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Resonance fluorescence from a j = 1/2 to j = 1/2 transition
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The calculation is given of the spectral distribution of resonance fluorescence from an atom that is driven near

a j = 1/2 to j = 1/2 transition by a monochromatic, x-polarized electric field and that is subject to radiation

damping only. In accordance with Mollow's results for a two-level system, the power spectrum of the

scattered radiation corresponding to the x component of the dipole moment contains a coherent part for all

driving-field intensities. The coherent part is absent in the fluorescence radiation corresponding to the y and z

components of the dipole moment. For weak driving fields all power scattered by these latter components is

present in a narrow Lorentzian. Consistent with energy conservation, the width of the Lorentzian corresponds

to the probability of excitation of the atom out of its ground level due to the presence of the driving field. For
strong driving fields the power spectra corresponding to the x component and to the y or z component

mainly differ in the heights and widths of their central incoherent band and their Rabi-precession-frequency-

shifted side bands.

Recently, there has been considerable theoreti-
cal' ' and experimental' ' interest in the power
spectrum of electric dipole resonance fluorescence
induced by a monochromatic electric field as a
function of the field amplitude. Mollow' treated
the fluorescence from a two-level atom driven by
a classical electric field which oscillates near the
transition frequency. In his work, equilibrium
with the driving field is established by radiation
damping only. For a weak classical field the pow-
er spectrum of the scattered field is given by a 6

function centered at the driving frequency. This is
consistent with the quantum-mechanical notion of
energy conservation for the ingoing and outgoing
quanta. It is also in agreement with the notion that
resonance fluorescence in a weak field is nothing
but scattering which has its source in a damped
harmonic dipole oscillator coherently driven by
the incident field. For higher field amplitudes
Mollow predicts two contributions to the power
spectrum: (a) a 6 function representing coherent
scattering with an intensity increasing less than
linearly with the incoming intensity I and decrea-
sing to zero for I-~, and (b) an incoherent con-
tribution appearing only at higher intensities with
a spectrum that broadens with increasing intensi-
ty I and finally features a three-peak structure in
which the Rabi frequency can be recognized.

This simple picture is no longer applicable in
the case of an atom in isotropic surroundings, be-
cause then at least either the upper or the lower
level must be degenerate for dipole transitions to
be allowed. In general, the three components of
the electric dipole vector cannot, in such a situa-
tion, be independently treated. For instance, if an
atom with a j = &

-j = & transition is driven by an
x-polarized classical electric field, we expect,
because of the resulting stationary occupation of

the upper levels, fluorescence corresponding to
radiation from the y and z components of the di-
poles as well as from the x component. For sym-
metry reasons, only the fluorescence from the
latter component can have the 6-function part in
the spectrum describing the coherent scattering
part, also at higher intensities.

Therefore it is of interest to study the fluores-
cence arising from the y or z components of the
dipole: coherent scattering cannot contribute, but,
on the other hand, for weak fields the power spec-
trum must be nar row because of the ener gy con-
servation argument. In this paper we shall give a
short account of the actual calculation for a j = &-j = & transition along the lines of Mollow and dis-
cuss the results.

We consider an atom at rest at the position r = 0
and coupled to the electromagnetic field in the
electric dipole approximation, i.e. , by the inter-
action Hamiltonian

H= p E(r=5, t).

The electric field E(r, t) is the sum of a classical,
monochromatic, x-polarized field,

E,(r, t) = e„E,(r) cos~t, (2)

and a quantum-mechanical field with Schrodinger
operator E(r) acting on the states of the radiation
field in empty space. e„denotes the unit vector in
the x direction. The circular frequency splitting
between the j = & excited level and the j = & ground
level is ~,. The two ground states with rn, = —&

and I,=+2 will be denoted by ~1) and ~2), respec-
tively, and the corresponding excited states by ~3)
and 4).

In the scattering region, where the incident field
E, vanishes, and at a large enough distance r from
the atom to be in the radiation zone, the radiation
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reemitted with a (complex) polarization vector e4

(zr) satisfies dt P14 = ('+ —2r)P14+'v(P44 —P»)1

&[e* E'-'(r t)][e .E"(r t')]) d, p„= (td 2—r)p,.+t~(p„p-„),

~ A A

dt p11 4rp 44+ 2rp33 + 3v(P41 P14)1

Here E' '(t) and E"(t) are the usual negative- and
positive-frequency parts of the Heisenberg field
operator and p,

' '(t) and p."(t) are the negative-
and positive-frequency parts of the Heisenberg
atomic electric dipole operator, and ( ~ ~ ) indi-
cates an average over the steady-state ensemble
under the influence of Eq. (2). In the steady state
the correlation functions

g;;(t, t') =&t3 '(t) P "3( 't),&

where i,j =x, y, z, depend only on t' —t and satisfy
g;, (t, 0) =gg, (0, t).

The power S,(v)dv reemitted in all directions by
the j component of the atomic dipole in the circular
frequency interval dv is given by the spectral den-
sity

S~(v) =-'3 ((u3/c') Re[g~, (v)], . (4)

g;;(v) =2 g;&(t, 0)c *'"'«.
2n'

t1&2!P1»=&
1
2P14&=-&

l I!PI».

The matrix of p,
~ is the Hermitian conjugate of p. ~.

The equations of motion of the reduced density
matrix elements are

To ca.lculate g, ,(v) we use the quantum regres-
sion theorem of I ax, 'which formalizes the corre-
spondence between the equations of motion of a
two-time correlation function such as g, ,(t, t') and
the equations of motion of the reduced density
matrix of the atom in the radiation field and driven
by the classical field. The quantum radiation field
is trea. ted as a zero-temperature heat bath coupled
to the atom in the Markoff approximation. " The
resona, nt approximation is used, i.e.,

P 'E4=3E3e3' (t3 c + P e ),

where the lowering operator p. ~ and the raising
operator p, are the Schrodinger operators corre-
sponding to the Heisenberg operators t3 "(t) a.nd

T3' '(t), respectively. The only nonvanishing matrix
elements of the components of p,

' are

~ A A

dt P33 = 4YP33'+ 2 YP44'+ tv(P33 —P33)1

~ A A

CV
P—33=- rp33+ (P.3- P3.),

~ A

dt P44 6YP44 (P14 P41)1

and p» = p~», where
-ted tpi4= pw e and p23= p23e

The further equations for p,4, p,» p», and p„
(Ref. 2) are not needed for the calculation of g„„
and g,„but have been used for g„ to check that g,
=g«, as it should. Furthermore, &=&do- co, v

= t3E,(0)/(2h) and 2r =-', p, 3~33c '5 ' is one-third of
the spontaneous-decay rate of the upper level.

With the aid of the rate equations the stationary
values (p»& of p», can be determined. The only
nonvanishing (p„) are

&P )=&P &=3' '&P g(d+23r)e ' ',
&p,.&

= &p.g = &p. ,&',

&p„&=&p.g=-' '(t~' 9+r'+2~') ',

&P„)= &P„&= 3 —&P„&.

As a consequence of Eq. (6) the matrix elements
of all p»(t) can be linearly expressed in their val-
ues a,t an earlier time t':

p„(t) =PG„.„(t,t')p„„(t') (t&t'). (7)

Because of the structure of Eq. (6) the operator G

satisfies symmetry relations such as G,4,4= G23 23

or G14 g3 G23 14 etc. Application of the regression
theorem results in

g;;(t, t') = Z &P»&G„., (t, t')(P,')„()3,').,
It3 & 3 yft3 P3 a

Insertion of the values of the matrix elements of
p. leads to

g.„„,(t, t') =2&p„)(G... ,.+G.. ..) u'

+ &P 1&(G 1411 423, 11)l

where the symmetry relations of G and the proper-
ties of (p) have been used.

The Fourier transform of G(t, t') occurring when

the spectral density expression (4) is worked out
is most easily obtained by going over to the Fou-
rier transform of the equations of motion [Eqs.
(6)] of the reduced density matrix elements. One
finally obta, ins
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1 [(X —3iy)' —6'] (X —6iy) —2v'X

3 c ' " vi l). [(X 3iy)' 4'] (X —6iy) 4v'(X —3iy)
(10)

8 u,'p' 1 [(X —3iy)' —6'] (X —6iy) —2 v'(X —2iy)"', ))~-S y)*-a')~(~-5'y)-4 *(z-3'v))~ —aw))'

In accordance with Mollow' the power spectrum
S„(v) for all driving-field intensities contains a co-
herent part given by

8 m4p, ' &'+9 '
S„""(v)= — ', (p«), , 6(v —)d). (12)

It formally originates from the pole at A. =0 in Eq.
(10). For small fields (v-0), S„""(v)equals the
total S„(v).

As was to be expected, the integrated power

f S,(v) dv equals f S,(v) dv for all values of v, as
is easily seen from the identical behavior of Eqs.
(10) and (11) for X-~. However, S, does not have
a pole at A. =O and therefore does not contain a co-
herent part. Instead, for small v, Eq. (11) has a
pole at X=4iv'y(A'+9y') '. For small v all scat-
tered power S, is present in a narrow Lorentzian
given by

S v)= — '
p

8 ']Lt, ' 4yv'(b'+ 9y')
3c $44(+2 +9y2)2(v~)2 + 16v4y2

(13)

The result (13) is consistent with energy conserva-
tion in the sense that the width of S,(v) corresponds
to the probability of excitation of the atom out of
the ground level due to the presence of the x-po-
larized driving field. Note that in the original one-
photon tr eatment of r esonance fluorescence of a
simple two-level system a similar width oc-
curs, "'"a result that is at variance with Mollow's
conclusions in the case of monochromatic excita-
tion. '" In our present paper for a j =-,'-j =& atom
we have demonstrated that the absorption width of
the ground level does appear in the resonance
fluorescence due to the y (and z) component of the
dipole moment if the atom is driven by a mono-
chromatic x-polarized field.

It is of interest to consider Eqs. (10) and (11) for
large values of v or 6 (6'+v'»y'). For S„(v) we
have, in addition to the coherent part given by Eq.
(12), the incoherent part

S,'"""((a+X) =— ', (p„)Re —. ~;, (14)
C 'FZ ko —

k

with

AO=O, A;=8v'(0'+d') '0 ', A", =A", =v'0 '

l)", = 3iy(0'+ 4')0 ', V, , = + 0+ 3iy(2v'+0')0 ',
as in Mollow's paper, and

(g2+2v2)0 '
t

a —'(4v' 3h'0')0 '(4v +96'0') '

=v'~ ',
2p 3

iyQ 2(4v4 + 9+202) ) / 2 + iy(3Q2 2v2)Q 2

V, ,= +0+iy(30'+ 2v')0 '.
In these expressions the role of the Rabi frequen-
cy 0 = (&'+4v')'~' in the incoherent part of the ra-
diation can be recognized in the values of L, and

A3 which ar e r esponsible for incoherent scatter-
ing at the side bands with v = (d + O.

Finally, we give the results for v'»y' and &
=0. For S„we find, in agreement with Mollow,
that the sidebands each carry one-fourth of the
total scattered intensity f S,(v)dv and the central
incoherent band one-half. Because of the different
widths, the peak-height ratio at v = (d+ 0, cu, and
~ —0 is 1:3:1. For S, we find the same intensity
distributions and a peak ratio 3:7:3. Incidentally,
for a 90' scattering experiment in which both S„
and S, are observed the peak ratio is 8:21:8.

It is clear that these results hold only for the
special case of the j = &

-j = & transition studied in
this paper. Generally speaking, the spectral dis-
tribution of the resonance fluorescence from the
various components of the dipole moment will very
much depend on the particular transition involved
and on the state of polarization of the monochro-
matic driving fields.

&ote added in proof: We thank C. R. Stroud, Jr. ,
for pointing out that "'Hg has the level structure
studied in this paper.
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