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Intrinsic third-order correlations in laser light near threshold*
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We present an experimental investigation of the third-order intensity correlations in the light from a single-

mode intensity-stabilized He-Ne laser in the threshold region. Accurate results were obtained by utilizing a
fast digital correlator operating in real time. The computation of the intrinsic third-order correlations requires

also a knowledge of the second-order intensity correlation which was measured under the same operating
conditions. The experimental data are in agreement with recent theoretical computations based on the usual

Van der Pol model of the laser oscillator. A new definition of the intrinsic correlations, which seems more

appropriate for the interpretation of the experimental results, is discussed.

I. INTRODUCTION II. EXPERIMENTAL SETUP AND DATA REDUCTION

New interest in the behavior of a single-mode
laser near threshold has been stimulated by re-
cent papers" in which the analogy with phase
transitions in thermal equilibrium and with insta-
bilities in open systems has been discussed. From
this point of view, a peculiar feature of the laser
system is that it is possible to make evident ex-
perimentally' in a narrow region around threshold
the non-Gaussian character of the field fluctuations
due to the nonlinearity of the atom-field inter-
action. The fact that the laser field can no longer
be treated as a Gaussian process implies, besides
other effects which have already been thoroughly
investigated, ' that the behavior of third- and
higher-order intensity correlations cannot be in-
ferred from the knowledge of second-order inten-
s ity correlations.

Cantrell, Lax, and Smith' have recently com-
puted the quantity

K, =&[1(t) -&I)][I (t+T) -(1)][I(t+ T') -(I&]&/(I&',

where I(t) is the intensity of laser light, under the
hypothesis that the laser field is a Markovian pro-
cess. We present in this paper accurate measure-
ments of third-order intensity correlations and
describe the data-reduction procedure. Our re-
sults are in good agreement' with the calculations
of Ref. 4.

A further point we discuss here is the definition
of "intrinsic" correla'ion. Indeed, in Ref. 4, K, is
called the intrinsic third-order correlation. That
definition, however, does not appear satisfactory
from a physical point of view, because one would
expect an intrinsic third-order correlation to go
to zero well below threshold, where the laser
field is a Gaussian process and third-order cor-
relations are predictable once second-order cor-
relations are known. Since the quantity K, does
not show this behavior, we propose here a different
definition of intrinsic correlations.

A measurement of third-order correlations per-
formed with a photon-counting technique yields
directly the normalized third-order correlation
function

g, (T, T') =(I(t)1(t+ T)I(t+ T'))!(I)',

which is connected to K, by the relation

K3(T, T ) =g3(T, T ) + 2 —g2(T) —g2(T ) —g2(T —'T ),

(I)
where g, (T) =(1(t)I(t + T))/(I) '. Equation (I) shows
that K, can be derived from the experimental g,
after subtraction of other quantities which are also
to be obtained experimentally. Since K, is much
smaller than g, in the threshold region, the mea-
surements must be very accurate.

In our experiment the laser source is an inten-
sity-stabilized He-Ne laser working at 6328 A on

a single transverse and longitudinal mode. The
laser light is suitably attenuated and detected by a
photomultiplier tube. Single photoelectron pulses
are amplified, standardized, and passed to a fast
digital correlator built in our laboratory. ' This
instrument operates in real time up to a sampling
frequency of 16 MHz over 107 delays and can per-
form autocorrelations and cross and triple cor-
relations. In the triple-correlation mode the func-
tion g, (T, T') is obtained in a single measuring run
for a fixed value of z and for 107 values of v'.

The signal at the input of the correlator con-
tained also a contribution, uncorrelated with the
laser signal, due to dark pulses from the photo-
multiplier tube and to fluorescent light from the
laser discharge. It is particularly important to
take into account uncorrelated contributions in a
third-order correlation measurement, because
their presence modifies also the time dependence
of g, (T, T'). Indeed, it is easy to show that the
measured correlation F,(T, y') is connected to the
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normalized third-order laser correlation by the
following expression:

F,(~,~'), (n)„=a(~, ~') + &,"IS,(~) +g, (T') +g, (T —~')]

(2)
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FTG. 1. Measured values of the third-order correlation
function I' 3(v, ~') for a laser operating at threshold. The
standard deviations are smaller than the dot size on this
scale. The measuring time was the same for all curves.
Since the sampling frequency was 1 MHz, the number of
microseconds on the time scale coincides with the
channel number.

where (n)~ and (n)„are, respectively, the average
number of photoelectrons due to laser light and of
noise pulses. The second-order correlation g, (v)
was measured for each operating point of the laser,
together with the quantities (n)~ and (n)~ T.he
third-order cumulant K, is then derived by using
Eqs. (1) and (2).

Figure 1 shows a set of experimental curves ob-
tained with a laser setting very close to threshold.
Each curve presents a peak at the value z = z'.
Indeed, it is immediately shown from the definition
of the third-order correlation that F,(0, w')

=F,(T', w'). The fractional statistical error at each
point of F,(T, r') is about 0.3'. This result was
achieved in a measuring time of about 20 min for
each fixed value of T'.

The comparison between experiment and theory
is not straightforwa, rd. A first problem arises
because all times in the theoretically computed
correlation functions are expressed in dimension-
less form in order to have results independent of
the specific laser parameters. The time-scale
factor is easily computed once the intensity cor-
relation time v~ of the laser at threshold is
known. ' In our case Tc =38 p. sec.

The second problem is the determination of
the pump parameter a in the chosen operating
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FIG. 2. Paths followed on the plane (t, t') of definition
of G3(t, t') in a single experimental run with fixed T and
7'ranging from 0 to 107. The paths shown refer to 7 =17
and 25 @sec. See further explanations in the text.

conditions. The pump parameter is negative below
and positive above threshold. Its definition in
terms of the laser parameters can be found in

Ref. 3. The laser threshold (a =0) is identified
by the fact that the value of g, (0) is equal to 1.571
at threshold. Once the laser intensity at threshold
is determined, the value of the pump parameter
a for a different setting of the laser is computed
from the ratio of the laser intensity at the working
point and the laser intensity at threshold. '

A further point to be considered is that our
definition of K3 is different from that given in Ref.
4. In this paper K, is expressed, consistent with
the experimental procedure, as a function of the
independent variables T and 7', where T is the
delay between the first and the second sampling
operation and 7' the delay between the first and

the third. Since no time ordering is implied in

our definition, ~' can be smaller than T, as shown
in Fig. 1. The theoretical definition instead im-
plies time ordering and uses the two independent
variables t and t', where t is thedelaybetweenthe
first and the second measurement and t' is the delay
between second and third. Therefore once g3(r, T')

is obtained in a single experimental run for a
fixed value of 7 and for 107 values of T' the com-
parison between experiment and theory must be
performed as follows: for 7' ~7 put t = w' and
t' = 7 —T', for T' ~ 7 put t = T and t' = T' —w. This
procedure is better understood by looking at Fig.
2: a measurement with ~=17gsec and ~' ranging
from 0 to 107 iI, sec gives g, (f, t') along the path
ABC in Fig. 2. Furthermore, since g, (t, t') is
a symmetric function of t and t ', the path BAD
is completely equivalent to ABC. The existence
of crossing points can be exploited to check the
internal consistence of the measurements and to
estimate relative statistical errors. For instance,
F3 at point P (t = 17, t' = 8) is obtained from three
independent experimental points: v = 17, w' =25;
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FIG. 3. Intrinsic third-order intensity correlation C3
and third-order intensity cumulant K 3 at zero delay vs
the pump parameter a in the laser threshold region.

III. INTRINSIC CORRELATIONS

We define as the intrinsic &th-order correlation
that part of the total &th-order correlation which
is not predictable from the knowledge of all cor-
relations up to order n —1. For the sake of sim-
plicity, let us discuss explicitly the special case
of all delay times equal to zero. The generaliza-
tion of the results to time-dependent correlations
is straightforward. In this case we need only
P(8), the probability density of the complex field
amplitude Q. The cumulants k „of P(Q) are de-
fined through the following series expansion'.

k(X) =lnQ(X) = Q k „
m=n=0

where Q(X) =(e '~ ' '} is the moment-gen-
erating function. It can be shown that the cumu-
lants are a measure of intrinsic correlations. If,
for instance, the optical field is a Gaussian pro-
cess we know that correlations at any order are
predictable from the simplest correlation k»(T)
=(Q*(t)8(t + T)). Correspondingly, we find that
all cumulants except k«are equal to zero.

The situation is different if we start from the
intensity probability density P(I), where I= ~8~'.
If we consider again a Gaussian field, P(1) is
exponential and its cumulants at any order are
different from zero. We conclude therefore that
intensity cumulants are not a good measure of

(3)

T=25, 7' =17; T=25, ~' =8. The three obtained
values, in arbitrary units but with the same rate
and measuring time, at a = —2, are, respectively,
F,(17, 25) = 476.13, F,(25, 17) = 474.73, and

F,(25, 8) = 475.21.
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FIG. 4. Intrinsic third-order intensity correlation
C3(t, t') vs t' for two distinct values of t. The laser is
operating at threshold. The error bars are almost the
same for all the points of the same curve. For the sake
of clarity of presentation they are given only for the first
point. The delays t and t' are expressed in dimension-
less form, as explained in the text. Solid lines repre-
sent theoretical results.

intrinsic correlations as we have defined them
at the beginning of this section. The normalized
third-order eumulant for a Gaussian field, ex-
pressed in terms of the second-order cumulant
K, (T) =g, (T) —1, is

K, (T, T') =2[K,(T)K, (T')K, (T- T')]' '. (4)

The minus sign at the right-hand side of Eq. (5)
is introduced only to make C, non-negative.

We show in Fig. 3 the quantity C, (0, 0), com-
puted from theory, ' versus the pump parameter
a in the laser threshold region. Also, K, (0, 0)
is shown for comparison. As expected, C, (0, 0)
is significantly different from zero only in a nar-
row region around threshold (a =0) where the field
fluctuations are markedly non-Gaussian.

We have already shown in Ref. 5 that the ex-
perimental values of K„as computed from the
raw data through Eqs. (1) and (2), are in good
agreement with the calculations of Ref. 4. Of
course, that agreement is not modified by using
C, instead of K, . As an example, we present some
of our results in Fig. 4, together with the theo-
retical curves computed from Eq. (25) of Ref. 4
and our Eq. (5).

Equation (4) suggests the following expression
for the intrinsic normalized third-order intensity
correlation C, of an optical field:

C~(T, T ) = —{K~(T, T ) —2 [ K2(T)K2(T ) K2(T —T)]

(5)
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