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A complete and detailed treatment of a three-level atom interacting with two near-resonant monochromatic
fields is presented. It is assumed that the only damping mechanism is radiative damping, and that the atoms
all have the same resonance frequencies, as is the case in an atomic beam. Detailed analytic solutions as well

as numerical examples are determined from quantum-electrodynamic equations of motion. In addition,

approximation techniques are presented which allow one to get iccurate quantitative predictions for strong

applied fields from simple rate-equation-like arguments. Absorption and emission spectra are determined, as
are the transient and steady-state response of the atom. Two of the more interesting predictions are an

emission spectrum containing up to seven components and a prediction of steady-state populations larger than
0.5 in the second excited state.

I. INTRODUCTION

Double resonance using a combination of a res-
onance lamp and a microwave field has played a
central role in optical pumping and high-resolu-
tion spectroscopy experiments for the past 25
years. ' Double optical resonance was also possible
using a monochromator and a discharge lamp to
obtain the second optical field. This technique
was not much used because of two inherent limita-
tions. First, the weak, incoherent light sources
did not excite the atoms sufficiently to produce an
appreciable population in the second excited state.
Beyond that the light source was neither tunable
nor monochromatic, so that it did not allow scan-
ning of a high-resolution absorption spectrum.

The recent development of extremely monochro-
matic, yet tunable, dye lasers' has overcome
both of these limitations and has made double op-
tical resonance a practical laboratory tool. A

few experiments have actually been carried out. '~
The further exploitation of this technique seems
particularly promising, because of the number of
unique capabilities which it offers. In the first
place, it allows extremely-high-precision spectro-
scopy to be carried out on excited states not con-
nected to the ground state by electric dipole trans-
iti.ons. ' ' Beyond this conventional spectroscopy,
it allows one to carry out carefully controlled
experiments in which there is competition between
spontaneous and stimulated processes. This is
the type of experiment which has been the basis
of a number of recent tests of the relative merit
of quantum electrodynamics (QED) and semiclas-
sical radiation theory. ' Finally, double optical
resonance has been the technique of several pro-
posed methods of laser isotope separation. It is
useful in this context for at least two reasons. It
produces a large population in a high excited state,

which is desirable for either ionization or chemical
scavenging separation techniques. Also, if the
two optical fields are colinear but oppositely direct-
ed, then the Doppler shifts in the two interactions
will tend to cancel and atoms will be excited
throughout an entire inhomogeneously broadened
line.

The intexaction of a three-level system with two
resonant fields has been extensively discussed in
the literature. But before the deve]opment of
dye lasers, the only atomic transitions for which
strong resonant fieMs were readily available were
the lasing transitions themselves. The early
papers reflected this experimental situation by
considering the three-level atoms as comprising
the lasing medium. Here, the main effects on
the atomic state were due to the incoherent pump-
ing process, transitions (because of atomic col-
lisions) to states outside the resonant three-level
system, and the coherent pumping by the laser
fields. Radiative decay within the three-level
system was a small effect and was neglected in
theoretical treatments. Several interesting features
for such a system were predicted and observed.
Two examples are anisotropic fine structure in
the Doppler-broadened emission profile and sim-
ultaneous gain and absorption in two different
regions of the same Doppler-broadened line. These
effects are intimately related to hole burning"
and the Lamb dip."

The development of dye lasers greatly increased
the number of three-level systems which could be
investigated by making them independent of the
lasing medium. A number of absorption spectra
measurements have been made, generally with
atoms in a gas cell.'4 This required some modi-
fication of the previous theoretical treatments.
The incoherent, steady-state pumping mechanism
for the two excited states could be ignored. The
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applied fields could be considered many Doppler
widths away from the respective atomic transition
frequencies. However, the atomic lines were
still considered to be inhomogeneously (Doppler)
broadened. Also, collisions are usually the major
damping mechanism in gas cells, and the decay
terms in the atomic equations of motion were
chosen to reflect this situation. As a result the
natural radiative lifetimes of the excited states
still did not appear in these theories. Power-de-
pendent line shifts and linewidths were predicted
for the absorption spectra. ' "' The possibility of
self-induced transparency' and self-induced adia-
batic rapid passage" in such three-level systems
has also been discussed.

With resonance experiments now being done on
atomic beams, "' theoretical attention is returning
to the problem where the only excitation mechanism
is the external field, and the only damping present
is natural radiative decay. This is the situation
that will be described in the present paper, which
limits itself to describing a homogeneously broad-
ened atomic system with only radiative damping,
such as in a well-collimated atomic-beam experi-
ment. Decay out of the three-level system is not
permitted. The applied fields are assumed to have
constant intensity after the time t =0 when they
are turned on. The equations of motion are de-
rived using QED rather than semiclassical theory,
which has been used in most of the previous treat-
ments of double resonance. This approach makes
use of some recent developments" in Heisenberg-
picture QED which allow one to derive these equa-
tions in a direct and elegant manner. In general,
the QED derivation will determine the damping
terms entering into the equations of motion and
may give terms [e.g. , those involving the general-
ized decay constants of (3.6)] which have not been
included in the phenomenological damping of semi-
classical theories. However, for the problem con-
sidered in this paper, the single-time-operator
expectation-value equations do reduce to a form
identical to the expected semiclassical Bloch-type
equations. The derivation of equations of motion
for two-time correlation functions, which are
used to find the spectrum of the scattered light,
does, of course, require a QED treatment. We
develop complete dynamic solutions of the equa-
tions and find that the system evolves into a steady-
state condition which exhibits a number of inter-
esting features which have not been previously
discussed.

In Sec. II we define our notation and discuss
some of the approximations made. In Sec. GI we
develop the basic operator equations of motion
and put them into proper form for solution. In
Sec. IV we obtain solutions for the dynamics of the

dipole moments and the populations of the atomic
levels. We discuss the dependence of the steady-
state population distribution upon the intensities
of the applied fields and present a situation in
which the average population in the highest atomic
state exceeds 50%. Absorption spectra are de-
scribed under various conditions. In Sec. V we
discuss the equations of motion for two-time-
operator products and give their solutions. This
allows us to describe the spectrum of the scattered
radiation, including the resonant Stark effect.
Section VI is devoted to an approximation scheme
which provides a straightforward interpretation
of some features of our solutions. Basically, the
resonant interaction of the atom with the applied
field modes is treated by finding the lattice of
dressed states of this system. Spontaneous emis-
sion is then introduced with an appropriate form
of rate equations. Expressions for the atomic
population distribution and for the power in the
sidebands of the emission spectrum are found
and compared with the QED predictions. In Sec.
VII we summarize our results. Finally, analytic
forms of the steady-state solutions for the dipole
moments and atomic populations are given in an
appendix.

II. NOTATION AND DESCRIPTION
OF THE ATOM-FIELD SYSTEM
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FIG. 1. Three-level atom interacting with the two
monochromatic appl. ied fields.

Consider the situation illustrated in Fig. 1. A

three-level atom has energy levels Eg &E~ &E3,
corresponding to the three states ~1), ~2), ~3).
It is interacting with an electromagnetic field
which initially has only two modes populated. We
shall assume that these incident fields are de-
scribable by coherent states, although the assump-
tion of Fock states leads to equivalent equations.
The frequencies ~, and ~b of these modes are
near-resonant with the atom's transition frequen-
cies, so that
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h(O, =E2 —E, =@Q„

g(gb —E -E2 -=SQb.

(2.1a)

(2.1b)

The detunings of the applied fields from exact
resonance are defined by

5, =Q, —+„
5b —Qb —(Ob a

(2.2a)

(2.2b)

An atomic operator will be denoted by a sub-

scripted o,

(2.3)

The atom interacts not only with the incident field
modes, but with all modes X, where X has four
components and specifies the wave-vector and

polarization indices. The annihilation and creation
operators for the mode & are c, and ct. The in-
itially occupied mode of frequency co, is denoted

by X=n, the one of frequency ~b by &=p.
The total system is described by a Hamiltonian

H consisting of an atomic part, a field part, and

an interaction part:

of less importance for optical double resonance.
We have written Hl in a kind of "normal order, "
with the field annihilation and creation operators
placed to the extreme right-hand and left-hand

sides, respectively, in each operator product.
This is possible since atomic operators always
commute with field operators having the same time
argument. This ordering leads to some computa-
tional simplification, "although it is strictly
equivalent to any other ordering. " Finally, it
is well known that in making the rotating-wave
approximation, we are throwing away terms which

contribute to radiative and Bloch- Siegert-like
shifts. For consistency, similar terms (i.e.,
terms which can be identified as rapidly oscil-
lating) and their contributions to such frequency
shifts will be neglected throughout this calculation.
Moreover, since our principal interest concerns
the effects due to the applied fields, those shifts
which occur even in the absence of such applied
fields will in general be ignored or assumed to
have been incorporated in the atomic transition
frequencie s.

H =H~+H~+H (2.4)

The atomic part satisfies the eigenvector equation
III. OPERATOR EQUATIONS OF MOTION

The field part of the Hamiltonian is the usual

expression

H~ = 5 Z co) c) c) .

(2.5)

(2.6)

The equation of motion for a single time oper-
ator O(t) is given by O(t) = (ilt) '[O, H]. Using the
Hamiltonian (2.4), we find that the atom-field
system evolves according to the following equa-
tions:

The interaction part of the Hamiltonian can be
written in the dipole and rotating-wave approxima-
tions in the form

011 —ZV21 ~g~cg —Z ~gtf C)ta'12

~ V )t V
33 32~gb X ~gb )t 23~

(3.1a,)

(3.1b)

Hl KQ (ga 21 1L+ga C1 1 gb232 1+g3 C1 23). 21 a 21 31 g b X g X 22 ll

(2.7)

The factors g, and ga are the usual coupling con-
stants

(3.1c)
~ ~

32 3 32 31. ~ga 1 ~ g31( 33 22)t

g,' = ice g
.d, (-2v(u), /if V)"'

g1= ieeq-d, (22&uq/tt V)'i2

(2.8a)

(2.6b)

(3.1d)

where e is the polarization vector of the X mode,
B, =(2ir 1), Ba=(3iri2), and V is the quantization
volume. We have explicitly taken (3 ir i1) to be
zero Also, tt.~Q, —03~ is assumed to be much
greater than the interaction energies or 5 times
the Einstein A coefficients of the atomic levels,
so that there is no difficulty in associating a par-
ticular emitted frequency with one or the other of
the atomic transitions. This excludes the possibil-
ity of equally spaced levels, a situation which is
of interest in microwave double resonance, but

P)t = —'L47)tc)t —Zg 0'12 —'Eg b 023

(3.1e)

(3 .1f)

ig1 & (t1)e twit t t')dtt--
0

(3.2)

The field equation (3.1f) can be formally integrated
from the initial time t =0 of the interaction, yield-
ing

t
c1(t) = c(0)e '"1'—ig1 o»(t')e '"1" ' 'dt'

0
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When expression (3.2) is substituted for the field
operators in Eqs. (3.1a)-(3.1e), the atomic oper-
ator equations are found to contain only initial-time
field operators.

It is customary to treat integrals like those
appearing in (3.2) by making the harmonic ajproxi
mation, which assumes the atomic operators
evolve as they would in the absence of any coupling
to the field:

o (il) o ($)et()3(t t')

Q. (i ) o ($) cin (zt-t )'
The validity of this approximation is limited to
time intervals much shorter than a Rabi period
or a natural lifetime. It will be used only when
the o(t') appears inside an integral over time and
summation over frequency, such as

o»=(iQ3 —P, —Fz)ozz —io» gg', e ' z'c, (0)
)t

—i Q c',(0)g',*e' zt(o„—o„), (3.4(i)

d» =(iQ, +iD, —I',)o» —i g czt(0)g,"e'") to»
)t

+i c~ 0 g *ei")t'0„, (3.4e)

where the decay constants, which are half the
usual Einstein A coefficients, are defined by

r. =- P ~g", ~zm6(n. (O, )-,

r, -=Q ~g', ~'-z(5(n, (o,), (3.5b)

and the generalized decay constants' are given

by

T
—o (i) g ~gll

~

e-i(4I3-ng)( -t')d$ (3 3)
)t 0

Here the harmonic approximation is justified, be-
cause the sum over all modes will force only those
values of t' within a few optical periods of t to
make a significant contribution to the integral.
When t = T, the upper limit on the integral in
(3.3), this treatment leads to a decay constant
and a frequency shift. " We shall ignore this fre-
quency shift, which arises from a principal-part
integral and has been discussed in some detail,
particularly for the two-level atom. "" Alterna-
tively, one could assume that such shifts have
been incorporated into the original definitions of
0, and 0&.

Using this approach we eliminate the operators
evaluated at t' which appeared after substitution
of (3.2) into (3.1). The atomic operator equations
of motion become

I 3
—= Q g g )3(6(Q3 —(I)z), (3.6a)

I'„-=+g,'g,'*)(5(Q, —(u,}. (3.6b)

(g„&=21",(X„&+iG, (x„&—iG, (X„),

(X»& = -21'3&X33& —zG3 &X-)+ iG3 &X.3&

(3.7a)

(3.7b)

We take the expectation va. lue of Eqs. (3.4) in a
product state of a monochromatic coherent state
for each of the initially occupied field modes and

an arbitrary initial state for the three-level atom.
Common oscillations at optical frequencies are
removed by transforming to slowly varying oper-
ators:

x;;(i) =o;;(i), x„(i)=o„(i)e """"3",
x„(i)=o„(i)c '"', x,.(i) =o„(f)e '"",

and similarly for their Hermitian conjugates. The
equations for the expectation values are

0'» ——21',o»+ io» g g,e '"3'c~(0}

—z g ct(0)g)I 8(IAlzto

o„=-2I'„o;, —io„gg', e '"z'c, (0)
)t

+i+ c,'( )g0", e' zto33,

(3.4a)

(3.4b)

(X„)=(i5, —I )(Xz)&+ iG3(X3)& —zG,*(X»—X„),
(3 .7c)

(x.,&=( 5, —l.—I',)&X.,&

-zG, (X») —zG3 (X33 X33) (3.7d)

(X„&=(5.+ 5 —I' )(X, &- G.'(X„&+ 'G*&X„),

(3.7e)

where
o„=(z g, —I',)a„+(I',*,+ I'„)o»

+ io3) g g,e '"3'c,(0)

G, -=g,'(c,(0)),

G, =-g, (c()(0)&.

(3.6a.)

(3.8b)

—i Q c,'(0)g,"*e'"zt(a» —o„), (3.4c) Note that the I',*, and I;, terms in the a„equa-
tion no longer appear. If ((, and d, are orthogonal,
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these factors are identically zero. In general the

I;, and r~, are nonzero, but the time dependence
of the terms in which they appear (in the slowly
varying operator equations) includes an oscilla-
tion at the frequency m, —~,. Because /z

~
u, —~~~

has been assumed to be much larger than either
the interaction energies fi (G, (

and k )G, )
or hl;

and Ar;, such terms are rapidly oscillating and

have been neglected. This could not be done for
equally spaced atomic levels, unless d. c(~=0.

W'e mention here that the assumption that the
two monochromatic applied fields are coherent
states is not strictly necessary. One can alter-
natively go to the thermodynamic limit, where the
quantization volume V and also the photon numbers

(n„& and (n8& become infinite, but in such a way
that the photon densities (n )/V and (nz&/V ap-
proach finite values. In this case equations equiv-
alent to (3.7}can be derived, independent of the
specific form of the states of the two initially
occupied modes. By equivalent, we mean that the
predicted response of the atomic system (e.g. , its
emission spectrum and the time development of
the population distribution) as a function of the
intensities and detunings of the incident fields is
identical.

Although these equations have been derived
using QED, they are identical to the Bloch-type
equations one expects for this problem. For this
reason they are similar to equations previously
found by other investigator s8- i i.i4, i5 when the
applied fields were assumed to be classical and

damping was added phenomenologically. Because
those treatments describe atoms in a gas, the
main difference between their equations and ours
is in the decay terms. Their equations describe

&x„) + &x., ) + &x„) =1 (3.9)

holds for all time.
If we now add to Eqs. (3.7) the equations for

(X»&, (X»&, (X»), and (X»&, we find a closed set
of nine equations. They are particularly simple
because they are linear coupled differential equa-
tions with constant coefficients. In matrix nota-
tion they can be simply written

—V(t) =AV(t) .d
dt (3.10)

V(t) is a gx I column vector We t.ake its elements
tobe V, =&X„&, V, =&X„), V, =(X„), V, =(X„&,

V9 (X22 ) With this choice of ordering the 9 x 9
matrix A becomes

a situation where the relaxation between the atomic
levels ~1&, ~3&, and ~3& is slow compared to the

decay from these states to levels outside the reso-
nant system. This is the opposite of the situation
described in this paper. A direct comparison
shows that the decay terms in the off-diagonal ma-
trix element equations in Refs. 8-11 and 15 can be
chosen to make those equations equivalent to our
equations (3.7c)-(3.7e). However, the equations for
the level populations found in those papers and in the
paper by Brewer and Hahn" differ from ours, even
when their incoherent "background" pumping terms
are set equal to zero. This is because their phenom-
enological decay matrix was chosen to be diago-
nal, so that an excited state can decay only out of
the three-level system, and not to another state
within it. In contrast, under our equations the

equality

—iGq

-iG,* i &, —I; —I; -iG,
i4. +ia, —r, iG,*

i6, —I; iG,*

iG,

-iG. -i&.—I;

iG,*

iG,

0

—iG,

2I',

iG,

-iG.

IV. SOLUTIONS OF THE EQUATIONS OF MOTION

(4.1)

The solution of (3.10) is formally given by
9 9

V; (I) =g P v; (m )w,.(m) V, (0)e'"' .
m=i j=i

-i6, - r.- r, -iG,
-2r.

(3.11}
I

Here s is one of the nine eigenvalues of A. The
gx1 column vectors v(m) and w(m) are, respec-
tively, the eigenvector and reciprocal eigenvector
associated with s . These quantities are readily
evaluated numerically by computer, giving us
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complete dynamical solutions for the expectation
value of any of the nine atomic operators. These
solutions are a function of the six parameters of
the theory: the two decay constants, I; and I~;
the detuning of each of the modes from resonance,
~, and &~; and the interaction energy of each tran-
sitton, a

I G, l
and + IG,I.

For the general situation in which both inter-
action energies and decay constants are nonzero,
one eigenvalue will be zero. For convenience we
order them so that it is the first eigenvalue: s, =0.
The corresponding reciprocal eigenvector x (1)
can be chosen so that its onLy nonzero elements,
w, (1)= m, (1)= w, (1), are equal to unity. (Note that
this represents the combination of operators which
form the identity. ) All of the other eigenvalues
have a negative real part. Therefore in the long-
time limit all nine expectation values V, (t} assume
values which are independent of time. These
steady-state values are independent of the atom's
initial condition, as one can see from (4.1). In
the long-time limit it simplifies to

limV, (t) = P u,. (1)w, (I)V, (0) = u, (1). (4.2)

Rather than attempt an exhaustive description of
the solutions (4.1) and (4.2), we shall limit our-
selves to a detailed discussion of certain inter-
esting specific cases. However, general analytic
forms of the steady-state solutions (4.2} are given
in the Appendix.

One of the most interesting questions which our
theory can answer concerns the steady-state popu-
lation. distribution. How much population can be
put into the middle and highest atomic states'
We shall be interested in comparing our results
to those given by rate equations for the atomic-
state populations. From such a rate-equation
analysis one finds that the inequality

&o„)& &o„»&o„} (4.3)

must always hold. In the limit of the stimulated
transition rates becoming very much larger than
the spontaneous decay rates, the population of each
state approaches —', . The predictions of our theory
are qualitatively different from (4.3) and are
somewhat surprising. It is possible to have

(o») & &o»), or &cr») & &o» ), though both condi-
tions cannot be simultaneously satisfied.

We have first considered a three-level atom
with decay rates 1;=10and I, =3.33. It should
be noted that for compactness we have omitted the
units of our parameters G„G„F„I;, &„and

By inspection of Eqs. (3.7) one knows the units
must have dimensions of rad/sec. But the magni-
tude of i'te units is arbitrary, since multiplying all
frequencie. - by a scale factor leaves the results

unchanged. This scale factor can be chosen to
approximate various particular systems. For
example, if the units are considered to be 3.1
x 10' rad/sec, then I', = 10 implies that the first ex-
cited state has a lifetime 7, = 1/(2I', }= 16.1 nsec, the
lifetime of the 3P levels in sodium. Taking ~G,~=50
would then imply that the laser light at the lower
transition frequency is strong enough so that when
it is exactly resonant it causes the atomic popula-
tion to oscillate between the ground state and the
first excited state with a Rabi frequency Qs =2~ G, ~

and a Rabi period Ts ——2v/fls ——20 nsec. The criti-
cal intensity, which is defined as giving a Rabi
frequency of half the Einstein A coefficient, is
about 5 mW/cm2 for the 3s-3P transition in sodi-
um. " Thus ~G, ~=50 is ten times the critical field
and corresponds to an intensity of about 500 mW/
cm' at one of the sodium D lines.

Both applied-field modes are exactly resonant
(6, =0 = 6,}and the interaction energies are taken
equal. In Fig. 2(a) we show the steady-state atom-
ic populations as a function of the interaction
energy (G(=(G,)=~G,(. For )G)-5, &o„}is greater
than &o»). In fact, &v») becomes significantly
greater than &o»}, since they asymptotically ap-
proach the values 0.4 and 0.2, respectively. One
sees that already &o») &0.19 and &cr») &0.36 for
[G) = 20.

If we now detune the two applied fields in op-

positee

directions by 200, so that &, = 200 = -&~, we
find the population distributions shown in Fig.
2(b). For weak fields the excitation is less than
when the fields were exactly resonant. For
stronger fields, however, the detuning actually
increases the population in the upper excited state.
In both Fig. 2(a) and 2(b), &u„) =0.392 at ~GO=45.
But with the opposite detunings and (G~& 53, &cr»)
&0.4, a value it reaches only asymptotically for
exactly resonant fields. For the situation of Fig.
2(b), &v») reaches a maximum value just above
0.406 near

~ G~ =80 and then begins to decrease
slightly.

Conditions whereby the lower transition may
become inverted are shown in. Fig. 3. The decay
constant is the same for both excited states, with

I;=1;=10. The exactly resonant applied fields
have been chosen so that the interaction energies
for the first and second transitions are in a 2:1
ratio, (G)=(G,[=2(G,). Again the atomic-state
populations are plotted as a function of (G~. Be-
yond the crossover point at ~G( = 32 the middle
state has a greater population than the ground
state. As ~G~ becomes very large, the popula-
tions asymptotically approach the limits

11} 451 & 22} 451 &»} 45

We have so far discussed situations when (o»}
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I.O

r~ =3.33

pb=O
.8

(a)

( 33)

IQ 20 30 40 50
0

0 IQ 20 30 40 50

I.Q FIG. 3. Population distribution as a function of the
applied-field strengths, showing a situation where the
lower transition becomes inverted for strong fields.

~ 2

IQ 20 30 50

FIG. 2. Steady-state atomic population distribution as
a function of the strength of the applied fields, (a) which
are exactly resonant (the upper transition becomes in-
verted), and (b) which have detunings of equal magnitude
but opposite sign.

& (v») and where (o») & (o'»). It is also possible
to have (u„)+ (o»). For the parameters F, =10,
I;=I, &, =0=&„ IG, I=4&i, and IG,I=32, one finds

(o„)=0.326, (cr») =0.154, and (v„) =0.520 in the
steady state. Not only is the third state's popula-
tion greater than the ground state' s, it is greater
than &

& ln Sec. VI the conditions for getting a
large steady-state population in the upper excited
state are discussed in some detail.

The atomic population distributions we have dis-

cussed above are interesting not only in their own

right but also because of how strongly the rate-
equation predictions (4.3) are violated. But upon
reflection this disagreement is reasonable. The
rate equations assume that the off-diagonal ele-
ments of the density matrix are zero or negligible.
This is a poor assumption when an applied field
is creating a coherent superposition of the atomic
states. In the last example above, where (os~)
= 0.520, the steady -state value of I(g„)I is 0.248,
or more than 60% of its maximum possible value
of ((v»)(o»))'~', which is attained only when the
superposition of the states Il) and I3) is a pure
state. This will be discussed further in Sec. VI.

One of the recent practical uses of double opti-
cal resonance has been absorption spectroscopy. ' '
By tuning one of the applied-field frequencies
while simultaneously monitoring the intensity of
the fluorescence from the middle or highest states,
one can directly measure such quantities as upper
excited-state fine structure. Because the fluores-
cence from the middle and the highest states is
proportional to I', (o») and I'~(o»), respectively,
one can model these experiments by calculating
the atomic-state populations as a function of the
detuning of one of the fields. %'e have done this
for a three-level atom with I', = 5 and I'~ = 2. The
first field mode is held fixed while the frequency
of the second field is tuned over the relevant re-
gion. We have first treated the situation where
both fields are strong, IG,I= IG J= 30. The results
for detunings of the first applied-field mode of 0,
80, and 800 are shown in Fig. 4. The width of the



14 DOUBLE OPTICAL RESONANCE 1505
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FIG. 4. Absorption spectra for both fieMs strong, for
three different fixed detunings of the field exciting the
lower transition.

absorption spectrum for the second transition
(curve (o»)) is strongly dependent upon the de-
tuning of the applied-field modes. For 5, =0, the
half width a.t half-ma. ximum (HWHM} is about 50,
far greater than the natural width of the first or
second transition. This phenomenon is power
broadening. A strong field can appreciably excite
a transition even when it is somewhat off-reso-
nance.

For 5, =80 the peak in the curve (o») has shifted
to 6, = -80. At the point of overall resonance
6, + 5, =0 the height of the peak, and hence the in-
tensity of the fluorescence, has actually increased
slightly to 0.390 from 0.383 for 6, =0. The HWHM
has decreased significantly, to about 19. The (o»)
curve is slightly skewed, and the (o») curve peaks
at —72 instead of at the overall resonance point.

Finally, Fig. 4 shows than for 5, = 800, (o»)
again peaks when 5,+ 6, =0. At the peak the aver-
age population in the upper excited state is 0.178,
and is 0.072 in the middle state, which also peaks
sharply at this point. Though this is lower than
the peak populations for smaller field detunings,
it still represents a very significant excitation
and yields an easily detectable fluorescence sig-
nal. The HWHM of both curves is about 2.7,
which is one-third greater than the natural width
of the upper excited state. It is, however, sig-
nificantly less than the half-width of the spontane-
ous emission from the third level, which is the
sum of the widths of the first and upper excited
states. This means that upper states separated
by several natural widths (e.g. , about eight here)
could be individually resolved in the absorption
spectrum when &, = 800. This compares to a reso-
lution of only about 120 for 5, = 0.

The fact that (o») peaks when the overall detun-
ing 6, + 5, is zero is not a general result for strong

I I

I' =5 Ib=2 S =0

Ga 30Gb= I

I I

S(1=40
I

Sg =80

.02—

. OI

-80 -40 0 40 80 -80 -40 0
Sb Sb

40 -l20 -80 -40 0 40
Sb

FIG. 5. Absorption spectra showing (o&&) for a strong
lower field and a weak upper field, for three fixed de-
tunings of the lower field.

fields but rather a consequence of the equal inter-
action energies. If ~G, ~= 30 while ~G, ~

is decreased
to 10, then the peak for (o») shifts from —800 to
-801. The excited-state populations are down by
a factor of 5, and the HWHM for the lower and up-
per transition absorption curves are 2.1 and 2.4,
respectively. The shift and width of this absorp-
tion peak in a gas cell have been discussed by
Brewer and Hahn" [see their equations (40) and

(41)].
If the second applied field is a weak "probe"

field, the absorption curves differ radically. We
have decreased ~G, ~

to 1 and plotted (o») as a func-
tion of 5, for 6, = 0, 40, and 80 in Fig. 5. The
spectra are now double peaked. For 5, =0 the
spectrum is a symmetric doublet peaking at rough-
ly +30. This shape is readily understood in terms
of the dressed states of the strongly driven lower
transition, which are doublets containing equal
amounts of the first and second atomic states. "
A peak occurs when the second field is resonant
with the transition from either of the doublet states
to the third atomic state. As 6, increases, the
upper dressed state of the doublet contains more
of the second atomic state, and the lower dressed
state contains more of the ground state. Thus for
large detunings 5„ the third atomic state is connec-
ted by a much larger dipole moment to the upper
dressed state than to the lower. Nevertheless, the
last two curves of Fig. 5 reach their maximum values
when the probe field is tuned to the lower dressed
state. The much larger population in this state more
than compensates for the smaller dipole momentbe-
tween it and the third atomic state.

For the absorption spectra. described above, 5b
was varied while 5, remained fixed. One could
instead vary the lower transition field frequency
while holding 5, fixed. For this second type of
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absorption spectrum there will be a peak near
5, = 0, even when 5, is large. As an example, for
the same decay constants and field strengths as
in Fig. 4, but with 5~ fixed at -800, both ((r») and

(o») peak at 6, =800. These peaks are virtually
indistinguishable from those of the third graph of
Fig. 4. However, after decreasing to less than
0.002 at 5,= 740, (v») increases to a maximum
of 0.492 at 6, = -1. The HWHM is 43 for this
peak, which exhibits strong power broadening, in
contrast to the peak at 5,= 800. There is also a
relative maximum of 0.0007 for (o») at 6, =2, and

this peak also has a HWHM of about 43. Note that
the population of the third atomic state at 5, =0 is
only»'~ of its value at 5, =800. We have not pre-
sented any graphs of absorption spectra of this
second type. However, spectra of either type,
for arbitrary values of the parameters, can be
plotted from the general solutions given in the
Appendix.

Until now we have talked only about the steady-
state population distributions, which are reached
after the atom has interacted with the applied field
for several natural lifetimes. We recall that if
a two-level atom interacts with a strong mono-
chromatic field so that lGl& 1', then in times short
compared to a natural lifetime the populations are
oscillating and can reach values considerably dif-
ferent from the steady state. In this regime one
talks about optical nutation, m-pulse excitation,
and self-induced transparency. The same phe-
nomena can be discussed in the context of a three-
level atom interacting with two applied-field
modes.

To illustrate the time-dependent behavior of the
atom we have chosen an example which shows the
importance of the condition that the overall detun-

ing 5,+ 5, equal zero if one wishes to significantly
populate the upper excited state. This is, of
course, just the condition that the excitation of the
atom from state ll) to state l3) with the absorption
of one photon from each applied-field mode be
energy conserving. Consider an atom whose sec-
ond and third states have equal decay coefficients

and take IG I=IGNI=100
tion energies are large compared to SI', and AT', .
However, they are small compared to the indi-
vidual detunings, which have been chosen to be
5, = 3000 = -5~. The atomic- state populations for
these values of our parameters are (o»)=0.338,
(o») =0.331, and (o») =0.331 in the steady state.
For short times, however, (o») and (o») oscil-
late with aperiod of about 0.94 x(1/2I;). Assuming
the atom is initially in its ground state, (o»)
reaches a value of just over 0.80 at the peak of
its first oscillation. The value of (o») has fallen
to about 0.03 at this same time. This is shown in

I.OO
I I I I I

.80

ro= 5
So= 3000
Go =IOO

Lb
=.5

Sb =-3000

Gb = IOO

.60

.40

.20

0 I I I

0 0,5 I.O I.5 2.0 2.5 50 3.5

FIG. 6, Transient response of the population distri-
bution during the first few lifetime. es after the turn-on of
the applied fieMs.

V. SPECTRUM OF SCATTERED LIGHT

With the approximations of Sec. II, the number
of photons spontaneously emitted into the mode
X (X4 n, P) is given by

+
l
g'bl'o32(t')o23(t")]

The first term on the right-hand side will differ
significantly from zero only for those modes X

Fig. 6.
These very large inversions for short times are

more easily obtained for exactly resonant fields.
But the fact that they can also be obtained for

for example, that to excite atoms in a poorly col-
limated beam by a two-step transition it may not
be necessary to saturate the Doppler width. If a
suitable middle level can be found so that 0, and

0, differ only by a few percent, then residual
Doppler e~fec~s on t e over~i transition ll) to l3)
become negligible when the applied fields propa-
gate in opposite directions. However, to make
the periods of oscillation of atoms throughout the

Doppler line comparable, the mean detuning 5,
would have to be large compared to the Doppler
width. This in turn would require more intense
applied fields.
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xe~(to),-ol )(t" -t') (5.2)

The number of photons of frequency co, emitted
from the upper excited state is given by

whose frequency ~~ is near (d, . Similarly, the
second term on the right-hand side d1ffers signi-
ficantly from zero only for those modes X for
which (d„ is near rob. Therefore the number of pho-
tons spontaneously emitted with frequency &d„near
the lower transition frequency is given by

t

0(.(.„x))= f ee ex (e ~

-x 'x".,(e-),.
0 0

single-time-opexator equations of motion. How-
ever, we stress that this is true only because we
have t" & t'. When t" &t', this commutation does
introduce additional terms into the equations of
motion, which then differ markedly from those for
single-time operators. For this reason, a proper
understanding of this problem requires a @ED cal-
culation, as is discussed in detail elsewhere. "

We again assume that the applied fields are de-
scribed by coherent states. In the spirit of the
rotating-wave approximation, we drop those terms
which are rapidly oscillating and find a closed set
of coupled differential equations with constant co-
efficients of the form

&Iv', ((d„t) ) = «' dt"
~ g,'I'x„(t') x„(t") —a=A W.

d
(5 5)

i (~),-tabb)(t" -t' )Xe (5.3)
It can be shown" that in the long-time limit the

correlation functions axe stationary in the wide
sense, i.e., they then depend only on the time dif-
ference t" — t' as both t' and t" become large in
comparison with the natural lifetimes. In this
steady-state limit the spectra become independent
of the initial atomic conditions and become pro-
portional to the time dex ivative of the photon num-
ber. From now on we shall consider spectra only
in this long-time or steady-state limit. Thus the
expressions for the spectra of the light emitted
near the upper and lower transition frequencies
respectively, simplify to

The matrix@ has been given in (3.11). Equation
(5.6) ha. s the same form as Eq. (3.10), but with a
different interpretation of the variables. The TV,.
are now expectation values of two-time operators:
~, (r) = &x„(t')x„(t'+r)), ~,(r) = &x„(t')x„(t'+ r)),
etc. for the lower transition; and for the upper
transition 1V„'(r) = (X»(t')X»(t'+ r)), W,'(r)
= &x„(t'}x„(t'+r)), etc.

Again, a formal solution is easily written down
and can be evaluated by computer. The initial
conditions are at v =0 and t' very large (since we
have gone to the stationary limit). Thus the initial
conditions involve only the steady-state values of
single-time expectation values. The spectrum of
light near frequency (d, is found from

(.(,} A Ae f (X. (e&X,.(e ~ )&
"" "ee),

t ~—+ c)o 0 R f (x)e (5.V}

(5.4)
~ ()0

),(,) (™Ae (x.*(x)x*.(e")&""'"e')
tR—x {)o eee 0

(5.5)

The 7' dependence of two-time operators such
as 8(t', t")=X»(t')X»(t"), where t"= t'+ r, is found

by taking derivatives with respect to t". The
terms involving a sum over all field modes are
eliminated as before t,y the substitution of a. for-
mally integrated solution of the c~ and c, equa, —

tions, followed by a hax'monic approximation under
the integral. The only additional difficulty in sim-
plifying the equations for two-time operators,
which was not present for the single-time-operator
equations, is commuting o»(t') and o»(t') with
c~x(t"). This is necessary in order to have the
factor 2, c~(0) appear on the extreme left-hand
side in the opera, tor product, where it simplifies
the equations when the expectation value is taken.
This commuting introduces no terms into the equa-
tions of motion tha. t were not also present in the

and the spectrum near the upper-transition fre-
quency is found from

co

) { ) Ref }e'( )e"" "'e (5.a)

We have calculated emission spectra for a wide
range of values for the parameters. In general,
the spectrum associated with each atomic transi-
tion frequency may have up to seven separate
peaks of greatly varying intensities. Unlike the
driven two-level atom, whose emission spectrum
is symmetrical about the applied-field frequency,
the three-level atom spectra are in general asym-
metrical. They become symmetrical only when
both applied-field detunings are zero.

Figures 7 and 8 are graphs of the emission
spectra in a general case where I;=1, I'b =2,
G, =10, Gb —15 and &, = 20. For Fig. 7 we have
chosen &b to be -20, and for Fig. 8 we have taken
&b =0. There is an elastically scattered compo-
nent in each spectrum that should theoretically be
represented as a 5-function at each applied-field
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FIG. 7. Emission spectra for a situation where the
fieMs are strong and have opposite detunings.

FIG. 8. Emission spectra for the same situation as in
Fig. 7, except that the detuning of the fieM at the upper
transition is now zero. Note that all, seven peaks near
~q are of comparable intensi. ty.

frequency. We have represented these in the
graphs by Gaussians of the same area with a 1/e
width of 2, drawn as a broken line.

In Fig. 7 the seven possible peaks occur at
~& —~,. =0, +11, +31, and +41. In I, the peaks
at -31 and 11 are missing, and the peak at -41
is very small. In I, the peaks at 31 and -11 are
missing. One of the interesting features of these
spectra. are their skewness about the applied-field
frequencies. As a result, the average emitted
frequency in I, is 25 above cu„and in I, the mean
frequency is 15.5 below ~b. Thus the atom is
emitting more power near frequency ~, than it is
absorbing at that frequency. This "gain" in energy
near ~, is precisely balanced by a "loss" in energy
near frequency ~~, so that energy is conserved,
as expected.

In Fig. 7 each mean emitted frequency was on
the atomic frequency side of the applied-field fre-
quency. This effect is more pronounced for great-
er detunings. For example, for the situation
I", =2, l" =0.5, G, =G =20, a, d 6, = —6 =1000,
the average emitted frequencies are 995 above ~,
and 1000 below ~~. Of course, as the intensity of

the second field is lowered, the average frequency
emitted in the first transition must move toward

(d~

In Fig. 8 the second field is exactly resonant
with the second transition. I, is an example of a
spectrum in which al1. seven components are read-
ily visible. The mean frequency of I, is 7.9 and

for I~ is -5.9. Again, energy is conserved for the

two transitions considered together.
The mean emitted frequencies are precisely

the applied-field frequencies when both detunings
are zero. The spectrum in such a situation is
shown in Fig. 9 for the values I;=1, I'~=3, G, =20,
and G, =30. Only five peaks appear because two

peaks overlap at the first sideband on each side.
The spectra are symmetric about the applied-
field frequencies, and the peaks are almost equally
spaced. Some interesting properties of these
symmetric five-peaked spectra are discussed at
the end of Sec. VI.

When both applied fields are below the critical
field strengths and near resonance, each spectrum
has a single predominant component. For the
lower transition most of the light is scattered
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FIG. 9. Emission spectra for a situation with both
fields strong and exactly resonant, showing the charac-
teristic five-peaked symmetric shape.

elastically, so the &-function component is strong-
est (as in a two-level atom). For the upper tran-
sition most of the light is scattered in a line with
a. HWHM approximately equal to I'„and the in-
tensity of the &-function component is negligible.

VI. DRESSED STATES AND RATE EQUATIONS

In Sec. IV we commented upon how poorly the
usual rate-equation treatment fared in predicting
our results. This failure was ascribed to the
neglect of the large off-diagonal terms of the den-
sity matrix, which were induced by the near-
resonant fields. There is an approximation method
tha. t does take into account the coherent mixing
effects of the applied fields, and which in addition
provides a better intuitive understanding of a
number of the results of Secs. IV and P than do the
complicated and involved formal solutions.

Denote by HI only that part of the interaction
Hamiltonian Hz of (2.7) which couples the atom to
the two initially occupied modes n and P:

g
[' a+ 8 8* tHl I. go vgtcat+ga catvza + gb vs2 g +gb cso2s] '
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FIG. 10. A representation of the lattice of dressed-
state tripl. ets.

The spectrum of the Hamiltonian 0„+0„+HI is a
lattice of closely spaced triplets of eigenstates.
Each set of triplets is characterized by a pair of
indices (n„n,), which indicates that those triplet
states are a. linear combination of the three nearly
degenerate direct product states ~n„n~)~1},

is a Pock state with n, photons in the mode o. and

n~ photons in mode P. These eigenstates are
dressed states of the system. " The small energy
splittings within a triplet are of course due to the
coupling of the atom to the applied fields, and are
referred to as the resonant Stark effect.

In real laboratory experiments one uses finite-
amplitude electromagnetic fields. In a Pock-state
description, these are best represented by going
to the thermodynamic limit in which the number
of photons n, and n„ in the applied-field modes as
well as the field quantization volume V go to in-
finity in such a way that the photon densities n, /V
and n~/V approach finite limits. Then the energy
splittings will be the same for all triplets within

a finite distance of each other on the lattice. Such

a lattice of dressed-state triplets is represented
in Pig. 10. The vertical dimension represents
energy, so this diagram is for (d, & ~,. Subtraction
of one photon from mode P, represented by going
to the triplet below and to the right-hand side of
the original, results in a greater decrease in

energy than subtraction of a photon from mode n,
represented by going to the triplet below and to
the left-hand side of the original.

The part of the Hamiltonian which couples the
atom to the infinite number of initially unoccupied
modes has so far been ignored. It results in ener-
gy being scattered out of the applied fields into the
other modes. Such an event can be interpreted as
a transition, from a dressed state in some triplet
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(o„& = (s'I;+ c'I;)/(2c'I'b+s'I", ),

(o„& = c'I;/(2c21;+ sbi. ), (6.2b)

into a. state of one of the two tx'iplets directly be-
low it (as indicated by the dotted lines in Fig. 10),
with the simultaneous emission of a photon of the
appropx"iate frequency, This event is an incoherent
process and might be fairly well described by rate
equations. Indeed, we have fouQd good agreement
between our results in the limit I G, l, IGbl » I".

1 ib
and those of a rate-equation calculation on the
dx'essed states. It 18 oQly ln this stl ong-field
limit, when the decay constants ax"e negligible,
that the dressed states (found by neglecting the

coupling to the initially unoccupied modes, which

gave us I; and I; in Sec. III) are a good first ap-
proximation to the eigenstates of the total sys-
tem.

The asymptotic 11Dllt8 given 1Q Sec. IV for the
atomic-state populations were origin. ally found
from the following kind of rate-equation calcula-
tion on the dressed states. First the dress states
lv, &, Iv, &, lv & were calculated for a particular
triplet (rr„rbb). Then the total decay rate of each
state Iv,. & to the set of triplets (n, - II, nb) was
assumed to be 21'. I(II. —1, rI„2 Iv;&I'; that is, 2r.
times the probability of the atom being in state
~2& when the system is in state lv;&. Similarly,

the total decay rate of lv,.&to the set of triplets
(n„nb —1) was assumed to be 21'bl(rb, —1, rbb —1;

B'av,

.
&
'. The branching ratios for decay to

each state within the triplet (n, - I, rbb) were as-
sumed to be given by the probability of the atom
being in its ground state I1& when the system was
described by that dressed state. The branching
ratio to each particular dressed state of the trip-
let (rrb, rib 1) wRS 'tRkell 'to be 'tile p1obabllity of
being in atomic state I2& when that dressed state
described the system. Fox example, the decay
rate from the state lv & in triplet (n„n, ) to state
lv+& in triplet (n„rbb —1) is

2Ibl&n, -l, nb-l;Siv &I'l&n. - l, sb-l;2lv. &l'.

The cascading down the lattice of dressed states
which is given by these rate equations is assumed
to describe the process of spontaneous emlsslon.
Finally, if one sums over all lattice vertices (i.er. r

over all occupation numbers for the incident-field
lllodes II Rnd p), olle fiIlds tllRt tile pl.oilRbllitles
of the system being in the upper, middle, or lower
state of a triplet soon become independent of time.
The corresponding steady-state population, distri-
bution for the atomic states can then be easily
e alculated.

The general rate-equation predictions for exactly
resonant fields are

(cr»& =s'c'(I;+ I;)/(2c'I;+s'I;), (6.2c)

(cr» &„=(21' + I )/2(I'+ I )' . (6.6)

As r goes to zero (I;««b), (a„& approaches
—,'; as r goes to infinity (I;»& I;), (o»& approach-
es unity. Both of these limits strongly violate the
maximum of —,

' given by an ordinary rate-equation
treatment of the atomic states. The minimum
VRlue of (6.6) 18 exRctly b Rnd occu18 wllell Ib =2?g.

In the example of Sec. IV where we found (o»&
=0.520, the system we considered had an & value
of 5, which implies an upper limit of 0.5252 on
(o»&. Thus our choice of field strengths there
resulted in an upper excited-state population of
99% of the maximum. In a three-level system
with Fb = 98Ib, ((Ebb&mb„would be Rilou't O.VVr col'-
respoQdlng to & =7. Although we know of no str1ct
three-level system with such a disparity in the
level decay rates, highly excited states, referred
to as Rydberg states, "do have very slow rates of
decay. Therefore in a. transition fxom the ground
state to a first excited state to a Rydberg state
it is not difficult to find the ratio of the decay
coefficients of the first to the second transition
to be 100 or even much greatex. U'nfortunately,
such a high excited state is more likely to decay
to a state outside the original three-level system.
than back to the first excited state.

One can also use thxs dressed-state rate-equa-
tion approach to calculate the integrated intensi-
ties of the emission spectxum components. It is
obvious by inspection of Fig. 3.0 that there are
nine possible transitions between a pair of tx"ip-
lets. Since three of these txansitions are Bt the
applied-field frequency, this means that in general
seven peaks will be visible. Also, the thxee side-
bands on either side of the applied-field frequency
must be symmetrically placed.

%hen both applied fields are exactly resonant,
the dressed states in the triplet are equally spaced.

c'-=I G.l'/(I G.l'+ I Gbl'),

s' =-
I Gbl'/(I G.I'+ IG,I').

These results agree with the solution of Eqs.
(3.10) for steady-state populations in the strong-
field limit, as ean be readily confirmed by com-
parison with the leading terms of the solutions
given in the Appendix.

It is easy to show from EIIs. (6.2) that the steady-
state population in the highest atomic state is max-
imized by the condltlon

cb/s2 (F /2F )r/2 (6.6)

I.etting r=(I",/21"b)I', I one finds when this condi-
tion is satisfied that



Therefore only five components appear in the
emission spectrum, and the second sideband will
obviously be the same distance from the first
sideband as the first sideband is from the central
peak. We have made a rate-equation calculation
on the dressed states to find the integrated inten-
sities of the emission lines when both detunings
are zero. In the lower-transition spectrum, the
areas of the peaks are in the ratio

(6.V)

For the upper transition the areas under the peaks
are in the ratio

(6.8)

It is interesting that the ratios in the lower transi-
tion depend only on the interaction energies, while
the ratios in the upper transition only upon the
decay constants. Again, these results are expected
to be valid only in the strong-field limit. The
agreement with the example of Fig. 9 is fairly
good. The areas under the smallest peaks in
each spectrum are about 10%%uo too large, when the
"area under a peak" is defined as the area within
adjacent minima of the spectrum. Most of this
discrepancy is attributable to the tails of the
larger peaks overla, pping the smaller peaks. The
@ED calculation of the area associated with each
complex Lorentzian differs by less than R%%d from
the rate-equation px ediction.

VIL SUMMARY

In this paper we have determined the response
of a three-level atom irradiated by two near-res-
onant monochromatic fields. We presented solu-
tions for this model system which are valid over
the full range of possible atomic decay constants
and incident-field strengths and detunings. Several
specific examples of absorption and emission spec-
tra were discussed in detail. The absorption spec-
tra show strong dependence upon the incident-field
strengths and detunings. However, if the fields
are chosen to equalize the interaction enexgies of
the two transitions, we found that the upper excited-
state population peaks at the point of overall res-
onance (6, + 6„=0). Thus for high-resolution spec-
troscopy one should use strong fields to maxi-
mize (e») and hence the signal. But the fixed low-
er-transition field should be detuned significantly
from the middle level to reduce the power broad-
ening and improve the resolution. One can then
have an absorption peak for an upper excited
state which is narrower than the spontaneous emis-
sion line from that state.

The emission spectrum for an atom in the pres-
ence of strong fields was shown to consist of

seven peaks near each transition frequency. A
central peak, which includes a 6-function (i.e.,
monochromatic) component, appears at the inci-
dent-field frequency. Three sidebands appear to
each side of this central peak, symmetrically
located with respect to it. In spite of this syxn-
metry in the location of these peaks, the spectra
are in general asymmetrical, because the inten-
sities of symmetrically placed sidebands are not
equal. When both fields are strong and exactly
resonant the spectra become symmetrical and
have only five peaks.

The lattice of dressed atomic states for the
resonant system was discussed, and the use-
fulness of dressed states in providing an intuitive
understanding of a number of our results was
stressed. A rate-equation calculation on the
dressed states was described which gives results
in good quantitative agreement with the exact
solutions for strong fields. With it one ean easily
derive two surprising predictions of the full theory.
First, one can show that for certain values of the
atomic decay constants the average population in
the highest excited state can exceed 50/g. Second,
in the limit of strong exactly resonant fields, one
can show that the ratios of the line intensities
for the lower transition depend only upon the in-
teraction energies, and the ratios of the line
intensities for the upper transition depend only
upon the decay constants.
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We found in Sec. IV that the nine quantities
(y;;) became independent of time in the long-
time limit [cf. Eg. (4.2)]. Analytic expressions
for their steady-state values are derived below.

Consider Eq. (3.10). For large times we may
set the derivative equal to zero, which gives us
nine linear homogeneous equations in nine un-
knowns. However, these nine equations, which
are of the form

~ $/~]. ++$2~/+ +A $9~9

are not linearly independent. We make a change

of variables by dividing each equation by V, = (X»),
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and we then neglect the ninth equation (i=9). The
xesult is a linearly independent set of eight linear
inhomogeneous equations of the form

A;, V,'+ +A;,V,'+A, ,=O, i=i, . . . , 6, (A2)

where

This set of equations can be solved by systemat-
ically replacing each equation by a linear combina-
tion of itself and the other equations. The process
is tedious but straightforward. We have derived
the following results, where G, and G~ have been
taken to be real:

v',. = v,./v, . (A3)

D = G',r,ri+ G,Gil i(2I, + ri) + GgGir ~(r, + ri)+ 2G,r,ri He[(r, + 1'„+in')(ri+ in'+ in, )]
G'.G',[r', )r, +r, + n, /'+r, (r, +r,)/r, +.n, +.n. /']+G'. r,r, /r. +r, +.n, /'fr, n,

.
n, f', (A4)

fV» = G",G'ir, (r, + I'i)+ G,Gi(1,+ 1 i)'+ G,G~I,1"
~
"~ 1,+ I'i+ in'

~

i, (A5)

iv„= iG,(G'.r,r,(r, +I, in, )+G',Gi[r,(r, + r,)(r.+ r, + in, )+r,r„(r.+ I,—in, ) r,(r.+ r,)(r, in, in, ) ]

&x»&/&x»& =A'»» (A V)

&x»&/&x»& =&»/D. (AB)

We have found similar expressions for &X»&/

&X2,&, &X21&/&X»&, and &X|i&/&X»& «wever t"e
numerators become progressively more compli-
cated. For numerical evaluation it is preferable
to return to the equations themselves and use the
fact that the solutions (AV) and (AB) have been
found. One then has

(x ) G G (x ) (r+ro —in) (x & (A9)

&X»& 1
G &X»& (r n n )

&X»& (AIO)
&x,) Gi '

&x..&
' ' ' (x..&

'

&x„) I G, (x„& i(r. -in. ) &x.,) (A11)

The individual expectation values can now be found
by using the conservation-of-population relation
(3.9), along with (AV) and (All), to find (X„).

The solutions above are exact and can be readily
programmed to pxovide absorption spectra as a
function of 5, or 5~, for example. Also, for zero
detunings and strong fields (G„G,» 1 „1",) the
leading terms in the ratio (X»&/(X»), as given by
(AV), are seen to be in agreement with the results
(6.2b) and (6.2c) found from a. rate-equation analy-
sis on the dressed states.
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