed line in Fig. 4 is the prediction of Eq.
(31) for I < and is seen to be inadequate to ex-
plain the data, being ~10% too low. The solid
line nearest the depolarized data represents the
results obtained from the numerical integration
of Eq. (39), which takes into account the Rayleigh-
Debye scattering from a particle of radius !/
=0.055 pm. The agreement between theory and
experiment is seen to be good.

Figure 5 presents our results for the system
of 7=0.117 um particles. The assumption of
[ <X would result in a predicted correlation time
of 7=0.257 msec for the depolarized scattered
light, by Eq. (31). This is obviously not the case
and we must again use Eq. (39). Numerical in-
tegration of Eq. (39) gives the dashed line in Fig.
5. While the fit is much closer, it is still in-
adequate. We must remember, however, that the
Rayleigh-Debye theory is only an approximation
and it begins to lose validity when Eq. (32) is
poorly satisfied. What is really needed is the
exact Mie theory, but as mentioned earlier this
would be very unwieldy. To get a better fit, we
compared the predictions of the Rayleigh-Debye
scattered intensity versus angle for various sized
particles near 1=0.117 um to the exact Mie theory
for particles of radius /=0.117 yum. These com-
parisons were made to fit the experimental con-
ditions, where m =1.20 for polystyrene in water,
1=5145 10\, and the index of refraction of water
is 1.33. It was found that the Rayleigh-Debye
formula using a particle radius of 1=0.123 pm,
agreed very well with the tabulated!® Mie results
for the true particle radius of 7=0.117 um. Thus
we rederived our theoretical prediction using Eq.
(39) and a particle radius of 7=0.123 um. We may
consider this prediction to be the same as that
which would be given by the exact Mie theory for
a particle radius of /=0.117 um, the true particle
radius. This result is the solid line in Fig. 5 and
is seen to agree quite well with the data. We
conclude that our theory is good for particles

TABLE 1. Effect of narrowing the incident beam on
the measured correlation time of the denolarized light
scattered from the 7 =0.117 ym system. Beam diameters
greater than 5 mm showed no change in 7.

Oscat (deg.) Beam diam (mm) Tc (msec)
60 5 0.524
2.5 0.600
1.6 0.650
90 5 0.447
4 0.473
1.6 0.505

when the condition [ <X is no longer satisfied, if
the proper scattering function is known for the
particle.

We have also considered the situation when the
assumption of a spherical scattering symmetry
is invalid. Experimentally, this is equivalent
to a narrowing of the incident beam. In Table I
we give experimental data for the /=0.117 um
system. It is seen that as one narrows the beam
the correlation time of the depolarized light be-
comes longer. Theoretically, we realize that
as the beam is narrowed many of the second scat-
terers viewed by the detector will not have first
scatterers in the regions above and below them.
This situation is approximated if, when we eval -
uate the correlation time from Eq. (39) using Eq.
(30), instead of allowing 6, (Fig. 1) to range from
0° to 180° we allow it to range from o to 180° - q,
letting o approach 90°. In this way we are flatten-
ing out the scattering volume. Performing the
integrals, we find that the correlation times do
indeed become longer for increasing a, giving
curves similar to those in Fig. 3. As o approaches
90° the correlation time is ~23% longer at 6 sca
=90°for 2k1=4.0. Experimentally, « is not well
defined and the method for nonspherical scatter-
ing symmetry given here can be considered only
a first approximation to this very complex situa-
tion. Therefore we emphasize the convenience
of the spherically symmetric expanded beam
geometry to future experimenters.

We now consider the data of Colby et al.® They
measured the correlation time of all the light
scattered from their dense systems, not just the
polarized or depolarized components separately.
When the concentration of a system of particles
is small we expect most of the scattered light to
be single-scattered light and thus the correlation
time to go as sin(36 sat)” 2. This is what they find
experimentally. As the particle concentration
increases, the double-scattered contribution grows
relative to the single-scattered contribution [see
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Eq. (43)]. If the scattered light was dominated by
this contribution, we have seen that we would
expect no scattering-angle dependence and the
value of the correlation time would be roughly
equal to the value of the single-scattered corre-
lation time at a scattering angle of 180°, (Actual-
ly, we would expect slightly larger correlation
times than this value, since the particles used by
Colby et al. had radii of the same order of mag-
nitude as the wavelength of the light). For inter-
mediate concentrations we would expect that a
family of curves between these two extrema would
result. This is indeed what was seen by Colby
et al. in their Figures 7-9. We may even explain
the nonexponentiality of the correlation function
seen by Colby et al. in their Figures 12 and 13 as
resulting from a superposition of the two different
decays due to single and double scattering.
Perhaps the most remarkable characteristic
of the depolarized scattered-light correlation
time is its lack of a scattering-angle dependence
compared to the polarized component. However,
in both our experimental systems there is still
some scattering-angle dependence. This is es-
pecially evident for the larger particles. It should
be pointed out, however, that whereas for the
polarized component we may speak of a k-de-
pendent correlation time, implying that either
fsat Or the wavelength of the incident light may
be changed to yield equivalent results, this is
not the case for the depolarized component. For
a change in the scattering angle, the depolarized
component behaves as shown in Fig. 3: little
dependence of T, on fsar and a broad maximum
in 7, at 6ca ~50°% On the other hand, a change
in wavelength would move the graph of 7,vs Oscat
up and down for smaller or larger wavelengths,
respectively. The point to be remembered is
that one cannot expect changes in st or A to
yield equivalent results as in the case of the polar-
ized scattered component.

VI. CONCLUSIONS

In this paper we have presented a formalism
which enables us to find the correlation function
of light doubly scattered from a system of par-
ticles undergoing Brownian motion. We have
shown that this double-scattered light is the low-
est-order contribution to the depolarized cor-
relation function. In deriving our result we have
made use of the far-field approximation. We have
also assumed that there is no interaction between
different particles. Our assumptions may be
stated as follows: (i) The average spacing be-
tween individual particles is much greater than
k"', where k is the incident wave vector. (ii)

We assume statistical independence of all par-
ticles, i.e., we have no long-range interactions
between particles in the system.

This work should prove useful for experimenters
who may be considering the correlation function
of light scattered from dense systems. Using
the results given here one might take into account
the effects of double scattering and thus arrive
at the true single-scattered correlation function.
However, the measurement of the depolarized
correlation function may prove useful in its own
right. For instance, if the assumption of no cor-
relation between different particles is dropped,
one might be able to measure the effects of the
correlation between different particles on the de-
polarized spectrum. We have performed pre-
liminary measurements on such interacting sys -
tems and the results are encouraging. Also, one
might be able to explain the depolarized spectrum
scattered from a system of fluids near the critical
point. This would require the assumption of double
scattering, which should be good when 7 -7,<1°C,
and could use the assumption of diffusing droplets
as recently proposed to explain the single-scat-
tered spectrum.!*!® We are currently pursuing
these problems in our laboratory.

*Work supported in part by the U. S. Energy Research
and Development Administration under Contract No.
E(11-1)-2203.
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