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Analytical solutions for laser excitation of multilevel systems
in the rotating-wave approximation~
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For a multilevel atom or molecule irradiated by a finite superposition of monochromatic fields, the time-

dependent rotating-wave-approximation Schrodinger equation can be reduced to an eigenvalue problem when

the detunings satisfy a consistency condition. This condition is analyzed and the reduction performed using a

graph associated with the interaction Hamiltonian.

I. INTRODUCTION

The rotating-wave approximation' has long been
used to simplify the description of single-photon
excitation of atoms and molecules by weak fields.
Even with this simplification, solving for the
wave function or density matrix is complicated
by the time dependence of the Hamiltonian. In
this paper the method used to eliminate the time
dependence of the Hamiltonian for particular three-
and four-level systems will be generalized. A
criterion for the success of the method will be
given.

We seek an analytical solution for the wave
function p(t) of a &Iuantum system with Hamiltonian
H, +H'(f), where H, is the Hamiltonian of the un-
perturbed system with energies 1E ) and eigen-
functions (P j, n = I, . . . ,N. The contribution
H'(f) is the dipole intera. ction -d h between the
molecule of dipole moment I and a polychromatic
electric field representing the light. The field
is assumed to be of the form

F
8 = Q Be(&&l~e '"x'),

f-»

where the complex constant 8f measures the
amplitude, phase, and polarization of the plane
wave with frequency ef., i.e., the source linewidth
is neglected. A simplifying and not too restrictive
assumption is that each of the distinct frequency
components of the field is in approximate reso-
nance with at least one allowed molecular transi-
tion and that the frequencies are sufficiently sep-
arated so that no two frequencies are in approxi-
mate resonance with the same transition.

If P(t) is expanded as (If = 1)

i&:.= Q H",'(f)C„
8

1 {&i,g )e &&{8&& royj-f
f

+ (f gg)e&&&Z&gg+Idf)n8 f

where

A frequency ~f is said to be close to resonance
with an allowed transition between levels & and

p "'

I IE «I
—~~l —~~ ~h~~~ »s a typic~i fre-

&Iuency and X =O(Z ~ S~/v). In the rotating-wave
approximation the quantity H"8' is replaced by

H&1)(f) M&1)e&t—k~&&
a8 &x8 (4)

where

M«~&=- —,'8 ~[(l q+~)(Z ~ 8 ~)+(I —&I ~)Z ~ Z*~]

It is seen that only those terms of 0"8' are kept
for which 8 is close to resonance with E 8 and

for which the complex variable e""f' rotates with
time in the same direction as e' ~8'. Equation
(4) can be derived2 from (2) by averaging over a
time scale long compared to ~ '8 but short com-
pared to ~ '8, assuming that these scales are very
diff erent. Generalizing this averaging procedure
has yielded a multiple-time-scales perturbation
theory' which extends the rotating-wave approxi-
mation.

a,nd E 8
—=E —E8 . Let 8 8be 1 if there is an &of

close to resonance with E 8; otherwise, let 8 8
be O. If 8 8=1, let the ~f and Sf of the component
of the field in approximate resonance with transi-
tion c)f —p be denoted by ~ 8 and 8 8,

a&& En&& a&& Ia&&
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II. ELIMINATING EXPLICIT TIME DEPENDENCE FROM H~i i

The substitution in Eq. (1) of (4) and

a =e~a'C
0f OI 7

where the y are parameters to be determined,
yields

(5)

jj d

6

M (2)e t E(j ~ ~gg+Baip)jg
aj eg g&

where

(2) (1)M ~=M ~-y
Thus any choice of y such that for all a, P

(8)
lj p

I/ 1I

removes the time dependence from H"', yielding
the solution

tM -g (0)

and reducing the solving of (1) to an eigenvalue
analysis of the Hermitian matrix M"'. Substitu-
tion (5) has been used for two-, three-, and four-
level systems. ' In general (V) involves up to
,'N(N —1) s—imultaneous equations in the N unknowns

y, so that a consistent choice of y is not always
possible. The rest of this paper is concerned with
deciding when Q,}can be chosen to satisfy (7)
and with actually choosing the {y }.

The dynamics of the interacting system will be
pictured by a graph, which is a simplified energy-
level (Grotrian) diagram. ' An (undirected) graph
is associated with 0"' by associating a vertex of
the graph with each energy level and drawing an
edge between vertices a and P when M"~' 10. A

simple example (Fig. 1) has vertices 1, . . . , 8,
and a representative edge, say 34, means that
level 4 is directly accessible from level 3 in the
rotating-wave approximation. The graph has
"pendant" (one-edge) vertices 2, 8, 5 and a "cy-
cle" (14371).'

For acyclic graphs ("trees") the number of
edges turns out to be one less than the number of
vertices, so that the set {y }can be chosen to
satisfy (7). An explicit construction (shown by the
arrows in Fig. 1 with edge 1V temporarily ignored
to avoid cycles) is as follows: (i) For each pen-
dant vertex, such as 8, direct the incident edge,
86, toward the adjacent vertex, 6, and call that
vertex the "successor" of the pendant vertex con-
sidered. (ii} Delete all pendant vertices and di-
rected edges. (iii) Repeat steps (i}and (ii}until
the tree has been "pruned" to a single "end" ver-
tex (3 in Fig. 1). In this process each vertex save
the end vertex r has a unique successor. (iv) As-
sign to w an arbitrary real y, and to each other
vertex o.'a y =y~- & z, where P is the successor
of ~. Thus any 8"' with an acyclic graph can be

FIG. 1. Energy-level diagram cleft-hand side) and its
graph (right-hand side). Levels 1-8 represent the 63PO,
63P „63P2, 73S

&, 73P2, 6 D3, 8 S&, and 53E3 levels of
Hg I, respectively P,ef. 5). Double-headed arrows
represent transitions close to resonance with frequencies
of the polychromatic light. Dotted line 17 is an edge
of the graph but is ignored in the tree-graph pruning"
operation described in the text.

solved exactly.
For cyclic graphs the pruning operation leads

not to end vertices but to cycles, or possibly
cycles joined by a single bridge (a shape reminis-
cent of eyeglass frames). Even for cyclic graphs
the pruning operation (or a simple extension for
bridged cycles) has shown that a consistent assign-
ment of {y }on cycles assures a consistent assign-
ment of {y }for the whole graph. The assignment
of {y}to the vertices {n„}in a cycle (n, n, ~ ~ ~ n~n, )
is consistent if

I
&= Q &(n, jn,+j) =0 (nay-=nj)i

that is, given a pair of vertices joined by more
than one path, the sum of the detunings along a
joining path is independent of the path chosen. If

(9) holds for all cycles in the graph, the graph
i.s called "zero- cyclic."

A consistent assignment of y to cycles in zero-
cyclic graphs is y(n„}=y(n„„)—&(n„,n„„). Thus
a sufficient condition for analytic solution of the
rotating-wave approximation is that the graph
of II"' be acyclic or zero-cyclic.

III. CONDITIONS FOR ZERO-CYCLIC GRAPHS

For monochromatic light, graphs all of whose
cycles are short enough will be proven zero-cyclic.
Let 1, . . . , L be the vertices of a cycle. From (3),

r x+1 =g ~r, v+1 +=+/ &

F"-1 f'=1

since the cycle sum of E„„„is zero. Then ~&
~
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&LXe, since each of the L edges represents a
transition close to resonance, so that gq„„„is
an integer with absolute value less than J.X. Thus
LA&1 forces the graph to be zero-cyclic. To
show that I.X &1 is also a necessary condition for
all graphs vrith a given maximum cycle length to
be zero-cyclic, construct an example with the
energy-level assignment E„=we, 0~ r~ m, and

E„= mu(2 m—1 —r)/(m —1), m &r 2m —1—. This
assignment leads to a non-zero-cyclic graph if
m =O(1/~).

Monochromatic light can give rise to connected
graphs (with more than one edge) if the atom or
molecule has an equal spacing between consecu-
tive energy levels, such as for a harmonic oscil-
lator. An example leading to cyclic graphs is
when each of a group of nearly degenerate levels
is approximately in resonance vrith a pair of lev-
els, i.e., E,=O, E, =2&v, E, =(1+ &&&)~ for
i =2, . . . ,A, where Ik, I&1. A second source of
cyclic graphs in the presence of monochromatic
light is a many-electron atom (which has a high
density of electronic energy levels) or a polyatomic
molecule (which has a high density of vibrational
levels due to the large number of vibrational
modes). For such systems one is likely to find
subsystems of energy levels with approximately
equal spacing. These three situations are the
only ones which, to our knomledge, lead to con-
nected graphs with monochromatic light.

For polychromatic light, results this simple
cannot be obtained. The cycle detuning sum be-
comes

vrhere the integer

R& ———g q„„„5(&o&,ur, „„),

and where 5 is Kronecker's delta. The presence
of more than one X& vitiates the above method of
proof.

The follovring example shows that I.X &1 does
not imply a zero-cyclic graph for polychromatic
light. Let there be tvro frequencies, u, and ~„
with 5+=&@,—~, and I5&I&a. Fix the interaction
parameter X =5'/6&@ and consider a system of
six levels with energies Eo 0 Eg cog+ 65(d E2

——',6ro. For the chosen value of X the correspond-
ing graph is a hexagon and I.X= 5&o/e (1. Howev-
er, the cycle detuning sum is found to be ~ = Ceo c0;
i.e., the graph is not zero-cyclic.

IV. ANALYSIS OF LARGE GRAPHS

For graphs too large or complicated to be ana-
lyzed by inspection, the follovring algorithm mill
decide if G is zero-cyclic and assign consistent

$y ) if it is. Otherwise the algorithm yields a
maximal zero-cyclic subgraph G' containing all
the vertices of G. The algorithm is a slight gen-
eralization of the so-called greedy algorithm for
constructing maximal spanning trees. '

Assign a real number (weight) to each edge. For
zero-cyclic graphs any choice of vreights will do.
For other graphs the weight 8',8 should reflect
the importance of the corresponding term in the
differential equations; in pa, rticular, it should be
an mcreasmg «n«ton « IM."s'I i vanishing with

M "~', and a nonincreasing function of
I
&

8 I. A

very simple choice is W a
= IM"~ I', an alternative

is II'
~ = (I+ I&~8/M~'a' I') ', the maximum excited-

state population for the tvro-level system e, p
undergoing Rabi oscillations. List the edges of
G in order of decreasing weight; then the graph
G'(ll') is built up from edges selected in turn from
the list as follovrs:

(1) If neither vertex n or p terminating the se-
lected edge e 8 is in the current G', then e
and p are added to G'. One vertex o' is given ar-
bitrary y, the other a y 8 =y

(2) If n c G', p q'G', then p and e 8 are added to
G' and y~=y

(3) If n, pc G', two possibilities arise: (a) Add-

ing e ~ to G' vrould join two previously disconnected
components of G'. Then e ~ is added to G' but the
vertices of one component are reassigned to ensure

y~ =y —&~ . Thi.s can always be done, since each
component has one arbitrary y. (b) Vertices n
and P are inthe sa,me component of G'. Then a
and P have previously assigned y. The edge e z
&s added to G' xf and only xf ~ ~=@~—y .

When the list is exhausted, G' is complete. If
no edge has failed test (3b), G is zero-cyclic.
If G is not zero-cyclic, G' is by construction a
maximal zero-cyclic proper subgraph of G. Note
that G' is maximal under graph inclusion; i.e.,
adding an edge to G' yields a non-zero-cyclic
graph.

It is reasonable to ask: Why go to the trouble
of completing the construction of G' after the first
failure of test (3b)'? The interest of G' is that
the analytical solution for the wave function cor-
responding to G' is a candidate for an approxima-
tion to the true wave function. In evaluating such
candidates one has in mind some measure of er-
ror, J, such as some norm of the difference be-
tween the respective wave functions, or, for cer-
tain applications, the error in the population of a
desired energy level. In principle, but at huge
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expense for large graphs, one could construct 9,
the class of all subgraphs of G which are zero-
cyclic and maximal under graph inclusion, find

by exhaustive search which subgraph minimizes
J, and see if the minimum J is acceptable. To
avoid the expense of constructing and testing such
a large class of subgraphs, the method of weighted
edges mas used. This yields one maximal sub-
graph for each choice of the weighting function S'.
It is not known in advance which choice of W min-
imizes J or what the minimum J is. For a simple
choice of J, however, me can find an upper bound
for J and a weight function which minimizes the
bound. For each maximal zero-cyclic proper
subgraph G, there is a set Q) which satisfies (7)
for all pairs n, P such that e ~(= G. Then substi-
tution (5) yields

where M "~' is given by (6) if e a
&= G and vanishes

otherwise. The element M"~' is M ')e' '"o "8'~a8&

if e &&g G and vanishes otherwise.
Let the error measure be

Its value for trial wave function B(4)
e-i&&«»&d&C(0) is

Another possible use of wave functions derived
from maximal zero-cyclic proper subgraphs is
that one can form linear combinations of such wave
functions which are better approximations. For
the above example of the non-zero-cyclic square,
one would take linear combinations of the wave
functions obtained from the four graphs obtained

by removing an edge from the square. In general
one mould, in principle, take li.near combinations

C(p) = Q t&(G";t)C(G";t)
6"q g

and find the minimum over p. of

J "(t)—= Q i C — H"~'Ci + A(t)
l
C

0t

where C(G"; t) is the analytical wave function from
the maximal zero-cyclic st. . graph G" and A is a
I.agrange multiplier associated with the normali-
zation of C. One way to find the p. corresponding
to the minimum P" for 0 &( & T is to choose a set
of interpolation points t, and minim. ize P»(t&), ob-
taining p, (G",t;). For other t, the appropriate p.

and desired averages of the wave function could
then be determined by interpolation. In practice
it would be more economical to guess at a small
set of maximal zero-cyclic proper subgraphs.

V. EXTENSION TO THE DENSITY MATRIX

J(G) = Q IM ' (G) &&a' '&c C(0-)
l

—max IM&"(G) sl

and 4' =minJ(C) (over G) satisfies

4' —minmax lM"'(G), l'

=minmap(lM"~& l': e a&=-G).

The latter quantity is minimized by the "greedy"
algorithm for the weighting function W~&&

= lM~&' l'.
The maximal zero-cyclic proper subgraph thus
generated by the "greedy" algorithm will yield a
wave function mhich is a good or bad approxima-
tion depending on whether the heaviest rejected
edge is heavy or light compared to a typical ac-
cepted edge. If, for example, the graph is a
square with all edges of approximately equal
values of lM"&» l, the maximal zero-cyclic proper
subgraph will yield a poor wave function. On the
other hand, if the graph mould be zero-cyclic but
for one edge of vanishingly small lM"~& l, the max-
imal zero-cyclic proper subgraph mould yield a
good approximate wave function. The error esti-
mate above is crude, because the quantity mini-
mized is an upper bound for J, not J itself.

For systems not initially in a pure state, it is
more convenient to work with the density matrix

p.&&(t)
= (C,CB &„

where the average is over an appropriate ensemble
at t =0. The above-described methods can also
solve equations for p ~, even if a simple phenom-
enological decay term is included. The appropri-
ate equation'

ip
&&

[M t p] 8 i a&&p B

can, for zero-cyclic graphs, be reduced by the
substitution

-wg)p
N8 e8

If I' &=I' +I', corresponding to inclusion of a
-iT C in the right-hand side of (1), the solution
of (10) is

&&&&&&i& &r& ~-0i «&&&-&»+&r&

where I' is a diagonal matrix with elements I; .
If I'

z is more general, 8 must be considered an
N'x1 vector, I'

8 elements of a diagonal N'xN'
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matxix, and M"„' and M&8 elements of a spa, rse
~' x N' matrix. Solution of (10), although pos-
sible in principle, is for large N more difficult
in practice.

VI. POSSIBLE APPLKATIONS

The systematic analysis of large graphs is
particularly suited to the study of low-intensity
photoexcitation of atoms and molecules with com-
plex spectra, such as heavy atoms or molecules
with more than two or three atoms. An example
is the isotope-selective photodissociation of SF6
by an infrared laser. ' The large ratio of dis-
sociation to photon energy suggests a multistage
process, while the low intensity used suggests
the validity of the rotating-wave approximation.
Were energy levels and matrix elements known,
the above-described methods could be used to

study the photoexcitation part of that process.
Standard graph-theoretical techniques can deter-
mine which energy levels are accessible from the
ground state. In a complex graph with many
branches and cycles some fraction of the incident
light energy will be used to populate levels other
than the target level. The methods developed
here ean be used to attack the problem of mini-
mizing this waste of energy.
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