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The semiclassical interaction of a two-level system with a multimode electromagnetic field is discussed in
detail. The equations of motion for the macroscopic density matrix are transformed into a single integral
equation for the population density, with a complex kernel which can take into account both running- and
standing-wave configurations. The iterative solution to this integral equation, which corresponds to an
expansion in terms of powers of the electromagnetic field amplitudes, turns out to be divergent when the field
amplitudes are greater than some critical value. In the case in which the kernel is a periodic or quasiperiodic
function of time, a general solution to the integral equation is found, and this solution turns out to be unique
and convergent for every value of the electromagnetic (e.m.) field amplitude. This solution is expressed
through a continued-fraction expansion, whose terms are matrices, which can be readily obtained from the
kernel. This solution is a generalization of the continued-fraction expansion usually met in the strong-signal
semiclassical theory of lasers. Some particular cases are then treated in detail; among them, the solution to the
multimode operation in laser devices is given in which the excited level lifetime is long compared with the
period of the beating term between two adjacent modes. Although the theory presented is directed towards the
steady-state regime in multimode lasers, it may also treat the transient regime of laser operations, or it may be
extended to include phenomena where a strong e.m. field, made up of several modes equally spaced in

frequency, interacts with a two-level system.

I. INTRODUCTION

In 1964 a fundamental paper' by Lamb initiated
a series of works on the semiclassical theory of
gas lasers. This theory proved very fruitful in
describing a number of features of gas lasers,
such as mode competition, the "pushing" and "pull-
ing" of frequencies of the modes, mode locking,
and detuning dip. It then was generalized by sev-
eral authors' in order to include degeneracy of
laser levels, vectorial treatment of the electro-
magnetic field in the cavity, laser operation in a
static magnetic field (Zeeman laser), and unidi-
rectional and bidirectional ring lasers. The semi-
classical theory was therefore a powerful tool for
investigating both single-mode and multimode op-
eration, even if in the multimode case the calcula-
tions were very cumbersome.

All of the theory is based upon a perturbation
expansion in a power series of the electromagnetic
field, and in Lamb's paper the expansion was
carried out to third order. Later, a number of
authors' made calculations of successive orders
of the power series. Recently, a perturbation
tree was developed by O'Bryan and Sargent, ' who
described a suitable way of providing all the terms
in the expansion by means of a graphical technique
which enables one to make computer calculations
of the series expansion easily.

However, because of its inherent characteristic
of perturbative treatment, this formulation fails
in predicting the behavior of the laser operation at
a high level of excitation of the active medium.

This was first pointed out in a paper by Stenholm
and Lamb, ' who developed a semiclassical theory
suitable for treating high-intensity gas lasers.
The divergence between the two treatments be-
comes already apparent at an excitation level X
as low as 1.1.'

The strong-signal theory was also able to explain
some features in the experimental results of Bol-
wijn, for which the previous perturbative treat-
ment was inadequate. The treatment of Stenholm
and Lamb makes it possible to evaluate at all or-
ders in the interaction energy the polarization and
the inversion population density of the medium,
when a single standing mode is operating in the
laser cavity. %hen one allows for atomic velocity
(Doppler broadening), the solution for both these
quantities is given in terms of a continued frac-
tion. In turn, this continued-fraction expansion
proved quite a powerful tool in treating a large
number of phenomena where the atomic-medium-
electromagnetic-field interaction must be taken
into consideration at all orders. ' The convergence
properties of the continued-fraction expansion
were discussed by Feldman and Feld. ' Since then,
several authors' have extended the strong signal
theory in order to treat multimode phenomena in
lasers.

The purpose of this paper is to discuss in detail
a third approach to the interaction between a
strong electromagnetic (multimode) field and an
atomic two-level system. This method starts
with an integral equation for the population inver-
sion density; in the colbsionless case, or in the
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case where collisions do not affect the atomic
motion, the integral equation may be put in a form
known as Volterra's second-kind integral equation.
This approach seems to have some advantages:
It unifies the two theories discussed above, be-
cause one can obtain from it the expansion both in

a power series of the electromagnetic field and in
the continued fraction; also it allows one to es-
timate the radius of convergence of the series ex-
pansion, in some particular cases. Furthermore,
its solution in terms of the continuant theory, in
the single-mode case, suggests a generalization
to multimode operation.

In two limiting cases, i.e. , the close coupling of
the modes and in the large-separation case, the
integral equation may be solved, giving a good
starting point for multimode analysis. In Sec. II
the basic theory of the response of an atomic (two-
level) system to a multimode electromagnetic field
is given. In that section the integral equation is
derived. In Sec. III the convergence of the series
expansion which can be built from it is discussed,
while Sec. IV is devoted to the solution of the equa-
tion with an infinite set of equations in infinite
unknowns. It will be shown in the same section
that the continued-fraction expansion, which is
convergent, belongs to these solutions. In Sec.
V the solution to the multimode case is presented;
here it is shown that in most cases of physical
interest the kernel of the integral equation is a
periodic function of time, and therefore the inver-
sion population density may be expanded in a Fou-
rier series whose coefficients are determined by
means of a matrix continued-fraction expansion.
This expansion turns out to be convergent for any
value of the electromagnetic field amplitude. Fi-
nally, an application of the theory to the stationary
atoms case is presented in Sec. VI.

Our formalism can be applied to a number of
problems where the interaction of a two-level sys-
tem with a multimode electromagnetic (e.m. ) field
must be considered at all perturbative orders.
For example, we can mention saturation spectro-
scopy, where the saturating beam and the probing
beam are provided by lasers tuned at different
frequencies. "

II. BASIC FORMULATION

The semiclassical theory of lasers is based upon
a three-step procedure. F'irst, one solves the
Maxwell equations for the electromagnetic field
in the cavity, with a source term given by the
macroscopic polax ization of the medium. Next,
one evaluates the polarization of the medium in-
duced by that field. Third, a self-consistency
requirement is made: the field generated by the
polarization must be the same field which induces

the polarization. However, in treating the coupled
Maxwell-Bloch equations of motion, a simplifying
assumption can be made. In most laser cavities,
the modes of the electromagnetic field have sharp
resonances with high values of the quality factor
Q. On the other hand, the atomic lifetimes, i.e. ,
the decay times of the inversion population density
and of the polarization, are typically several or-
ders of magnitude shortex than the lifetime of the
electromagnetic field in the cavity. Thus the
atomic variables are assumed to follow adiabat-
icallythe field variables in the equations describing
the interaction between an e.m. field and matter.
The field amplitude is assumed to be constant
during the time in which the atomic variables
change appreciably.

Because of this discximination, the Maxwell
equations for the field amplitudes and phases are
readily written": the field variables of the nth
mode depend only on that component of the polari-
zation which is the projection of the macroscopic
polarization on the nth mode.

Some problems arise when we consider the Bloch
equations for matter. Here the broad line of gain
of each atom allows several modes of the e.m. field
to induce the component of the polarization in the
nth mode. As a result of the high field intensities,
nonlinear beatings of the modes are of importance,
and an adequate treatment must consider them at
all orders.

In what follows, we shall consider the Bloch
equations of motion for matter, and we shall de-
rive an integral equation for the inversion popula-
tion density n, where the beating terms of the e.m.
field couple the Fourier components of n.

We are primarily interested in the macroscopic
polarization induced in an atomic medium (a gas
with moving atoms) by a classical electromagnetic
field E(r, f) which is made up of a number of quasi-
monochromatic components,

E(r, t) = Q A„(t)U„(r).

Here, A„(t)has a rapid oscillation at frequency v„,
and it may be modulated in time with characteris-
tic frequencies much smaller than v„.U„(r)rep-
resents the spatial variation of the field. The
form (l) can represent both a standing-wave and a
running-wave configuration. We shall distinguish
between them at a later time.

Let us assume that all frequencies of the e.m.
field are nearly resonant with a two-level (non-
degenerate) transition of the atomic medium, so
that only these two levels are involved in the inter-
action, while the other levels form a nonabsorp-
tive background which may be taken into account
by redefining the index of refraction of the medium.



SEMICLASSICAL THEORY OF MULTIMODE OPERATION IN. .

E, -E~=N+. (2)

We assume that the electric field in (1) propagates
along one direction (say the z direction, which in
laser theories is assumed to be the axis of the
optical cavity), while its amplitude is constant in
a plane perpendicular to that direction. With such
assumptions, U„(r)= U„(z)&„where &„is a unit
vector perpendicular to the z axis.

A typical atom with an axial velocity v is excited
by an external pumping mechanism to an incoher-
ent superposition of levels g and b. The excitation
takes place at a certain coordinate z, and at a
time t, . If the atom does not suffer collisions
which can change its velocity, at a later time t
it will be in the position

Let ~a) and ~b), respectively, be the upper and the
lower states of any atom of the medium, with en-
ergies E, and E,. The transition frequency co is
then given by

distribution of velocities for atoms, the treatment
being quite general. We note that W(v) may also
include other mechanisms which cause nonhomo-
geneous broadening. In the stationary-atoms case,
for example, nonhomogeneity may be induced by
displacement of the transition frequency (d due to
local strains in the crystal lattice in which the ac-
tive atoms are embedded. In this case, v=0, and
W(a) must be replaced by the distribution of fre-
quencies W(&u).

The Hamiltonian which appears in (4) is made up
of two parts: the first one is the unperturbed
Hamiltonian H, of the two-level atom,

while the second one is the interaction Hamiltonian

A, which couples the atom to the field. We assume
that the interaction is an electric dipole interac-
tion. Furthermore, we assume that the dipole
moment p„ofthe atom has real matrix elements

z =zo+ v(t —fo). (3)

Starting from t„the atom interacts coherently
with the e.m. field; in a reference frame which
moves according to (3) the atom is at rest, and its
density matrix obeys the equation of motion

With such assumptions, H, has the form

(7)

(5)

Np= [a,p] (4)

starting from an initial value, at t = t„which, for
the particular pumping mechanism, takes the
form

We do not need to specialize W(e) as a Maxwell

Equation (5) represents a single-atom initial con-
dition. However, all atoms created at (z„f,) with
the same axial velocity v will have the same in-
teraction with the electromagnetic field, or, in
other words, will be represented by the same
density matrix p whose time evolution is given by

(4) and (5). We can therefore assume that all
these atoms are described by (4) and (5). Then
the initial condition (5} represents the density of
atoms created at (z„t,) in the upper (X,) or lower
(X,) state, with an initial velocity v.

We assume that the pumping mechanism is ho-
mogeneous and constant in time, so that ~, and

X~ will depend only on v. Furthermore, the v de-
pendence is assumed to be the same for X, and

X~, so that we can factorize the initial condition
as

0
p(f. , f.) = &(~)

Equation (4) is then written for the four compo-
nents of the density matrix:

b„=—(i Ih)s E(z, t)(p„—p„),
b = (ilfi)&E(z, f)(p. p), -

i~a., (i&@)-&E(z,&)-(fi, —p»),

p~a —po}) ~

(10)

(11)

(12)

(13}

where
(14)

E( )(z f) — E (f}c- ( 0+5„)P(z)
n

E' '(z, f) = [E"(z, f) ]*.
In (15), the summation runs over all modes into
which the electric field has been decomposed. A

The electric field as seen by the atom in the
reference frame where it is at rest differs from
the electric field as seen in the laboratory frame,
and a proper Lorentz transformation should be
performed in order to account for this change.
However, the ratio of the atomic velocity v to the
velocity of light t." under usual experimental con-
ditions is of the order of 10~, so that we shall
confine ourselves to a nonrelativistic treatment.
Therefore the electric field E(z, f) is given, in the
reference frame where the atom is at rest, by the
relation

E(z, t) =E"(z,+ v(t —t,), t)+ E' '(z, + v(f —t,),t),
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U„(z)= sink~. (18)

slow amplitude modulation can be allowed in &„(t),
but in what follows we shall restrict ourselves to
a steady-state field, so that the only time depen-
dence of E comes from the optical oscillations,
and from the variation of the z coordinate accord-
lllg to Eg. (3).

The spatial mode function U„(z)has different
analytical expressions in a running-mode configur-
Rtlon or 1Q R standing-mode configuration. In the
former case, we assume it to vary according to

U„(z)=e "~,
while in the latter case, U„(z)is a real function
of z which we assume to be

A damping term is then introduced into Eqs. (10)-
(12), in order to account for losses due to radia
tion damp~ or to some other relaxation mech-
anism. Equations (10)-(12) now read

p =-~.p, -(t&/tt)&(z, t)(p., p-), (19)

p» = Va-p»+ (@'/~)E(z, t)(p.g p~—,), (20)

p.,= —y.,p„i&op-., (i—a'/h)E(z, t)(p p„)—. (21)

This set of equations describes the time evolution
of those atoms which an external pumping mech-
anism has created at time t, and at position zp,
in an incoherent superposition of states

~
a) and

~
5) We. can perform a formal integration of (19)-

(21), obtaining the following set of integral equa-
tions:

p„(t,t,)=- —' e-""'-"E(z,+ v(t' t,), t')[-p„(t',t,) —p„(t',t,)]dt'+X,e .&'-"&,
t0

sa
p»(t, t,)= — e "~""E(z,+v(t' —t,), t')[ p~(t', t,) —p„(t',t,)]dt'+X,e "~" '0', -

to

p.,(t, t, ) =- — e '" ~'* &-&' '&Z(z,-+v(t t,), t )-[p..(t, t,) p„(t,t,)]dt .ab & 0 @ 0

(22)

(23)

(24)

In Eqs. (22)-(24), z, is a parameter. If we change
it without changing t0 or v, we choose another set
of atoms which do not spatially overlap with the
others, so that they contribute to the polarization
at a different axia1. coordinate. Now we need to
evaluate the polarization at the same time and at
the same coordinate z, so that if we change z0,
we must allow t0 to change in order to allow all
the atoms to be at the same position z at time t.
This can be done by requiring that

If we substitute Eg. (25) into (22)-(24), we obtain
the integral equation for the density matrix p of
those atoms which will be at the same position
8 at time t.

%e can then add up contributions to the density
matrix from all atoms, "selected" by the require-
ment (25), but created at any time to prior to t.
Thus we define a macroscopic density matrix

p~"'(t, z, v) = ' dt, p(t, t,)

z +v(t' —to)=z —v(t —t'). whose elements are given by

(29)

rt
p,',"'(t, z, v)-p~f'(t, z, v) = —— dt'f(e ~o ' ' +e "&" ' ')&(z —v(t —t'), t')

t
p~e~(t, z, v)= —— dto dt'e &o~' ' E(z —u(t -t'), t')[ p(»t', to)-p»(t', to)]+ ~, (27

~ Oo I

2(P t t &t

p~,
" (t, z, u) = —] dto dt'e &D ' "E(z—v(t —t'), t')[p„(t',to)-p„(t',t,)]+~, (28

0 YQ

4 t
p~f'(t, z, v) = —— dt, dt'e '&an""H' "E(z—v(t —t'), t')[p (t', t,)-p»(t', t,)].

The order of integration over t' and t, can be changed, and, using the fact that the electric field does not
depend on t„weget the following integral equations, in which there appear only elements of the macro-
scopic density matrix:

x[p~&"&(t', z', v) p&."'(t', z', )]'v——I'+ ——',
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p(z)(t z v) (tt e () +& (td)(t t )E(z v(t t ) t ) [p(z)(t z v) p( z)( t z u)]
AP

(31)

where z' is the coordinate of the atoms at the time I, ", i.e.,

z' =z —v(t —t').

In the following, we shall ignore the index (M) which characterizes the macroscopic density matrix,
which will simply be indicated by p(t, z, v).

We now substitute p, (, (t, z, v), as given by (31), and its complex conjugate into (30), and find a single
integral equation for the inversion population density,

n(t, z, v) =p„(t,z, v) -p„(t,z, v). (33)

~ rg
(ft" (e ~ (' "ie »-(' '))-Z(z -—v(t —t'), t')E(z' —v(t' —t") t")

X ——g ~ab +C.C. ~aa ~ ~Z ~
U ~bb t, Z, V

(34)

where z" =z' —u(t' —t" ) =z —u(t —t")
Finally, we change the order of integration

over t' and t" in (34), obtaining the following
integral equation for the inversion population
density:

(P2 ( t
n(t z u)=N ——

i dt" K(t t")

xn(t", z —v(t —t"), v).
(35)

The function n(t ",z", v) and the kernel K(t, t")

in the integrand of (35) depend on z, the former
only through z" and the latter also explicitly.
Owing to the fact that the atoms do not change
their velocity in the interaction time, it is pos-
sible to obtain an integral equation in which there
is a functional dependence only on I, . This will
be discussed in Appendix A. In (35) N, =))., /y,
—h., /y, is the nonhomogeneous (source) term,
i.e., the inversion population density in the ab-
sence of the e.m. field, and the kernel K(t, t")
is given by

K(t, t")=E(z —v(t —t"), t") dt'E(z —v(t —t')t')(e ) ' ' +e ~) ' ' ))(e &~b '~' ' ' '+e.c.). (36)
g

ll

In Appendix A the kernel (36) is evaluated for
both running- and standing-wave configurations.
Equation (35) is the integral equation for the in-
version population density, and its derivation does
not need any substantial approximation, because
we did not use until now the fact that the e.m. field
amplitude varies slowly in a time in which the atomic
variables change appreciably. Thus it is applicable
to a large class of problems in which one es-
sentially deals with a two-level system (a spin- —,

'

system) interacting with a classical multimode
field, through an off-diagonal. interaction Ham-
iltonian of the form (9). In what follows, we shal. i
deal with a stationary regime for the electromag-
netic field, and we shall search for stationary
solutions of n(t, z, v). But in view of the discussion

at the beginning of this section, these stationary
solutions are capable of describing also the dy-
namics of the interaction process in a laser de-
vice. In fact, one immediately sees from (36)
that the kernelK(t, t") depends on the values
assumed by 8 in a time interval before t of the
order of I/y, ((z =a, t)) or I/y, ~. During this in-
terval, the field amplitudes are assumed to be
constant.

We note that knowledge of n(t, z, v) is sufficient
to determine, by integration of Eq. (31), the off-
diagonal element of the density matrix p,b. Then
the macroscopic polarization of the atoms with
velocity v along the z axis of the cavity i,s given by

P(z, v, t) =6'[p,~(t, , u)+p„(t,z, v)],



A. 8AM 8 IN I

and an integration over the velocity distribution
of atoms gives the polarization as a function of
zand t:

P(x, ))= f d P(*(, ,). (38)

In what follows, we shal. l focus our attention on

the integral equation (35), which is the crucial
point of the semiclassical theory of lasers.

III. CONVERGENCE OF THE ITERATIVE SOLUTION
OF THE INTEGRAL EQUATION

In this section we shall briefly discuss the
iterative solution to the integral equation (35).
In order to simplify our discussion, we shall
restrict ourselves to the simplest case, i.e., the
situation where a single running wave is present.
It is known that the steady-state solution of this
case exists, and in the rotating-wave approxi-
mation it has a simple anal. ytical form, "which
we shall derive from the integral equation.

The kernel for this case is derived from (A5),

way, we find that when the saturation parameter

(43)

becomes greater than 1, the expansion diverges.
This can be easily seen. Equation (40) is re-
written

n(t, v) =X,—
Jf def(e) n(t —e, v). (44)

with

=X (1 —o) (45)

Qo

o = def(8),
0

and then iterating this procedure. %e get

(46)

Then an iterative solution to (44) is obtained by
inserting No in place of n(t —8, v) in the integrand
of (44), obtaining just n(')(t, v),

() ) x)(f =x8f(())N

n(t, v) =t(to(l —a'+o —os+ ' ' ' ), (47)

&& (&
i (V -))V -(d) (t ' (") & -y(((, (t (")--

y„(t t-"))-
where we have dropped the index & =1. %e note
that K is independent of z, so that the solution
to (35) will also be z independent. If we use the
integral equation in the form (A9), we have

n(t, v) =n(v).

If we substitute (41) into (40), and perform the
integration, we get

(41)

No

I+ (6"/g ')-'&'r, (, (r. +y, ) [r. r& (r'.(, + ll')] ' '

which is the correct steady-state solution for one
running-wave configuration. The population in-
version density does not depend on z and t, but
depends only on v, through Q.

If we try to obtain the solution in an iterative

x (( —&, ) ~ . .), (4D)

where 0 = v - kv —~.
The fact that the kernel has no driving term de-

pendent on t allows us to assume that a steady-
state solution, independent of t, exists:

which is convergent to the correct value (42) only
if v&1, and otherwise is divergent.

%e can ask why the solution diverges for o values
greater than 1. The integral equation (35) is a
Volterra equation of the second kind, and the
iterative procedure always gives the correct (con-
vergent) solution for this kind of equation. But
Eq. (35) is singular, because the lower limit of
integration is —~. This singularity arises when
we assume that the fieM amplitude has its station-
ary value at t = —~; when such a singularity is
introduced in the integral equation, the conver-
gence of the iterative solution is lost, at least
for field intensities exceeding some critical values.
In single-mode operation, such a critical value
is reached when o, as defined by (43), equals 1.
For higher values of v, one cannot obtain the
steady-state value of the inversion population
density n(v) starting with an iterative procedure
from the unperturbed value N0. The divergence
of the expansion has already been discussed in
the rate-equation formulation of gas laser theory. "
For multimode operation, a similar expansion
is usually made in powers of the eleetrie fiel.d
intensities. This expansion can be performed
directly from (35), substituting the function
n(t", z", v) in the integrand with t)t;, then an in-
tegration yields n(')(t, z, v), which in turn is put
in the integrand in order to get n (t, z, v), and
so on. The so-cal. led cubic approximation is
equivalent to truncating this procedure after the
first step, retaining just the E2 dependence of
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n and the E' dependence of the polarization. But
also for the multimode case one can expect di-
vergences. Thus the solution to Eq. (35) must
be found in some other way, namely by assuming
some steady-state analytical form for n(t, z, v),
just as was done above for the simplest ease of
single running-wave operation. To this kind of
solution the following sections are devoted.

0
dee p n(t —8, z, v).

(48)

From (48) we note that the driving terms in the
kernel are oscillating at frequencies Qp which
are the differences of any pair of optical fre-
quencies of the modes shifted by the Doppler effect
in a gas laser system. Thus we deduce that the
inversion population density will oscillate with
the same frequencies, and with their combinations.
Owing to the form of (48), any oscillation in n(t )
at a certain frequency, say, v, will influence
directly the terms oscillating at frequencies
v+Qp; these in turn will influence the terms os-
cillating at v+Qp+Qp, and so on. The source
term in this chain is the average value of n(t),
which is a constant (v=0). This suggests starting
the chain with v =0. A formal solution to Eq. (48)
is then given by

(t, z, v)=I tt&, &(*, )e p f tt t&, t), (49)
(k) p=z

where the sum over (kj means that we take any
set of integer numbers k„.. . , kp, . . . , k& ranging
from 0 to ~. Since for any given value of Qp there
is another P, say, P, for which Qp = —Qp, those
sets ( kI in which k(, = k(—, for any P will contribute
to the average value of n(t). At each step of the
chain, there appear terms which contribute to
the average value of n(t). Thus in this form the
problem seems to be rather intractable. How-
ever, there is a case in which the problem at

IV. INTEGRAL EQUATION FOR n(t, z,v)

As noted in Sec. III, the solution to the integral
equation for n(t, z, v) cannot be found, in the high-
intensity field case, by means of an iterative pro-
cedure. We shall therefore describe a method,
which proves to be convergent, for solving the
integral equation, and present a generalization
of the expansion in a continued fraction first used
by Stenholm and Lamb in treating high-intensity
laser theory.

The integral equation for n(t, z, v) takes the form
(A 9)

(p 2

n(t, z, v) =N, —, A~e'"»'
=1

hand can be solved, and the solution is convergent.
This special case is met when all the frequencies
Qp are multip les of a fundamental frequency, say

Qp =rnp &, (50)

where mp is some integer, positive, negative,
or zero. Equation (50) is not an unusual condition
for the frequencies of oscillation of the inversion
population density. For example, in a laser device
in which the active atoms are fixed in some lat-
tice sites, there is no Doppl. er shift, and con-
dition (50) holds when each pair of adjacent modes
are separated by a constant quantity

5 =wc/L, (51)

where L is the cavity length. In a (running-wave)
unidirectional ring laser, the Doppler effect
changes the frequencies by a factor which is identi-
cal for al. l. the modes, so that, if the modes are
separated by &„

5 = 5o(1+ v/c). (52)

x d6) 8 n t-e, z, v,
0

(53)

where we have used the fact that for each Qp there
must exist a frequency —Q~ in the kernel. In (53)
f (8) is made up of a sum of exponentials e ('

(which correspond to the same frequency Q~ )
multiplied by the constant coefficients Ap. The
sum runs from -N to +N, and the condition that
n(t, z, v) is real assures us that

f - (e) =f *(e). (54)

The steady-state solution to (53) is simply found
from considerations similar to those which lead
to formula (49). Since there is a fundamental
frequency 5 such that each Qp is a multiple of
that one, the solution to (53) is given by

n(t, z, v) =P n~ (z, v)e'~~'.
k

After substitution of (55) into (53), we find a sys-
tem of linear equations in the coefficients n, :

Furthermore, in the general case one could always
choose a fundamental frequency 6 such that all
the frequencies Qp are multiples of 5, at least
approximately.

Let us now turn to condition (50). If that is the
case, we collect in the kernel of (48) all terms
which have the same frequency Qp, and write the
integral equation in the form

S
n(t z v)=N, ——, P e'
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(p2
n) (z, v)+, QF ) n) (z, v) =N05) ), (56)

is convergent toward a finite value.
Furthermore, the determinant of n„namely,

where Bo, p ~ ~ ~

F (z v) = ~ dBf (B)e
0

(57)

We shall prove that the system (56) has a unique

solution. For the sake of simplicity, we shall limit
ourselves to a particular case of (56), i.e., to a
system of the form

n p

1+B, ,
B2,

B, 2

1+B2 2

Q ~ ~ ~

B2 )3
(66)

is also convergent, and it can be shown that its
val.ue is

nk + Bk k, nk, + B, ,n„+Bk k+, nk+, = 50» (58)

but the proof ca,n easily be extended to the gen-
eral case. Let us suppose that a solution exists,
so that each n„has a finite value which satisfies
(58). In particular, n, will have the value n, .
The variables n„n„.. . , n„.. . will then satisfy
the linear system

where
0

1+B, , B, 2

1+B, ,
B3 2

B2 3

1+B3 3

Q ~ ~ ~

Q ~ ~ ~

B3)4

(67)

(68)

(1+B,,) n, +B, , n, =A,

B, ,n, +(1+B, ,) n, +B, ,n, =0,

B, , n, +(1+B, ,) n, +B, ,n, =0,

where

A=1 —B

1+Bo 0

BI.,o

Bo j.

1+B, ,
B2 ~

Bj. 2

1+B2 2

Q ~ ~ ~

Q ~ ~ ~

B ~ ~ ~
2 )3

One can easily show that the determinant is
"normal", "in the sense that

The infinite determinant of the coefficients of
the system (59) is therefore

(59)

(60)

(61)

A fundamental theorem in the theory of infinite
determinants" states that if the determinant of
the coefficients is normal [i.e. , Eq. (62) holds]
and the known terms in the right-hand sides of
system (59) are limited, then a unique and limited
solution to system (59) exists. In other words,
we can assign a finite value to each unknown, and
this set of values satisfies (59); furthermore,
there is only one set of values which is limited.

Now, if n, is not infinite, then the two require-
ments above are met, and a limited succession
of values for no, n„.. . , nk, . . . , respectively, is
found which satisfies (59).

We now have to determine n, . Before doing
this, we find the functional relationship between
n, and n, We have, .from (60) and (67),

n =(b, ,/4 )(1 —B,n, )

k, m

(62)

+o ——1 + Bo.oy

) 1 + Bo.o Bo.i
0

B, o 1+Bj j

(68)

(64)

In fact, each Bk k tends to zero as k ', when
k tends to infinity, while the sum over m ranges
from —1 to + 1, i.e., is a sum of a finite number
of terms. These two facts assure us that the sum
(62) is convergent. Then the determinant (61) has
a finite value; i.e., the succession of determinants

n, = —B, ,(d.,/~, )n„
where

('70)

1+B, 2

B3 2

B2 3

1+B3 3

B43

B3 4

1+B4 4

Q ~ ~ ~

Q ~ ~ ~

~ ~ ~
4)5

(71)

Furthermore, after some algebra, one gets from
(59)

1 + Bo 0 Bo

Bo 1+B, , B2
0 B2 i 1+B22

(65)

The function n(t, z, v) must be real. Thus, the
coefficients n, must satisfy the relation

n k n (72)
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This in turn requires that

B —AW-P, -P - fft P P+ m ' (73)

According to (72), we choose n, to be the complex
conjugate of n, . Then, taking the complex conju-
gate of Eq. (70), and using (73), we get

n, = —B, (6,/A, )*n .

If we substitute this equation into (69) we obtain

solutions may be constructed. These solutions,
obviously, cannot be limited because of the unique-
ness of the limited solution, and must therefore
be divergent. Thus, these solutions are non-
physical. However, the way other solutions are
determined is quite interesting, because it sug-
gests the generalization to multimode operation,
which is discussed in Sec. V.

Let us put

0=i~0«i- O, -i -i.o(~k/~i}*) '. (74) nk =n*k = 0 for some k. (78)

The ratio E,/6, (or more generally the ratio
&k, /&k) can be expressed in terms of the ratio
6,/6, (or 6 „/6 );

k-i/ k
——1+Bk i k i —Bk i kBk k ink+i/kk~

so that

Then the system (59) splits into two systems, the
first of which has k unknowns and k equations:

(1+B,k)n, +Bo,n, =A,

B, n (+I B+, ,}n, B+, ,n, =0,

(79)

n, = [ I +B, , —B, , B, ,r, /r,

-Bo,-iB-i.a(~k«i}*] ' (76)

Using (75) and (73) we can expand n in the con-
tinued fraction

Bk, k k nk, + (1+Bk, k, ) nk, = 0.

This system can be solved, and we find the cor-
responding values for n„.. . , nk, . We then intro-
duce in the second system the value obtained for
n, „andfind

no=
1+B -2Re/

k k+y k+y k k-y k-y

(I + Bk+i,k+i)uk+i + Bk+i,k+knk+k (80)

k+k, k+ink+i + (1 +Bk+k,k+k} k+k +Bk+k,k+3nk+3

This continued-fraction expansion has been found

by Stenholm and Lamb, ' and we shal. l. show in

Appendix B that our integral-equation formulation
of the problem leads to the same result for a sin-
gle-standing-mode configuration in gas lasers.

Unfortunately, the procedure which led to the
continued-fraction expansion (77) cannot be ex-
tended directly to the ease in which the kernel
in Eq. (53) has more than three oscillating terms
with frequencies —6, 0, and +&. Thus we shall
develop in Sec. V a method which wil. l enable us
to treat the multimode case. However, we note
that the proof of convergence is valid for any
number of oscillating terms in the kernel, be-
cause the convergence of the sum (62) is achieved
also when m ranges over a larger (but finite) num-
ber of terms.

Before concluding this section, we want to em-
phasize some considerations about the system (59).
The determinant of the system (59) is normal, in
the sense that the sum (62) is convergent. This
fact leads to the existence of a unique solution,
in which all coefficients are limited. But other

etc. The determinant of the unknowns nk

etc. is not normal (the elements I +Bkk are out of
the diagonal. }. Moreover, it is vanishing,

Bk,k+ ] 0 0 ~ ~

k+i,k+Z k+i, k 2 0 ~ ~ ~

Bk+2 k+, 1+Bk+2 k+2 k+2 k+

k k+]. k+]. ,k+p k+2, k+3 (81)

owing to the fact that B~ ~+, -0 as P -~.
Then the solution of (80) may be unlimited, and

in fact it is unlimitecl. But we note that the value
of n, obtained from (79) is the same as we would
have obtained from (77), just by truncating the
continued-fraction expansion at kth order. In fact,



in order to truncate the continued fraction at kth

order we must set Bk, k equal to zero, and the
system (59) splits into two systems, the first of
which coincides WNl (V9). Thus we can make the
following statement: The right value of no can be
obtained as the limit of the succession of those
values of n, belonging to the divergent solutions
obtained by setting successively n, =0, n2 =0.
nk =0. It is precisely this statexnent that can be
generalized in order to get the convergent solution
in the multimode-operation case. The existence
of nonphysical solutions to this problem has been
stressed by Feldman and Feld. '

(85}

V. GENERA, CASE

%'e now turn to the problem of determining the

steady-state solution of the equation (P-1 )8+1

(88)

d8 ~ 8 t —6}gg

The solution to (82) may be put in a form similar
to (55):

n(t, z, v}=Qn (z, v)e'" ',

and the substitution of (83) into (82) yields the
linear system in the unknowns n, (z, U}:

(87)

(84)

System (84} is then written in a matrix form; we
define the following vectors and matrices:

AH vectors (85)-{8V)contain 2%+1 elements. The
vector g has all elements equal to zero, with the
exception of the central one, which equals N~;

1 + (6"/ff ')F, (6"/8')F, , «., (6"/a')F „,
(6"/0 ')E, „1+ (6"/h ')Fo

(6"/8 ')F„„„,(6"/8')F- «.«

{6"/5')E„,
1+(6"/8')F, „„,((P2/5')F,

„

(6"/I ')E,„,1+ (5"/If')Fo
„

(88)
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8~ 0 0

Uq
——'

0 1 0

&o oo)' (89}

(o,' o o)
V, =j 0 p 0 (90)

(o,'o o)
) 1 0

o oo)
(91)

where 8~, S~, and C~ are NXN matrices and are given by

(+ /@ }F-N.(P-I)N+I

-N+1, (P 1)N+I ( -/@ ) N, (P 1)N&-2-

( /I ) 1.{P 1)N+I ( I ) -2, (P 1)N+2 ( / ) N PN

I + (+'/)I'}Fo &P-1)N+I (+ /@'}F-I (P-»N+2 (+/~ )F-»+ .PN

((P /}I )F, ( 1 (6"/g')F, ,„„„.(6"/J2')F„„,„ (98}

(6"/@')FN-I. (p I)N+I ( '-/@'}FN 2(P-1)N+2- 1+ (d"/52)FO p„

( /g )FN, (P-I)N+I ( / ) N l, (p 1)N+2 (--/ ) I,PN

(6 /g )FN &p 1)»o.2
' (6 /5 )F2 PN

(+ /@ }FN.PN

The matrices 8~, S~, and t'~ are defined from Q~,
~, and 8~, respectively, through the relation

(~P}i,p (~P}$+1-i,»+ I-2 I

where the asterisk denotes the complex conjugate.
Finally, the matrix S which projects 2, onto IRy

is defined:

x, =-U (vx, +w, x, )

=-v [v,U I(g-z,x,)+w, sx,],
x, =-U 1[v,x, +w, v, U I(g-z,x,)]. (99)

I et us consider the succession of vectors 'X,' ' ob-
tained by setting X, = 0, X, = 0, . . . , X~ =0, etc. ,
i.e., the succession of vectors '2,'~' which satisfy
the equations

SX =X, ,

Apart from S, all the matrices defined above are
nonsinguiar. " In matrix form, system (84) is then
written as follows:

Z g(2)

(z, —v,v Iw, s)x&» =g,

[z, —v, (v, —U,v w, )w, s]x&') =g.

(100)

(101)

(102)
g~XO+ U2%2 =CI,

Up„Ãp+, +VpXp+Wj, ,'2p, =0,
(98)

(97)

By using (96) and (97) we can therefore express
any vector X~ in terms of Xo and X,. For example,

The vectors Xo( ' so obtained will convexge, as
stated in Sec. IV, to the steady-state solution, the
only one which is physically acceptable. Thus the
multimode operation may be studied by perform-
ing a continued-fraction expansion in a matrix
form, i.e., by evaluating
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Zx =U2

V2 U3

4

(103)

the form

(106)

and then solving the system

(z, -z, s)x, =g. (104)

Formula (103}is a generalization of the continued-
fraction expansion used in high-intensity laser
theory.

The simplest description of the multimode oper-
ation is given when we assume X, =0; i.e., we do
not allow the inversion of population density to
oscillate at the frequencies v„—& . This descrip-
tion, which is usually called the rate-equation ap-
proach, is the zeroth-order solution of our inte-
gral-equation formulation, but cannot be obtained
directly from (100)-(103). Instead, it may be
shown that it is the solution of

where % and X are also matrices, so that they
are reducible; i.e. , their inverse, or the product
(or sum) of two of them, gives a matrix of the
same form as (106). We have

(107)

(1 —S)Zo(1 —S)X =J . (105) (108)

The lowest-order solution is obtained by setting
U, =O or, equivalently, 8'y 0. When this approxi-
mation is made, one allows for the interaction of
each mode with any other mode, through the cou-
pling with matter. However, the beating term
between any pair of modes is assumed to be small
enough so that it does not interfere with other
terms. The presence of the beating terms causes
the inversion population density to have (small)
oscillations at their frequencies. This approxi-
mation is then justified when y„-&, because in
this case each atom can couple no more than two
adjacent modes.

We shall show in Sec. VI that when y„«&the
beating terms are vanishingly small, and a rate-
equation approach is fully justified. However,
when y„~&, one must evaluate the complete ex-
pansion (103}. The successive approximations to
Z, are found by putting U, = 0, U4 =0, and so on.
At each step of approximation, one takes into ac-
count more oscillating terms in the inversion popu-
lation density. For example, in the U, =0 approxi-
mation, one allows the function n to oscillate at
frequencies ~, 2&, . . . , 2N&. The existence of a
limited solution to Eq. (82), which has been proved
in Sec. IV, assures us that the Fourier spectrum
of n(t, z, v} found by means of these iterations tends
toward a well-defined limit, which is the solution
to (82).

All matrices which appear in (103) are nonsingu-
lar, and in this section we have used those ma-
trices which allow a compact description of the
whole process. For computational purposes,
however, it is much better to deal with reduced
matrices. We note that every matrix in (103}is of

Thus one can evaluate the simpler expansion

(108)

and then it is possible to get Z„

Z g

z, )
(110)

l.e.y

where the operation (Z,}'has already been de-
fined for the matrices 8~, ~, and t'.~. The cen-
tral element q is not relevant, because Z, must
be multiplied by S on the right-hand side, and
that operation leaves the central column equal to
zero.

The procedure described above allows one to
calculate with any desired accuracy X„i.e., the
average value no of n and the first 2N coefficients
of the terms oscillating at +&, . . . , +N&. If one
needs the evaluation of some other coefficient, it
turns out to be convenient to adopt the same pro-
cedure of the continued fraction, rather than eval-
uate the corresponding 'X~ vector (which contains
the coefficient) from Xo and X, . This latter calcu-
lation does not tell us anything about accuracy.

Suppose we need an evaluation of the coefficient
of the term oscillating as e" '. Multiplying both
sides of (82}by e" ', we get the integral equation
for the function

n"'(t, z, v) =e" 'n(t, z, v),



14 SEMICLASSICAL THEORY OF MULTIMODE OPERATION IN. . 1491

g2 +N

n"'(t, z, v) =N, e" '-, g e' ' dB[f (B)e" 'n"'(t —B,z, v}].
m=-N 0

(112}

This equation can be treated in the same way as
(82), with the only difference being that the source
term is an oscillating function of time. This in

turn modifies Eqs. (96) and (97}, in the sense that
the source term will appear in Eq. (97) for some
P. Obviously, one has to take into account the
source term, so that one cannot truncate the ex-
pansion which is obtained from (103) before that
order P. For example, the lowest-order approxi-
mation to n»„will be achieved by putting X, =0
(which appears first in the P =4 equation, where
the right-hand side is different from zero}.

VI. APPLICATION: MULTIMODE LASER OPERATION IN
AN ACTIVE MEDIUM WITH UNMOVING ATOMS

Here we shall apply our formalism to the case of
of laser operation in a medium which has active
atoms (or molecules) fixed in some lattice sites;
the line of gain may equally well be nonhomoge-
neous, because local perturbations (such as elec-

tric field, or stress in the crystal lattice) may
change the atomic energy levels, so that two dif-
ferent atoms in two different sites may have dif-
ferent transition frequencies. The macroscopic
density matrix p(z, t, ~) will then describe the
temporal behavior of those atoms placed in a
small volume around z, which have the same
transition frequency u. The source term in the
integral equation, N„will also be u dependent;
we assume that the ~ dependence of the density
matrix is not changed by the laser electric field.
Thus the macroscopic polarization (38) will be
given by a sum (integral} over the set of ~ values
which the atoms of the medium may assume:

p)*, t)= Id t[p.,(*,t) ~ p,.),*,))]. , ())))

For a standing-wave configuration of the electric
field in the cavity, we must use expression (A6)
for the kernel in the integral equation, with v=0:

,'E„E„.sink„—zsink„z exp[i(@„—@, )]Zt, B =
i(v„—&u) + y —y,,

x exp[ i(v„—-v„)t](exp[-(y,+i~ iv„)B-]—e.xp(- y B)) + c.c. (114)

The kernel (114) has the form (A7) but, owing to
the stationary-atoms condition, the complex con-
stants I'~ which appear there are z independent.
We can assume that the modes have equal fre-
quency separation, i.e. ,

v„,, —v„=6. (115)

N=M —1. (116)

When there is one mode in the cavity, the kernel
(114) becomes independent of t. The situation is
quite similar to that discussed in Sec. III: the
inversion population density is then time indepen-
dent, and its value may be found directly,

n(z, (u) =N, /g,

with

One can readily verify that the integral equation
(35) assumes the form (53). The sum over m
runs from -M+1 to M —1, where M is the number
of modes operating in the cavity, so that we put

(P' E' sin'kz y„(y,+ y, ) 1

Note that the inversion population density in (117)
is dependent on z, just because the standing-wave
configuration of the electromagnetic field has a
spatial modulation of the time-averaged intensity,
which in turn determines a spatial modulation of
the inversion density.

When two modes oscillate in the cavity, the
kernel has three terms dependent on t, with fre-
quencies -5, 0, and+5. The structure of the
kernel is such that each Fourier component of n
is coupled with its two nearest neighbors, i.e. ,
with the components whose frequencies differ by
+5.

The linear system for the Fourier coefficients
has the form (58), for which the solution of n, has
been obtained as a continued-fraction expansion.
Details of these calculations will be given else-
where.

In the general case of M-mode oscillation, we
have the prescription for the evaluation of the
matrix elements F„.We have
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f (8) = g g [,'E—„E„sink„z(sink„.z)e' ~ ~~' ]
n, n

I

x(
1

(e Yah+'~ '"n' e —e 7n )i(v„—(u)+ y —y.,

+
1

(e '~"-'""""—e &")}—i(v„—~)+ y. -r„ (118)

F „= ~E„E„sink„zsinkn. z e' ~n
t In, n D

n-n =mI

1 1

y,t —i &u+ i v„~+ ik5 y + i(k —m) 5

zm5
—i(v„.—~)+ y —y.,

1 1 im5
y„~ — .~ t~ ~ ~ tt .)r -(.— ) ~. -~.,). (119)

The behavior of F, when k-~, is readily found from (119). The Lorentzian factors may be combined
to give

F = g g [,'E E si-kn„z(si kn„.z)e'~" ~"']
n, n' cx

In-n =m

X y —y,t —i(v, ' —&a) —im5 y —y,t+ i(v, —m) —im 6fy

y„—y„—i(v„.—(u) y —y„+i(v„—(u)

1
k 6

(k -~), (120)

no =No/rt',
2

4' = 1+—2 2En sin'knz

(122)

r:(r.+ rt)
r, r, (~ —v„)'+r'„'

which shows the 1/k' dependence when k-~ (see
Sec. IV).

From (119) we can explain a lot of features which
appear in multimode operation. Let us consider
the case y «5 (n= a, b) This me.ans that the
lifetimes of the levels are long compared with the
period 1/5 of oscillation of the beating term of
two adjacent modes. When this condition is satis-
fied, one would expect that the inversion popula-
tion density does not oscillate, because all beating
terms vanish due to interference in a level life-
time. But this is not the case. In fact, from (119)
it is apparent that the resonance factor

1/[y. .i(k —m) 6]

is appreciably different from zero when m = k.
Then in the system (56) all F, may be put
equal to zero, with the exception of F,. This
means that the Fourier coefficients nt [k=0, +I, . . .
+ (M —1)] are coupled with n„and the others are
zero. The average value of the inversion popula-
tion density is therefore given by

s, [1+ (6 '/a')F, „]=N„
which reads

while the other coefficients n, are given by

(123)

If we compare (122) with (117), we see that the
average population density is not affected by the
beating terms, and is simply saturated by all the
modes which act independently. But Eq. (123) in-
dicates that some oscillations arise in the popula-
tion density. These oscillations are due to the
fact that the beating terms influence the polariza-
tion of the medium, whose lifetime y,b' may be
comparable with or shorter than the period of
oscillation I/O. The polarization, in turn, in-
fluences the population density, and induces os-
cillations with frequencies v„—v . However, the
population-density oscillations do not induce
further oscillations in the polarization, because
of its long lifetime, and the chain of interactions
stops here.

The situation described above, y„«5(a =a, b),
is met in several solid-state laser devices, such
as a ruby laser operating at 6943 A. The life-
time of the excited level of ruby is much longer
(10 ' sec) than the period of oscillation 1/6 (which
is usually of the order of 10 ' sec), so that the
condition y «5 is well satisfied. " Qn the other
hand, the lifetime y.~ of the polarization is shorter
than I/O (y,t is the homogeneous bandwidth of the
line of gain, and it is of the order of 10' sec ', so
that y,' -10 ' sec). Then we can treat the multi-
mode operation in a ruby laser by assuming that
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the average population density n, is given by (122),
and allowing for oscillations in n(f, z, u). There-
fore we have

(124)

F, k —.=Fok& 0 (125)

In this case, each Fourier coefficient n, is
coupled only with itself [see Eq. (56)J, but the
source term N, is present only in the equation for
n„sothat only n, is different from zero, while
the other coefficients n, are zero. The average
population density is given by (122) again, although
what causes the oscillating terms to give no con-
tribution to n, is different in the two cases.

In the general case one must use the matrix con-
tinued-fraction expansion of Sec. V in order to
find the population density. However, one can
reduce the order of the matrices involved if the
lifetimes of the levels are sufficiently long, so
that

y &P6 (126)

The polarization p(t, z, &u) ean be evaluated by intro-
ducing (124) into (31) and performing the integral.

Obviously when the lifetime of the polarization
y,,' is also much longer than the period of oscilla-
tion I/O, i.e. , when y ~ «6, oscillations in the
polarization must disappear, and therefore also
the population density must have no oscillation.
In this ease the resonance factor in Eq. (119),

I/ [y„~i ((u —v„)+ ik6],

is appreciably different from zero when k=0. The
only F

„

term which survives is therefore F«.
The average population density is given again by
(122), but now n~ =0 (k&0).

The latter case is usually referred to as the
rate-equation approximation. Here the inversion
population density has a stationary value n„and
all calculations can be done directly, starting
from the equations of motion (30) and (31), by
putting there p„—p» = const. In our general
formalism, the rate-equation approximation is
given by Eq. (105).

The rate-equation approximation is also suitable
for treating the free-running operation. In the
free-running operation, the phase factor e ' " of
the nth mode is oscillating randomly in time owing
to the interaction among the modes. One can
therefore substitute the average value (e' "' " )
in place of e'~ ~" ~ in Eq. (119), and assume that
it is zero, except for n=n'. Then the interference
terms among the modes vanish, and one has

for some P. Then one can assume

for
~

m~ & p The sum in Eq. (56) is then limited
to values of m which run from -P to+P. In most
cases, p is equal to several units (say 3 or 4)
and the multimode analysis turns out to be quite
tractable with the general formalism we have
developed. We shall give detailed calculations
for the rnultimode operation in a forthcoming
paper.

One other limiting case, i.e. , the close-coupling
approximation (CCA), will be described here. If
we are in a situation where

M6« 'y,~,
M5« y~,

(128)

(129)

i.e. , if the modes are limited in a small fraction
of the total bandwidth, we can make a Markoffian
approximation in the integral equation; i.e. , we
can substitute n(t, z, ~) for n(f —e, z, ~) in the inte-
grand of (82). This is justified by the fact that the

memory time of the population inversion is much
smaller than its period of oscillation; i.e. , the
kernel decays to zero in a time in which n has
changed very little.

The CCA gives the expression for n(t, z, v):

No
1+(4 /k')g P (130)

This approximation turns out to be very useful in
a situation where the modes merge in a quasi-
continuum distribution.

VII. CONCLUSIONS

A method for treating the interaction between a
two-level system and a multimode e.m. field has
been described, and is now summarized, with
some of its advantages pointed out.

(i) It unifies the semiclassical theories, because
one can readily obtain from it both the perturba-
tion expansion in a power series of the e.m. field
(Sec. III) and the continued-fraction expansion
(Sec. N).

(ii) The continued-fraction expansion in matrix
form, which has been derived from it, makes it
possible to treat the multimode operation without
any upper bound to the e.m. field. This solution
turns out to be always convergent.

(iii) Some particular cases can be treated (Sec.
VI) without carrying out the matrix expansion. For
solid-state laser devices, such as ruby lasers,
with a long lifetime of the excited level, I have
shown how to construct the solution to the multi-
mode case in a very simple way.
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(iv) The method itself is quite general, and can
be applied to many physical problems where the
311-order interaction between matter and the e.m.
field must be taken into account.

Only a few examples have been discussed, but I
think that the ability of the method of covering a
large class of phenomena has been sufficiently
stressed. Numerical calculations will be reported
elsewhe re."
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APPENDIX A

In this appendix we shall find the kernel [Eq.
(36)] which enters into the integral equation for
n(t, z, v) [Eq. (35)]. Two typical situations are
taken into account, In the first one, the field is in
a superposition of running waves (ring-laser oper-
ation). In the second one, the field is made up of
standing modes (Fabry-Perot laser cavities).

The running-wave configuration has spatial mode
functions U„(z)given by Eq. (17); the kernel is
then given by

K a(t, t")= — dt' P EQ„,{exp[-i(vg'+ (t)„—kp')] exp[- i(v„,t"+ (t z —k„,z)]
~ t" n, n'

+ exp['((v„t + Q„—kp )] exp[ —$(v„it + f„a—k~z)]+ C.C.}
&& (e~~ ""+e "('""){exp[- (y„+i(d)(t' t")]+e-xp[- (y„-i (d)(t' - t")]), (Al)

where the index B% stands for running wave.
In deriving (Al), we have put z'=z —e(t —t') and z"=z' —v(t' —t")=z e(t —t-"). The field amplitude

labeled by n' is then independent of I,", and the kernel may be simplified:

t

Za„(t,t")= E(z",t") Qdt' E—„{exp[-i(v„t'+(t)„-up)]+ c.c.j(e ""'"+e "("")-
n t"

&& {exp[-(y„+i(d)(t' —t")]+exp[- (y„-i(d)(t' —t")]]. (A2)

The integral in (A2) can be easily performed. The result is

—exp[-i(v„t"—kp") -y, (t t")]'I—
'~n

+ g .
' " . {exp[i(vg —kp) —(y„+i(d)(t—t")]i(v„—k„v)+y y~ i (u——

The expression (A3) can be further simplified if one neglects the counterrotating waves in the polarization.
In this approximation, which is usually referred to as the rotating-wave approximation (RWA), one as-
sumes that the density matrix element p,~ oscillates at the optical frequency

~at = ~De (A4)

and p, is a slowly varying function of time. In the RWA one can evaluate the integral equation (35) and its
kernel [Eq. (36)) by coupling p, ~ in the equations of motion (27)-(29) with that component E' ' of E(z, t)
which oscillates as e'"', and p~, with the other part of E(z, t). This in turn is equivalent to neglecting
terms which oscillate at twice the optical frequency, both in t and t" in Eq. (A3).

In the RWA, the kernel is therefore given by
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x (]exp[- i(v~t" —k~z")] exp[i(v„t—kg)] exp[- (y„+i&@)(t —t")]j

—(exp[i(v„t"—kp")]exp[- i(v„d"—k~z ")]exp[-y (t —t")]])+c.c.

We ean derive similar formulas in a standing-wave configuration of the e.m. field. Since each standing
mode is made up of two running waves, with the same frequency v„and with opposite propagation vector
K„,it is possible to obtain the kernel K(t, t") by simply extending the summation in (A3) or in (A5) over a
parameter p, which can assume the values + 1 and —1. An extra factor —&i p, for each field will then provide
the right dependence of the standing mode on z [Eq. (18)]. For example, we give the expression for the
kernel in a standing-wave (SW) configuration, in the BWA:

x [exp[- i(vp" —p'k~z")] exp[i(v„t—pkg)] exp[- (y„+ice)(t —t")]

—exp[+ i(v„t" —pkp")] exp[-t(v„Z"—p'k~z")] exp[-y (t —t")])+c.c.

We note that the damping factors enter expres-
sions (A5) or (A6) only through the exponentials
e~" '"' (where y may be y„,y„ory, ). Then one
can make the substitution

t —t"= 8

and the kernel turns out to be a function of the two

variables t and 8,

atoms which were at the position z —v 8 at the
time t —8. Owing to the atomic motion, a varia-
tion of the z coordinate turns out to be equivalent
to a shift of the frequencies of the e.m. field.
This fact may be used to find an integral equation
where the 8 dependence of n is displayed only
through t —8. I et us introduce the coordinate

(A7)

where the A~ are complex coefficients which de-
pend on v and z, the A~ are real frequencies given

by

where the atoms we are considering were at time
t = 0. The integral equation for the population
density of these atoms is therefore found by sub-
stituting &+et in place of z. This substitution
yields

and the l ~ are complex constants whose real parts
are —j'~, —p ~ or —j'p.

So far, we have derived the integral equation in
its general form, which we shall write here:

n(t, z, v) =N, —,g A~(z, v)e'"&'

n(t, g+ vt, v)

=tt, —
&, PA~(t;+vt, v)e'"t'

x d8e s'n(t —8, j+ v(t —8), v)

which may be written

d 8 e"~ n(t —8, z - v 8, v) n(t, t, v)=N, —
& gA (C, v)e'"i'

In the integrand, the population density n depends
on 8 through t and z, This is a consequence of
the condition (25) which we have imposed on z, and

t,. Then the contr ibution to n at time t and posi-
tion z comes from the population density of those

d8er& n t —8, g, e . A9
0

The Q~ are the new frequencies, shifted by the
Doppler effect. We note that i; enters (A9) as a
parameter on which the kernel depends. The pop-
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ulation density has a unique functional dependence
on t.

APPENDIX B

Here we shall derive the continued-fraction ex-
pansion for n0 in the single-mode standing-wave

configuration. The results presented here are
identical with those obtained by Stenholm and
Lamb' if their continued fraction is "contracted"
in a more rapidly convergent expansion.

In the R%A, the kernel of the integral equation
for one standing mode is given by (see Appendix A)

g2'"(" }= ~~~ 15 "" i(v tkv-- ~}+y - y

&& ]exp[-(y, ~+ i ur —i v + i V. 'kv)(t —t")]—exp[-(y„+i&'kv —t pkv)(t —t")]] + c. c. ,

(81)

where we have dropped the index n in v„and 0„.
The kernel depends only on the difference t —t"

= 8, so that the integral equation can be written
in the form

n(t, z, v) =X, ge""—'

If we substitute (83) into (82), we get the follow-
ing system of equations for the coefficients np:

+2E' Rp
P 0 OP 4g2 g2 2

p y

x (A~ n~+2 +8~ n~+ C~ np, ),

p 8 n t- 8, z —u&, v d6),

(82)

where we have written explicitly the z dependence
of the kernel.

As noted in Appendix A, this integral equation
could be transformed into a form such that n de-
pends on 8 only through t —6). But for a single
mode it is much better to use (82}. In fact, the
kernel in (82) is independent of t, so that we are
allowed to assume a steady-state solution for n

independent of t. The spatial modulation of the
kernel, in this case, couples the spatial Fourier
coefficients n(z, v), whose expansion is now

gp ——iPkv+y, ,

C~ = -2~, /(C2~, +II'),

Bp = —(Aq+ Cq),

A =co —&,

y =k (y. ya)—

(85)

(Bs)

(BV)

(88)

(89)

(810)

In deriving (84) we have made use of the assump-
tions of Ref. 5, i.e., a pure radiative decay for
the off-diagonal matrix elements, which allows
us to write

n(z, v) =Q n~(v)e'~'"'. (as) y.n =k(y. +y~) (811)

Note that the index P in (83) runs over even num-
bers, because the odd terms form a homogeneous
system and may be put equal to zero. The inhomo-
geneous (source) term No appears only in the sys-
tem for the set np, with P even. The expressions
for f~(B) can be readily deduced from (81). where

NO1.(y.,/y. y.)[ft. (A.4 ".c.)1 ' (812)

The system (84) admits a solution in a continued-
fraction expansion, as we derived in Sec. IV.
After some calculations, one gets

-R,C2

0 2 (-R,C, )

i'4 —y g +B„42,+44

n, =ft, (I +2 Re@)-',

where

(814)

Expression (812) must be compared with Eq. (76)
of Ref. 5, which reads

(815)

ID (0)D (1}
ID(I }D(2)

ID (2)D (3),
+ ~ ~ ~

The adimensional field intensity I is given by
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I =((P E'/g')(1/2y y )

D(p) =2(2y, y, ) '[(i pkv+y, ) '+(i pkv+y, ) '], p even,

(B16)

(B17)

D(p}=k(2yy, ) '][ipkv —i(&u —v)+y, ~] '+[ipkv+i(&u —v)+y, ~]-'], p odd. (B16)

The two expressions (B12}and (B14) are identical, as one can show by using the identity (a contraction
of the continued fraction)

= ID(0)D(1)—
ID(1)D(2)

ID(2)D(3}
1+ ~

I2D(0)D'(1)D(2)

1+ED(1)D(2}+ED(2)D(3)—
1+ID(3)D(4)+ID(4)D(5)—

(B19}

(B20)

(B21)

and noting that the D(P)'s can be expressed in
terms of S~'s:

(p)=(-'. )'"&/(&'+"'), p odd,

D(P }= (-,'y, y, )' '2./(2'- y') ~ P even.

It is more convenient to express the continued
fraction in the form (B13}rather than (B15), be-
cause one can show its convergence on the basis
of the discussion in Sec. IV. But, in fact, the two
expressions coincide.
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